mirror of
https://github.com/UberGames/EF2GameSource.git
synced 2024-11-30 15:10:51 +00:00
2567 lines
55 KiB
C
2567 lines
55 KiB
C
//-----------------------------------------------------------------------------
|
|
//
|
|
// $Logfile:: /Code/DLLs/game/q_math.c $
|
|
// $Revision:: 15 $
|
|
// $Author:: Steven $
|
|
// $Date:: 10/13/03 9:11a $
|
|
//
|
|
// Copyright (C) 1998 by Ritual Entertainment, Inc.
|
|
// All rights reserved.
|
|
//
|
|
// This source may not be distributed and/or modified without
|
|
// expressly written permission by Ritual Entertainment, Inc.
|
|
//
|
|
//
|
|
// DESCRIPTION:
|
|
// stateless support routines that are included in each code dll
|
|
#include <qcommon/platform.h>
|
|
#include "q_shared.h"
|
|
#include <math.h>
|
|
#include "float.h"
|
|
//intel addition
|
|
#if !defined ( MSVC_BUILD ) && !defined( LINUX )
|
|
#include "xmmintrin.h"
|
|
#endif
|
|
//
|
|
|
|
|
|
#define X 0
|
|
#define Y 1
|
|
#define Z 2
|
|
#define W 3
|
|
//#define QUAT_EPSILON 0.00001
|
|
|
|
//intel change to accomodate manual cpu dispatch feature in intel compiler
|
|
#if !defined( MSVC_BUILD ) && !defined (LINUX)
|
|
__declspec(cpu_dispatch(generic,pentium_4))
|
|
void _VectorSubtract( const vec3_t veca, const vec3_t vecb, vec3_t out )
|
|
{
|
|
};
|
|
__declspec(cpu_dispatch(generic,pentium_4))
|
|
void _VectorAdd( const vec3_t veca, const vec3_t vecb, vec3_t out )
|
|
{
|
|
};
|
|
#endif
|
|
|
|
vec3_t vec3_origin = { 0.0f, 0.0f, 0.0f };
|
|
vec3_t axisDefault[3] = { { 1.0f, 0.0f, 0.0f }, { 0.0f, 1.0f, 0.0f }, { 0.0f, 0.0f, 1.0f } };
|
|
|
|
|
|
vec4_t colorBlack = { 0.0f, 0.0f, 0.0f, 1.0f };
|
|
vec4_t colorRed = { 1.0f, 0.0f, 0.0f, 1.0f };
|
|
vec4_t colorGreen = { 1.0f, 1.0f, 0.0f, 1.0f };
|
|
vec4_t colorBlue = { 0.0f, 0.0f, 1.0f, 1.0f };
|
|
vec4_t colorYellow = { 1.0f, 1.0f, 0.0f, 1.0f };
|
|
vec4_t colorMagenta= { 1.0f, 0.0f, 1.0f, 1.0f };
|
|
vec4_t colorCyan = { 0.0f, 1.0f, 1.0f, 1.0f };
|
|
vec4_t colorWhite = { 1.0f, 1.0f, 1.0f, 1.0f };
|
|
vec4_t colorLtGrey = { 0.75f, 0.75f, 0.75f, 1.0f };
|
|
vec4_t colorMdGrey = { 0.5f, 0.5f, 0.5f, 1.0f };
|
|
vec4_t colorDkGrey = { 0.25f, 0.25f, 0.25f, 1.0f };
|
|
|
|
vec4_t g_color_table[8] =
|
|
{
|
|
{ 0.0f, 0.0f, 0.0f, 1.0f },
|
|
{ 1.0f, 0.0f, 0.0f, 1.0f },
|
|
{ 0.0f, 1.0f, 0.0f, 1.0f },
|
|
{ 1.0f, 1.0f, 0.0f, 1.0f },
|
|
{ 0.0f, 0.0f, 1.0f, 1.0f },
|
|
{ 0.0f, 1.0f, 1.0f, 1.0f },
|
|
{ 1.0f, 0.0f, 1.0f, 1.0f },
|
|
{ 1.0f, 1.0f, 1.0f, 1.0f }
|
|
};
|
|
|
|
|
|
vec3_t bytedirs[NUMVERTEXNORMALS] =
|
|
{
|
|
{ -0.525731f, 0.000000f, 0.850651f }, { -0.442863f, 0.238856f, 0.864188f },
|
|
{ -0.295242f, 0.000000f, 0.955423f }, { -0.309017f, 0.500000f, 0.809017f },
|
|
{ -0.162460f, 0.262866f, 0.951056f }, { 0.000000f, 0.000000f, 1.000000f },
|
|
{ 0.000000f, 0.850651f, 0.525731f }, { -0.147621f, 0.716567f, 0.681718f },
|
|
{ 0.147621f, 0.716567f, 0.681718f }, { 0.000000f, 0.525731f, 0.850651f },
|
|
{ 0.309017f, 0.500000f, 0.809017f }, { 0.525731f, 0.000000f, 0.850651f },
|
|
{ 0.295242f, 0.000000f, 0.955423f }, { 0.442863f, 0.238856f, 0.864188f },
|
|
{ 0.162460f, 0.262866f, 0.951056f }, { -0.681718f, 0.147621f, 0.716567f },
|
|
{ -0.809017f, 0.309017f, 0.500000f }, { -0.587785f, 0.425325f, 0.688191f },
|
|
{ -0.850651f, 0.525731f, 0.000000f }, { -0.864188f, 0.442863f, 0.238856f },
|
|
{ -0.716567f, 0.681718f, 0.147621f }, { -0.688191f, 0.587785f, 0.425325f },
|
|
{ -0.500000f, 0.809017f, 0.309017f }, { -0.238856f, 0.864188f, 0.442863f },
|
|
{ -0.425325f, 0.688191f, 0.587785f }, { -0.716567f, 0.681718f, -0.147621f },
|
|
{ -0.500000f, 0.809017f, -0.309017f }, { -0.525731f, 0.850651f, 0.000000f },
|
|
{ 0.000000f, 0.850651f, -0.525731f }, { -0.238856f, 0.864188f, -0.442863f },
|
|
{ 0.000000f, 0.955423f, -0.295242f }, { -0.262866f, 0.951056f, -0.162460f },
|
|
{ 0.000000f, 1.000000f, 0.000000f }, { 0.000000f, 0.955423f, 0.295242f },
|
|
{ -0.262866f, 0.951056f, 0.162460f }, { 0.238856f, 0.864188f, 0.442863f },
|
|
{ 0.262866f, 0.951056f, 0.162460f }, { 0.500000f, 0.809017f, 0.309017f },
|
|
{ 0.238856f, 0.864188f, -0.442863f }, { 0.262866f, 0.951056f, -0.162460f },
|
|
{ 0.500000f, 0.809017f, -0.309017f }, { 0.850651f, 0.525731f, 0.000000f },
|
|
{ 0.716567f, 0.681718f, 0.147621f }, { 0.716567f, 0.681718f, -0.147621f },
|
|
{ 0.525731f, 0.850651f, 0.000000f }, { 0.425325f, 0.688191f, 0.587785f },
|
|
{ 0.864188f, 0.442863f, 0.238856f }, { 0.688191f, 0.587785f, 0.425325f },
|
|
{ 0.809017f, 0.309017f, 0.500000f }, { 0.681718f, 0.147621f, 0.716567f },
|
|
{ 0.587785f, 0.425325f, 0.688191f }, { 0.955423f, 0.295242f, 0.000000f },
|
|
{ 1.000000f, 0.000000f, 0.000000f }, { 0.951056f, 0.162460f, 0.262866f },
|
|
{ 0.850651f, -0.525731f, 0.000000f }, { 0.955423f, -0.295242f, 0.000000f },
|
|
{ 0.864188f, -0.442863f, 0.238856f }, { 0.951056f, -0.162460f, 0.262866f },
|
|
{ 0.809017f, -0.309017f, 0.500000f }, { 0.681718f, -0.147621f, 0.716567f },
|
|
{ 0.850651f, 0.000000f, 0.525731f }, { 0.864188f, 0.442863f, -0.238856f },
|
|
{ 0.809017f, 0.309017f, -0.500000f }, { 0.951056f, 0.162460f, -0.262866f },
|
|
{ 0.525731f, 0.000000f, -0.850651f }, { 0.681718f, 0.147621f, -0.716567f },
|
|
{ 0.681718f, -0.147621f, -0.716567f }, { 0.850651f, 0.000000f, -0.525731f },
|
|
{ 0.809017f, -0.309017f, -0.500000f }, { 0.864188f, -0.442863f, -0.238856f },
|
|
{ 0.951056f, -0.162460f, -0.262866f }, { 0.147621f, 0.716567f, -0.681718f },
|
|
{ 0.309017f, 0.500000f, -0.809017f }, { 0.425325f, 0.688191f, -0.587785f },
|
|
{ 0.442863f, 0.238856f, -0.864188f }, { 0.587785f, 0.425325f, -0.688191f },
|
|
{ 0.688191f, 0.587785f, -0.425325f }, { -0.147621f, 0.716567f, -0.681718f },
|
|
{ -0.309017f, 0.500000f, -0.809017f }, { 0.000000f, 0.525731f, -0.850651f },
|
|
{ -0.525731f, 0.000000f, -0.850651f }, { -0.442863f, 0.238856f, -0.864188f },
|
|
{ -0.295242f, 0.000000f, -0.955423f }, { -0.162460f, 0.262866f, -0.951056f },
|
|
{ 0.000000f, 0.000000f, -1.000000f }, { 0.295242f, 0.000000f, -0.955423f },
|
|
{ 0.162460f, 0.262866f, -0.951056f }, { -0.442863f, -0.238856f, -0.864188f },
|
|
{ -0.309017f, -0.500000f, -0.809017f },{ -0.162460f, -0.262866f, -0.951056f },
|
|
{ 0.000000f, -0.850651f, -0.525731f }, { -0.147621f, -0.716567f, -0.681718f },
|
|
{ 0.147621f, -0.716567f, -0.681718f }, { 0.000000f, -0.525731f, -0.850651f },
|
|
{ 0.309017f, -0.500000f, -0.809017f }, { 0.442863f, -0.238856f, -0.864188f },
|
|
{ 0.162460f, -0.262866f, -0.951056f }, { 0.238856f, -0.864188f, -0.442863f },
|
|
{ 0.500000f, -0.809017f, -0.309017f }, { 0.425325f, -0.688191f, -0.587785f },
|
|
{ 0.716567f, -0.681718f, -0.147621f }, { 0.688191f, -0.587785f, -0.425325f },
|
|
{ 0.587785f, -0.425325f, -0.688191f }, { 0.000000f, -0.955423f, -0.295242f },
|
|
{ 0.000000f, -1.000000f, 0.000000f }, { 0.262866f, -0.951056f, -0.162460f },
|
|
{ 0.000000f, -0.850651f, 0.525731f }, { 0.000000f, -0.955423f, 0.295242f },
|
|
{ 0.238856f, -0.864188f, 0.442863f }, { 0.262866f, -0.951056f, 0.162460f },
|
|
{ 0.500000f, -0.809017f, 0.309017f }, { 0.716567f, -0.681718f, 0.147621f },
|
|
{ 0.525731f, -0.850651f, 0.000000f }, { -0.238856f, -0.864188f, -0.442863f },
|
|
{ -0.500000f, -0.809017f, -0.309017f },{ -0.262866f, -0.951056f, -0.162460f },
|
|
{ -0.850651f, -0.525731f, 0.000000f }, { -0.716567f, -0.681718f, -0.147621f },
|
|
{ -0.716567f, -0.681718f, 0.147621f }, { -0.525731f, -0.850651f, 0.000000f },
|
|
{ -0.500000f, -0.809017f, 0.309017f }, { -0.238856f, -0.864188f, 0.442863f },
|
|
{ -0.262866f, -0.951056f, 0.162460f }, { -0.864188f, -0.442863f, 0.238856f },
|
|
{ -0.809017f, -0.309017f, 0.500000f }, { -0.688191f, -0.587785f, 0.425325f },
|
|
{ -0.681718f, -0.147621f, 0.716567f }, { -0.442863f, -0.238856f, 0.864188f },
|
|
{ -0.587785f, -0.425325f, 0.688191f }, { -0.309017f, -0.500000f, 0.809017f },
|
|
{ -0.147621f, -0.716567f, 0.681718f }, { -0.425325f, -0.688191f, 0.587785f },
|
|
{ -0.162460f, -0.262866f, 0.951056f }, { 0.442863f, -0.238856f, 0.864188f },
|
|
{ 0.162460f, -0.262866f, 0.951056f }, { 0.309017f, -0.500000f, 0.809017f },
|
|
{ 0.147621f, -0.716567f, 0.681718f }, { 0.000000f, -0.525731f, 0.850651f },
|
|
{ 0.425325f, -0.688191f, 0.587785f }, { 0.587785f, -0.425325f, 0.688191f },
|
|
{ 0.688191f, -0.587785f, 0.425325f }, { -0.955423f, 0.295242f, 0.000000f },
|
|
{ -0.951056f, 0.162460f, 0.262866f }, { -1.000000f, 0.000000f, 0.000000f },
|
|
{ -0.850651f, 0.000000f, 0.525731f }, { -0.955423f, -0.295242f, 0.000000f },
|
|
{ -0.951056f, -0.162460f, 0.262866f }, { -0.864188f, 0.442863f, -0.238856f },
|
|
{ -0.951056f, 0.162460f, -0.262866f }, { -0.809017f, 0.309017f, -0.500000f },
|
|
{ -0.864188f, -0.442863f, -0.238856f },{ -0.951056f, -0.162460f, -0.262866f },
|
|
{ -0.809017f, -0.309017f, -0.500000f },{ -0.681718f, 0.147621f, -0.716567f },
|
|
{ -0.681718f, -0.147621f, -0.716567f },{ -0.850651f, 0.000000f, -0.525731f },
|
|
{ -0.688191f, 0.587785f, -0.425325f }, { -0.587785f, 0.425325f, -0.688191f },
|
|
{ -0.425325f, 0.688191f, -0.587785f }, { -0.425325f, -0.688191f, -0.587785f },
|
|
{ -0.587785f, -0.425325f, -0.688191f },{ -0.688191f, -0.587785f, -0.425325f }
|
|
};
|
|
|
|
int Q_rand( int *seed ) {
|
|
*seed = (69069 * *seed + 1);
|
|
return *seed;
|
|
}
|
|
|
|
float Q_random( int *seed ) {
|
|
return ( Q_rand( seed ) & 0xffff ) / (float)0x10000;
|
|
}
|
|
|
|
float Q_crandom( int *seed ) {
|
|
return 2.0f * ( Q_random( seed ) - 0.5f );
|
|
}
|
|
|
|
/*
|
|
grealrandom
|
|
|
|
This function produces a random number with a gaussian
|
|
distribution. This is also known as a normal or bell
|
|
curve distribution; it has a mean value of zero and a
|
|
standard deviation of one.
|
|
*/
|
|
float grealrandom ( void ) {
|
|
double v1;
|
|
double v2;
|
|
double s;
|
|
float x1;
|
|
static float x2 = 0;
|
|
static int toggle = 0;
|
|
|
|
if ( toggle ) {
|
|
toggle = 0;
|
|
return x2;
|
|
}
|
|
|
|
do {
|
|
v1 = -1.0 + ( 2.0 * random () );
|
|
v2 = -1.0 + ( 2.0 * random () );
|
|
s = ( v1 * v1 ) + ( v2 * v2 );
|
|
}
|
|
while ( ( s >= 1.0 ) || ( s == 0 ) );
|
|
|
|
s = sqrt ( -2.0 * log ( s ) / s );
|
|
x1 = (float)( v1 * s );
|
|
x2 = (float)( v2 * s );
|
|
toggle = 1;
|
|
return x1;
|
|
}
|
|
|
|
|
|
/*
|
|
erandom
|
|
|
|
This function produces a random number with a exponential
|
|
distribution and the specified mean value.
|
|
*/
|
|
float erandom( float mean ) {
|
|
float r;
|
|
|
|
do {
|
|
r = random();
|
|
} while ( r == 0.0f );
|
|
|
|
return -mean * (float)log( r );
|
|
}
|
|
|
|
float randomrange( float min, float max )
|
|
{
|
|
return min + ( random() * ( max - min ) );
|
|
}
|
|
|
|
float crandomrange( float min, float max )
|
|
{
|
|
float random_number;
|
|
|
|
random_number = crandom();
|
|
|
|
if ( random_number >= 0.0f )
|
|
return min + ( crandom() * ( max - min ) );
|
|
else
|
|
return ( crandom() * ( max - min ) ) - min;
|
|
}
|
|
|
|
float grandom( float average, float deviation )
|
|
{
|
|
return average + ( grealrandom() * deviation );
|
|
}
|
|
|
|
signed char ClampChar( int i ) {
|
|
if ( i < DATATYPE_SCHAR_MIN ) {
|
|
return DATATYPE_SCHAR_MIN;
|
|
}
|
|
if ( i > DATATYPE_SCHAR_MAX ) {
|
|
return DATATYPE_SCHAR_MAX;
|
|
}
|
|
return i;
|
|
}
|
|
|
|
signed short ClampShort( int i ) {
|
|
if ( i < DATATYPE_SSHORT_MIN ) {
|
|
return DATATYPE_SSHORT_MIN;
|
|
}
|
|
if ( i > DATATYPE_SSHORT_MAX ) {
|
|
return DATATYPE_SSHORT_MAX;
|
|
}
|
|
return i;
|
|
}
|
|
|
|
//===========================================================================
|
|
//
|
|
// Global functions base on type double
|
|
//
|
|
//===========================================================================
|
|
#define SCALAR_EPSILON (0.000001f)
|
|
#define SCALAR_IDENTITY (0.0f)
|
|
|
|
double dEpsilon( void )
|
|
{
|
|
return (double)SCALAR_EPSILON;
|
|
}
|
|
|
|
double dIdentity( void )
|
|
{
|
|
return (double)SCALAR_IDENTITY;
|
|
}
|
|
|
|
double dSign( const double number )
|
|
{
|
|
if (number >= 0.0)
|
|
{
|
|
return 1;
|
|
}
|
|
else
|
|
{
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
double dClamp( const double value, const double min, const double max )
|
|
{
|
|
assert( min <= max );
|
|
if ( value < min )
|
|
{
|
|
return min;
|
|
}
|
|
if ( value > max )
|
|
{
|
|
return max;
|
|
}
|
|
return value;
|
|
}
|
|
|
|
double dDistance (const double value1, const double value2 )
|
|
{
|
|
return fabs ( value1 - value2);
|
|
}
|
|
|
|
qboolean dCloseEnough( const double value1, const double value2, const double epsilon )
|
|
{
|
|
return dDistance( value1, value2) < epsilon;
|
|
}
|
|
|
|
qboolean dSmallEnough( const double value, const double epsilon )
|
|
{
|
|
return dDistance( dIdentity(), value ) < epsilon;
|
|
}
|
|
|
|
//===========================================================================
|
|
//
|
|
// Global functions base on type float
|
|
//
|
|
//===========================================================================
|
|
float fEpsilon(void)
|
|
{
|
|
return SCALAR_EPSILON;
|
|
}
|
|
|
|
float fIdentity(void)
|
|
{
|
|
return SCALAR_IDENTITY;
|
|
}
|
|
|
|
float fSign( const float number)
|
|
{
|
|
if (number >= 0.0f)
|
|
{
|
|
return 1;
|
|
}
|
|
else
|
|
{
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
float fClamp( const float value, const float min, const float max )
|
|
{
|
|
assert( min <= max );
|
|
if ( value < min )
|
|
{
|
|
return min;
|
|
}
|
|
if ( value > max )
|
|
{
|
|
return max;
|
|
}
|
|
return value;
|
|
}
|
|
|
|
float fDistance (const float value1, const float value2 )
|
|
{
|
|
return fabs ( value1 - value2);
|
|
}
|
|
|
|
qboolean fCloseEnough(const float value1, const float value2, const float epsilon )
|
|
{
|
|
return fDistance( value1, value2) < epsilon;
|
|
}
|
|
|
|
qboolean fSmallEnough(const float value, const float epsilon )
|
|
{
|
|
return fDistance( fIdentity(), value ) < epsilon;
|
|
}
|
|
|
|
//===========================================================================
|
|
//
|
|
// Global functions base on type int
|
|
//
|
|
//===========================================================================
|
|
int iSign( const int number)
|
|
{
|
|
if (number >= 0)
|
|
{
|
|
return 1;
|
|
}
|
|
else
|
|
{
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
int iClamp( const int value, const int min, const int max )
|
|
{
|
|
assert( min <= max );
|
|
if ( value < min )
|
|
{
|
|
return min;
|
|
}
|
|
if ( value > max )
|
|
{
|
|
return max;
|
|
}
|
|
return value;
|
|
}
|
|
|
|
// this isn't a real cheap function to call!
|
|
int DirToByte( const vec3_t dir ) {
|
|
int i, best;
|
|
float d, bestd;
|
|
|
|
if ( !dir ) {
|
|
return 0;
|
|
}
|
|
|
|
bestd = 0;
|
|
best = 0;
|
|
for (i=0 ; i<NUMVERTEXNORMALS ; i++)
|
|
{
|
|
d = DotProduct (dir, bytedirs[i]);
|
|
if (d > bestd)
|
|
{
|
|
bestd = d;
|
|
best = i;
|
|
}
|
|
}
|
|
|
|
return best;
|
|
}
|
|
|
|
void ByteToDir( int b, vec3_t dir ) {
|
|
if ( ( b < 0 ) || ( b >= NUMVERTEXNORMALS ) ) {
|
|
VectorCopy( vec3_origin, dir );
|
|
return;
|
|
}
|
|
VectorCopy (bytedirs[b], dir);
|
|
}
|
|
|
|
|
|
unsigned ColorBytes3 (float r, float g, float b) {
|
|
unsigned i;
|
|
|
|
( (byte *)&i )[0] = r * 255.0f;
|
|
( (byte *)&i )[1] = g * 255.0f;
|
|
( (byte *)&i )[2] = b * 255.0f;
|
|
|
|
return i;
|
|
}
|
|
|
|
unsigned ColorBytes4 (float r, float g, float b, float a) {
|
|
unsigned i;
|
|
|
|
( (byte *)&i )[0] = r * 255.0f;
|
|
( (byte *)&i )[1] = g * 255.0f;
|
|
( (byte *)&i )[2] = b * 255.0f;
|
|
( (byte *)&i )[3] = a * 255.0f;
|
|
|
|
return i;
|
|
}
|
|
|
|
float NormalizeColor( const vec3_t in, vec3_t out ) {
|
|
float max;
|
|
USES_CLAMP_ZERO;
|
|
|
|
max = in[0] - in[1];
|
|
ClampZero ( max );
|
|
max = ( max + in[1] ) - in[2];
|
|
ClampZero ( max );
|
|
max += in[2];
|
|
|
|
if ( !max ) {
|
|
VectorClear( out );
|
|
} else {
|
|
float oomax = 1.f / max;
|
|
|
|
out[0] = in[0] * oomax;
|
|
out[1] = in[1] * oomax;
|
|
out[2] = in[2] * oomax;
|
|
}
|
|
return max;
|
|
}
|
|
|
|
|
|
//============================================================================
|
|
|
|
void RotatePointAroundVector( vec3_t dst, const vec3_t dir, const vec3_t point,
|
|
float degrees )
|
|
{
|
|
float m[3][3];
|
|
float im[3][3];
|
|
float zrot[3][3];
|
|
float tmpmat[3][3];
|
|
float rot[3][3];
|
|
int i;
|
|
vec3_t vr, vup, vf;
|
|
float rad;
|
|
|
|
vf[0] = dir[0];
|
|
vf[1] = dir[1];
|
|
vf[2] = dir[2];
|
|
|
|
PerpendicularVector( vr, dir );
|
|
CrossProduct( vr, vf, vup );
|
|
|
|
m[0][0] = vr[0];
|
|
m[1][0] = vr[1];
|
|
m[2][0] = vr[2];
|
|
|
|
m[0][1] = vup[0];
|
|
m[1][1] = vup[1];
|
|
m[2][1] = vup[2];
|
|
|
|
m[0][2] = vf[0];
|
|
m[1][2] = vf[1];
|
|
m[2][2] = vf[2];
|
|
|
|
memcpy( im, m, sizeof( im ) );
|
|
|
|
im[0][1] = m[1][0];
|
|
im[0][2] = m[2][0];
|
|
im[1][0] = m[0][1];
|
|
im[1][2] = m[2][1];
|
|
im[2][0] = m[0][2];
|
|
im[2][1] = m[1][2];
|
|
|
|
memset( zrot, 0, sizeof( zrot ) );
|
|
zrot[0][0] = zrot[1][1] = zrot[2][2] = 1.0F;
|
|
|
|
rad = DEG2RAD( degrees );
|
|
zrot[0][0] = (float)cos( rad );
|
|
zrot[0][1] = (float)sin( rad );
|
|
zrot[1][0] = (float)-sin( rad );
|
|
zrot[1][1] = (float)cos( rad );
|
|
|
|
MatrixMultiply( m, zrot, tmpmat );
|
|
MatrixMultiply( tmpmat, im, rot );
|
|
|
|
for ( i = 0; i < 3; i++ )
|
|
{
|
|
dst[i] = ( rot[i][0] * point[0] ) + ( rot[i][1] * point[1] ) + ( rot[i][2] * point[2] );
|
|
}
|
|
}
|
|
|
|
/*
|
|
===============
|
|
RotateAroundDirection
|
|
===============
|
|
*/
|
|
void RotateAroundDirection( vec3_t axis[3], float yaw ) {
|
|
|
|
// create an arbitrary axis[1]
|
|
PerpendicularVector( axis[1], axis[0] );
|
|
|
|
// rotate it around axis[0] by yaw
|
|
if ( yaw ) {
|
|
vec3_t temp;
|
|
|
|
VectorCopy( axis[1], temp );
|
|
RotatePointAroundVector( axis[1], axis[0], temp, yaw );
|
|
}
|
|
|
|
// cross to get axis[2]
|
|
CrossProduct( axis[0], axis[1], axis[2] );
|
|
}
|
|
|
|
|
|
void vectoangles( const vec3_t value1, vec3_t angles ) {
|
|
float forward;
|
|
float yaw, pitch;
|
|
|
|
if ( ( value1[1] == 0.0f ) && ( value1[0] == 0.0f ) ) {
|
|
yaw = 0.0f;
|
|
if ( value1[2] > 0.0f ) {
|
|
pitch = 90.0f;
|
|
}
|
|
else {
|
|
pitch = 270.0f;
|
|
}
|
|
}
|
|
else {
|
|
if ( value1[0] ) {
|
|
yaw = ( atan2 ( value1[1], value1[0] ) * 180.0f / M_PI );
|
|
}
|
|
else if ( value1[1] > 0.0f ) {
|
|
yaw = 90.0f;
|
|
}
|
|
else {
|
|
yaw = 270.0f;
|
|
}
|
|
if ( yaw < 0.0f ) {
|
|
yaw += 360.0f;
|
|
}
|
|
|
|
forward = sqrt ( ( value1[0] * value1[0] ) + ( value1[1] * value1[1] ) );
|
|
pitch = ( atan2(value1[2], forward) * 180.0f / M_PI );
|
|
if ( pitch < 0.0f ) {
|
|
pitch += 360.0f;
|
|
}
|
|
}
|
|
|
|
angles[PITCH] = -pitch;
|
|
angles[YAW] = yaw;
|
|
angles[ROLL] = 0.0f;
|
|
}
|
|
|
|
float vectoyaw( const vec3_t vec ) {
|
|
float yaw;
|
|
|
|
if ( ( vec[YAW] == 0.0f ) && ( vec[PITCH] == 0.0f ) ) {
|
|
yaw = 0.0f;
|
|
} else {
|
|
if (vec[PITCH]) {
|
|
yaw = ( atan2( vec[YAW], vec[PITCH]) * 180.0f / M_PI );
|
|
} else if (vec[YAW] > 0.0f) {
|
|
yaw = 90.0f;
|
|
} else {
|
|
yaw = 270.0f;
|
|
}
|
|
if (yaw < 0.0f) {
|
|
yaw += 360.0f;
|
|
}
|
|
}
|
|
|
|
return yaw;
|
|
}
|
|
|
|
void AxisClear( vec3_t axis[3] ) {
|
|
axis[0][0] = 1;
|
|
axis[0][1] = 0;
|
|
axis[0][2] = 0;
|
|
axis[1][0] = 0;
|
|
axis[1][1] = 1;
|
|
axis[1][2] = 0;
|
|
axis[2][0] = 0;
|
|
axis[2][1] = 0;
|
|
axis[2][2] = 1;
|
|
}
|
|
|
|
void AxisCopy( const vec3_t in[3], vec3_t out[3] ) {
|
|
VectorCopy( in[0], out[0] );
|
|
VectorCopy( in[1], out[1] );
|
|
VectorCopy( in[2], out[2] );
|
|
}
|
|
|
|
void ProjectPointOnPlane( vec3_t dst, const vec3_t p, const vec3_t normal )
|
|
{
|
|
float d;
|
|
vec3_t n;
|
|
float inv_denom;
|
|
|
|
inv_denom = 1.0F / DotProduct( normal, normal );
|
|
|
|
d = DotProduct( normal, p ) * inv_denom;
|
|
|
|
n[0] = normal[0] * inv_denom;
|
|
n[1] = normal[1] * inv_denom;
|
|
n[2] = normal[2] * inv_denom;
|
|
|
|
dst[0] = p[0] - ( d * n[0] );
|
|
dst[1] = p[1] - ( d * n[1] );
|
|
dst[2] = p[2] - ( d * n[2] );
|
|
}
|
|
|
|
/*
|
|
================
|
|
MakeNormalVectors
|
|
|
|
Given a normalized forward vector, create two
|
|
other perpendicular vectors
|
|
================
|
|
*/
|
|
void MakeNormalVectors (const vec3_t forward, vec3_t right, vec3_t up)
|
|
{
|
|
float d;
|
|
|
|
// this rotate and negate guarantees a vector
|
|
// not colinear with the original
|
|
right[1] = -forward[0];
|
|
right[2] = forward[1];
|
|
right[0] = forward[2];
|
|
|
|
d = DotProduct (right, forward);
|
|
VectorMA (right, -d, forward, right);
|
|
VectorNormalize (right);
|
|
CrossProduct (right, forward, up);
|
|
}
|
|
|
|
void VectorRotate( const vec3_t in, const vec3_t matrix[3], vec3_t out )
|
|
{
|
|
out[0] = DotProduct( in, matrix[0] );
|
|
out[1] = DotProduct( in, matrix[1] );
|
|
out[2] = DotProduct( in, matrix[2] );
|
|
}
|
|
|
|
void AccumulateTransform( vec3_t dstOrigin, vec3_t dstAxes[3],
|
|
const vec3_t childOrigin, const vec3_t childAxes[3],
|
|
const vec3_t parentOrigin, const vec3_t parentAxes[3] )
|
|
{
|
|
vec3_t tmpVector;
|
|
|
|
// compute final angles
|
|
MatrixMultiply( childAxes, parentAxes, dstAxes );
|
|
|
|
// compute final origin as parent * p
|
|
VectorRotate( childOrigin, parentAxes, tmpVector );
|
|
VectorAdd( tmpVector, parentOrigin, dstOrigin );
|
|
}
|
|
|
|
void AccumulatePosition( vec3_t dstOrigin, const vec3_t childOrigin, const vec3_t parentOrigin, const vec3_t parentAxes[3] )
|
|
{
|
|
vec3_t tmpVector;
|
|
|
|
// compute final origin as parent * p
|
|
VectorRotate( childOrigin, parentAxes, tmpVector );
|
|
VectorAdd( tmpVector, parentOrigin, dstOrigin );
|
|
}
|
|
|
|
|
|
//============================================================================
|
|
|
|
/*
|
|
** float q_rsqrt( float number )
|
|
*/
|
|
#if !id386 || defined LINUX
|
|
float Q_rsqrt( float number )
|
|
{
|
|
long i;
|
|
float x2, y;
|
|
const float threehalfs = 1.5F;
|
|
|
|
x2 = number * 0.5F;
|
|
y = number;
|
|
i = * ( long * ) &y; // evil floating point bit level hacking
|
|
i = 0x5f3759df - ( i >> 1 ); // what is this?
|
|
y = * ( float * ) &i;
|
|
y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
|
|
// y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
|
|
|
|
return y;
|
|
}
|
|
#else
|
|
static const float ONE_HALF = 0.5f;
|
|
static const float THREE_HALVES = 1.5f;
|
|
__declspec(naked) float Q_rsqrt ( float f )
|
|
{
|
|
__asm
|
|
{
|
|
fld dword ptr [esp + 4]
|
|
fmul dword ptr [ONE_HALF]
|
|
|
|
mov eax, [esp + 4]
|
|
mov ecx, 0x5f3759df
|
|
|
|
shr eax, 1
|
|
|
|
sub ecx, eax
|
|
|
|
mov [esp + 4], ecx
|
|
|
|
fmul dword ptr [esp + 4]
|
|
fld dword ptr [esp + 4]
|
|
fmul dword ptr [esp + 4]
|
|
fld dword ptr [THREE_HALVES]
|
|
fmul dword ptr [esp + 4]
|
|
fxch st(2)
|
|
fmulp st(1), st
|
|
fsubp st(1), st
|
|
ret
|
|
}
|
|
}
|
|
#endif
|
|
|
|
float Q_fabs( float f ) {
|
|
int tmp = * ( int * ) &f;
|
|
tmp &= 0x7FFFFFFF;
|
|
return * ( float * ) &tmp;
|
|
}
|
|
|
|
//============================================================
|
|
|
|
/*
|
|
===============
|
|
LerpAngle
|
|
|
|
===============
|
|
*/
|
|
float LerpAngle (float from, float to, float frac) {
|
|
float a;
|
|
|
|
if ( to - from > 180.0f ) {
|
|
to -= 360.0f;
|
|
}
|
|
if ( to - from < -180.0f ) {
|
|
to += 360.0f;
|
|
}
|
|
a = from + ( frac * (to - from) );
|
|
|
|
return a;
|
|
}
|
|
|
|
/*
|
|
===============
|
|
LerpAngleFromCurrent
|
|
|
|
===============
|
|
*/
|
|
float LerpAngleFromCurrent (float from, float to, float current, float frac) {
|
|
float a;
|
|
|
|
if ( to - current > 180.0f ) {
|
|
to -= 360.0f;
|
|
}
|
|
if ( to - current < -180.0f ) {
|
|
to += 360.0f;
|
|
}
|
|
a = from + ( frac * (to - from) );
|
|
|
|
return a;
|
|
}
|
|
|
|
/*
|
|
=================
|
|
AngleSubtract
|
|
|
|
Always returns a value from -180 to 180
|
|
=================
|
|
*/
|
|
float AngleSubtract( float a1, float a2 ) {
|
|
float a;
|
|
|
|
a = a1 - a2;
|
|
while ( a > 180.0f ) {
|
|
a -= 360.0f;
|
|
}
|
|
while ( a < -180.0f ) {
|
|
a += 360.0f;
|
|
}
|
|
return a;
|
|
}
|
|
|
|
|
|
void AnglesSubtract( const vec3_t v1, const vec3_t v2, vec3_t v3 ) {
|
|
v3[0] = AngleSubtract( v1[0], v2[0] );
|
|
v3[1] = AngleSubtract( v1[1], v2[1] );
|
|
v3[2] = AngleSubtract( v1[2], v2[2] );
|
|
}
|
|
|
|
|
|
float AngleMod(float a)
|
|
{
|
|
/****************************************************************************
|
|
Squirrel : #if 0 / 1 block demoted to comment
|
|
|
|
#if 0
|
|
if (a >= 0)
|
|
a -= 360*(int)(a/360);
|
|
else
|
|
a += 360*( 1 + (int)(-a/360) );
|
|
#endif
|
|
|
|
****************************************************************************/
|
|
|
|
a = (360.0f/65536.0f) * (float)( (int)(a*(65536.0f/360.0f)) & 65535 );
|
|
return a;
|
|
}
|
|
|
|
|
|
/*
|
|
=================
|
|
AngleNormalize360
|
|
|
|
returns angle normalized to the range [0 <= angle < 360]
|
|
=================
|
|
*/
|
|
float AngleNormalize360 ( float angle ) {
|
|
|
|
// return (360.0f / 65536.0f) * (float)( (int)(angle * (65536.0f / 360.0f)) & 65535 );
|
|
|
|
while( angle > 360.0f )
|
|
angle -= 360.0f;
|
|
|
|
while( angle < 0.0f )
|
|
angle += 360.0f;
|
|
|
|
return( angle );
|
|
}
|
|
|
|
|
|
/*
|
|
=================
|
|
AngleNormalize180
|
|
|
|
returns angle normalized to the range [-180 < angle <= 180]
|
|
=================
|
|
*/
|
|
float AngleNormalize180 ( float angle ) {
|
|
angle = AngleNormalize360( angle );
|
|
if ( angle > 180.0f ) {
|
|
angle -= 360.0f;
|
|
}
|
|
return angle;
|
|
}
|
|
|
|
|
|
/*
|
|
=================
|
|
AngleNormalizeArbitrary
|
|
|
|
returns angle normalized to the range [minimumAngle < angle <= minimumAngle + 360]
|
|
=================
|
|
*/
|
|
float AngleNormalizeArbitrary ( const float angle, const float minimumAngle ) {
|
|
float maximumAngle = minimumAngle + 360.0f;
|
|
float normalizedAngle = angle;
|
|
|
|
|
|
while( normalizedAngle > maximumAngle )
|
|
normalizedAngle -= 360.0f;
|
|
|
|
while( normalizedAngle < minimumAngle )
|
|
normalizedAngle += 360.0f;
|
|
|
|
return( normalizedAngle );
|
|
}
|
|
|
|
|
|
/*
|
|
=================
|
|
AngleDelta
|
|
|
|
returns the normalized delta from angle1 to angle2
|
|
=================
|
|
*/
|
|
float AngleDelta ( float angle1, float angle2 ) {
|
|
|
|
// return AngleNormalize180( angle1 - angle2 );
|
|
|
|
float normalized1 = AngleNormalize360( angle1 );
|
|
float normalized2 = AngleNormalize360( angle2 );
|
|
float angularDistance = normalized1 - normalized2;
|
|
|
|
if( angularDistance < -180 )
|
|
angularDistance += 360;
|
|
|
|
if( angularDistance > 180 )
|
|
angularDistance -= 360;
|
|
|
|
return( angularDistance );
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
=================
|
|
AnglesDelta
|
|
|
|
returns the normalized delta from angle1 to angle2
|
|
=================
|
|
*/
|
|
void AnglesDelta( const vec3_t v1, const vec3_t v2, vec3_t v3 ) {
|
|
v3[0] = AngleDelta( v1[0], v2[0] );
|
|
v3[1] = AngleDelta( v1[1], v2[1] );
|
|
v3[2] = AngleDelta( v1[2], v2[2] );
|
|
}
|
|
|
|
|
|
//============================================================
|
|
|
|
|
|
/*
|
|
=================
|
|
SetPlaneSignbits
|
|
=================
|
|
*/
|
|
void SetPlaneSignbits (cplane_t *out) {
|
|
int bits, j;
|
|
|
|
// for fast box on planeside test
|
|
bits = 0;
|
|
for (j=0 ; j<3 ; j++) {
|
|
if (out->normal[j] < 0.0f) {
|
|
bits |= 1<<j;
|
|
}
|
|
}
|
|
out->signbits = bits;
|
|
}
|
|
|
|
/*
|
|
==================
|
|
BoxOnPlaneSide
|
|
|
|
Returns 1, 2, or 1 + 2
|
|
|
|
// this is the slow, general version
|
|
int BoxOnPlaneSide2 (vec3_t emins, vec3_t emaxs, struct cplane_s *p)
|
|
{
|
|
int i;
|
|
float dist1, dist2;
|
|
int sides;
|
|
vec3_t corners[2];
|
|
|
|
for (i=0 ; i<3 ; i++)
|
|
{
|
|
if (p->normal[i] < 0)
|
|
{
|
|
corners[0][i] = emins[i];
|
|
corners[1][i] = emaxs[i];
|
|
}
|
|
else
|
|
{
|
|
corners[1][i] = emins[i];
|
|
corners[0][i] = emaxs[i];
|
|
}
|
|
}
|
|
dist1 = DotProduct (p->normal, corners[0]) - p->dist;
|
|
dist2 = DotProduct (p->normal, corners[1]) - p->dist;
|
|
sides = 0;
|
|
if (dist1 >= 0)
|
|
sides = 1;
|
|
if (dist2 < 0)
|
|
sides |= 2;
|
|
|
|
return sides;
|
|
}
|
|
|
|
==================
|
|
*/
|
|
#if !id386 || defined LINUX
|
|
int BoxOnPlaneSide (vec3_t emins, vec3_t emaxs, struct cplane_s *p)
|
|
{
|
|
float dist1, dist2;
|
|
int sides;
|
|
|
|
// fast axial cases
|
|
if (p->type < 3)
|
|
{
|
|
if (p->dist <= emins[p->type])
|
|
return 1;
|
|
if (p->dist >= emaxs[p->type])
|
|
return 2;
|
|
return 3;
|
|
}
|
|
|
|
// general case
|
|
switch (p->signbits)
|
|
{
|
|
case 0:
|
|
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
|
|
dist2 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
|
|
break;
|
|
case 1:
|
|
dist1 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
|
|
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
|
|
break;
|
|
case 2:
|
|
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
|
|
dist2 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
|
|
break;
|
|
case 3:
|
|
dist1 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
|
|
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
|
|
break;
|
|
case 4:
|
|
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
|
|
dist2 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
|
|
break;
|
|
case 5:
|
|
dist1 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
|
|
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
|
|
break;
|
|
case 6:
|
|
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
|
|
dist2 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
|
|
break;
|
|
case 7:
|
|
dist1 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
|
|
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
|
|
break;
|
|
default:
|
|
dist1 = dist2 = 0; // shut up compiler
|
|
break;
|
|
}
|
|
|
|
sides = 0;
|
|
if (dist1 >= p->dist)
|
|
sides = 1;
|
|
if (dist2 < p->dist)
|
|
sides |= 2;
|
|
|
|
return sides;
|
|
}
|
|
#else
|
|
#pragma warning( disable: 4035 )
|
|
|
|
__declspec( naked ) int BoxOnPlaneSide (vec3_t emins, vec3_t emaxs, struct cplane_s *p)
|
|
{
|
|
static int bops_initialized;
|
|
static int Ljmptab[8];
|
|
|
|
__asm {
|
|
|
|
push ebx
|
|
|
|
cmp bops_initialized, 1
|
|
je initialized
|
|
mov bops_initialized, 1
|
|
|
|
mov Ljmptab[0*4], offset Lcase0
|
|
mov Ljmptab[1*4], offset Lcase1
|
|
mov Ljmptab[2*4], offset Lcase2
|
|
mov Ljmptab[3*4], offset Lcase3
|
|
mov Ljmptab[4*4], offset Lcase4
|
|
mov Ljmptab[5*4], offset Lcase5
|
|
mov Ljmptab[6*4], offset Lcase6
|
|
mov Ljmptab[7*4], offset Lcase7
|
|
|
|
initialized:
|
|
|
|
mov edx,ds:dword ptr[4+12+esp]
|
|
mov ecx,ds:dword ptr[4+4+esp]
|
|
xor eax,eax
|
|
mov ebx,ds:dword ptr[4+8+esp]
|
|
mov al,ds:byte ptr[17+edx]
|
|
cmp al,8
|
|
jge Lerror
|
|
fld ds:dword ptr[0+edx]
|
|
fld st(0)
|
|
jmp dword ptr[Ljmptab+eax*4]
|
|
Lcase0:
|
|
fmul ds:dword ptr[ebx]
|
|
fld ds:dword ptr[0+4+edx]
|
|
fxch st(2)
|
|
fmul ds:dword ptr[ecx]
|
|
fxch st(2)
|
|
fld st(0)
|
|
fmul ds:dword ptr[4+ebx]
|
|
fld ds:dword ptr[0+8+edx]
|
|
fxch st(2)
|
|
fmul ds:dword ptr[4+ecx]
|
|
fxch st(2)
|
|
fld st(0)
|
|
fmul ds:dword ptr[8+ebx]
|
|
fxch st(5)
|
|
faddp st(3),st(0)
|
|
fmul ds:dword ptr[8+ecx]
|
|
fxch st(1)
|
|
faddp st(3),st(0)
|
|
fxch st(3)
|
|
faddp st(2),st(0)
|
|
jmp LSetSides
|
|
Lcase1:
|
|
fmul ds:dword ptr[ecx]
|
|
fld ds:dword ptr[0+4+edx]
|
|
fxch st(2)
|
|
fmul ds:dword ptr[ebx]
|
|
fxch st(2)
|
|
fld st(0)
|
|
fmul ds:dword ptr[4+ebx]
|
|
fld ds:dword ptr[0+8+edx]
|
|
fxch st(2)
|
|
fmul ds:dword ptr[4+ecx]
|
|
fxch st(2)
|
|
fld st(0)
|
|
fmul ds:dword ptr[8+ebx]
|
|
fxch st(5)
|
|
faddp st(3),st(0)
|
|
fmul ds:dword ptr[8+ecx]
|
|
fxch st(1)
|
|
faddp st(3),st(0)
|
|
fxch st(3)
|
|
faddp st(2),st(0)
|
|
jmp LSetSides
|
|
Lcase2:
|
|
fmul ds:dword ptr[ebx]
|
|
fld ds:dword ptr[0+4+edx]
|
|
fxch st(2)
|
|
fmul ds:dword ptr[ecx]
|
|
fxch st(2)
|
|
fld st(0)
|
|
fmul ds:dword ptr[4+ecx]
|
|
fld ds:dword ptr[0+8+edx]
|
|
fxch st(2)
|
|
fmul ds:dword ptr[4+ebx]
|
|
fxch st(2)
|
|
fld st(0)
|
|
fmul ds:dword ptr[8+ebx]
|
|
fxch st(5)
|
|
faddp st(3),st(0)
|
|
fmul ds:dword ptr[8+ecx]
|
|
fxch st(1)
|
|
faddp st(3),st(0)
|
|
fxch st(3)
|
|
faddp st(2),st(0)
|
|
jmp LSetSides
|
|
Lcase3:
|
|
fmul ds:dword ptr[ecx]
|
|
fld ds:dword ptr[0+4+edx]
|
|
fxch st(2)
|
|
fmul ds:dword ptr[ebx]
|
|
fxch st(2)
|
|
fld st(0)
|
|
fmul ds:dword ptr[4+ecx]
|
|
fld ds:dword ptr[0+8+edx]
|
|
fxch st(2)
|
|
fmul ds:dword ptr[4+ebx]
|
|
fxch st(2)
|
|
fld st(0)
|
|
fmul ds:dword ptr[8+ebx]
|
|
fxch st(5)
|
|
faddp st(3),st(0)
|
|
fmul ds:dword ptr[8+ecx]
|
|
fxch st(1)
|
|
faddp st(3),st(0)
|
|
fxch st(3)
|
|
faddp st(2),st(0)
|
|
jmp LSetSides
|
|
Lcase4:
|
|
fmul ds:dword ptr[ebx]
|
|
fld ds:dword ptr[0+4+edx]
|
|
fxch st(2)
|
|
fmul ds:dword ptr[ecx]
|
|
fxch st(2)
|
|
fld st(0)
|
|
fmul ds:dword ptr[4+ebx]
|
|
fld ds:dword ptr[0+8+edx]
|
|
fxch st(2)
|
|
fmul ds:dword ptr[4+ecx]
|
|
fxch st(2)
|
|
fld st(0)
|
|
fmul ds:dword ptr[8+ecx]
|
|
fxch st(5)
|
|
faddp st(3),st(0)
|
|
fmul ds:dword ptr[8+ebx]
|
|
fxch st(1)
|
|
faddp st(3),st(0)
|
|
fxch st(3)
|
|
faddp st(2),st(0)
|
|
jmp LSetSides
|
|
Lcase5:
|
|
fmul ds:dword ptr[ecx]
|
|
fld ds:dword ptr[0+4+edx]
|
|
fxch st(2)
|
|
fmul ds:dword ptr[ebx]
|
|
fxch st(2)
|
|
fld st(0)
|
|
fmul ds:dword ptr[4+ebx]
|
|
fld ds:dword ptr[0+8+edx]
|
|
fxch st(2)
|
|
fmul ds:dword ptr[4+ecx]
|
|
fxch st(2)
|
|
fld st(0)
|
|
fmul ds:dword ptr[8+ecx]
|
|
fxch st(5)
|
|
faddp st(3),st(0)
|
|
fmul ds:dword ptr[8+ebx]
|
|
fxch st(1)
|
|
faddp st(3),st(0)
|
|
fxch st(3)
|
|
faddp st(2),st(0)
|
|
jmp LSetSides
|
|
Lcase6:
|
|
fmul ds:dword ptr[ebx]
|
|
fld ds:dword ptr[0+4+edx]
|
|
fxch st(2)
|
|
fmul ds:dword ptr[ecx]
|
|
fxch st(2)
|
|
fld st(0)
|
|
fmul ds:dword ptr[4+ecx]
|
|
fld ds:dword ptr[0+8+edx]
|
|
fxch st(2)
|
|
fmul ds:dword ptr[4+ebx]
|
|
fxch st(2)
|
|
fld st(0)
|
|
fmul ds:dword ptr[8+ecx]
|
|
fxch st(5)
|
|
faddp st(3),st(0)
|
|
fmul ds:dword ptr[8+ebx]
|
|
fxch st(1)
|
|
faddp st(3),st(0)
|
|
fxch st(3)
|
|
faddp st(2),st(0)
|
|
jmp LSetSides
|
|
Lcase7:
|
|
fmul ds:dword ptr[ecx]
|
|
fld ds:dword ptr[0+4+edx]
|
|
fxch st(2)
|
|
fmul ds:dword ptr[ebx]
|
|
fxch st(2)
|
|
fld st(0)
|
|
fmul ds:dword ptr[4+ecx]
|
|
fld ds:dword ptr[0+8+edx]
|
|
fxch st(2)
|
|
fmul ds:dword ptr[4+ebx]
|
|
fxch st(2)
|
|
fld st(0)
|
|
fmul ds:dword ptr[8+ecx]
|
|
fxch st(5)
|
|
faddp st(3),st(0)
|
|
fmul ds:dword ptr[8+ebx]
|
|
fxch st(1)
|
|
faddp st(3),st(0)
|
|
fxch st(3)
|
|
faddp st(2),st(0)
|
|
LSetSides:
|
|
faddp st(2),st(0)
|
|
fcomp ds:dword ptr[12+edx]
|
|
xor ecx,ecx
|
|
fnstsw ax
|
|
fcomp ds:dword ptr[12+edx]
|
|
and ah,1
|
|
xor ah,1
|
|
add cl,ah
|
|
fnstsw ax
|
|
and ah,1
|
|
add ah,ah
|
|
add cl,ah
|
|
pop ebx
|
|
mov eax,ecx
|
|
ret
|
|
Lerror:
|
|
int 3
|
|
}
|
|
}
|
|
#pragma warning( default: 4035 )
|
|
#endif
|
|
|
|
/*
|
|
=================
|
|
RadiusFromBounds
|
|
=================
|
|
*/
|
|
float RadiusFromBounds( const vec3_t mins, const vec3_t maxs ) {
|
|
int i;
|
|
vec3_t corner;
|
|
float a, b;
|
|
|
|
for (i=0 ; i<3 ; i++) {
|
|
a = (float)fabs( mins[i] );
|
|
b = (float)fabs( maxs[i] );
|
|
corner[i] = a > b ? a : b;
|
|
}
|
|
|
|
return VectorLength (corner);
|
|
}
|
|
|
|
#define BOUNDS_CLEAR_VALUE 99999
|
|
|
|
void ClearBounds( vec3_t mins, vec3_t maxs ) {
|
|
mins[0] = mins[1] = mins[2] = BOUNDS_CLEAR_VALUE;
|
|
maxs[0] = maxs[1] = maxs[2] = -BOUNDS_CLEAR_VALUE;
|
|
}
|
|
|
|
qboolean BoundsClear( const vec3_t mins, const vec3_t maxs )
|
|
{
|
|
if (
|
|
( mins[ 0 ] == BOUNDS_CLEAR_VALUE ) &&
|
|
( mins[ 1 ] == BOUNDS_CLEAR_VALUE ) &&
|
|
( mins[ 2 ] == BOUNDS_CLEAR_VALUE ) &&
|
|
( maxs[ 0 ] == -BOUNDS_CLEAR_VALUE ) &&
|
|
( maxs[ 1 ] == -BOUNDS_CLEAR_VALUE ) &&
|
|
( maxs[ 2 ] == -BOUNDS_CLEAR_VALUE )
|
|
)
|
|
{
|
|
return qtrue;
|
|
}
|
|
else
|
|
{
|
|
return qfalse;
|
|
}
|
|
}
|
|
|
|
void AddPointToBounds( const vec3_t v, vec3_t mins, vec3_t maxs ) {
|
|
if ( v[0] < mins[0] ) {
|
|
mins[0] = v[0];
|
|
}
|
|
if ( v[0] > maxs[0]) {
|
|
maxs[0] = v[0];
|
|
}
|
|
|
|
if ( v[1] < mins[1] ) {
|
|
mins[1] = v[1];
|
|
}
|
|
if ( v[1] > maxs[1]) {
|
|
maxs[1] = v[1];
|
|
}
|
|
|
|
if ( v[2] < mins[2] ) {
|
|
mins[2] = v[2];
|
|
}
|
|
if ( v[2] > maxs[2]) {
|
|
maxs[2] = v[2];
|
|
}
|
|
}
|
|
|
|
|
|
int VectorCompare( const vec3_t v1, const vec3_t v2 ) {
|
|
if ( ( v1[0] != v2[0] ) || ( v1[1] != v2[1] ) || ( v1[2] != v2[2] )) {
|
|
return qfalse;
|
|
}
|
|
|
|
return qtrue;
|
|
}
|
|
|
|
|
|
vec_t VectorNormalize( vec3_t v ) {
|
|
float length, ilength;
|
|
|
|
length = ( v[0] * v[0] ) + ( v[1] * v[1] ) + ( v[2] * v[2] );
|
|
length = (float)sqrt (length);
|
|
|
|
if ( length ) {
|
|
ilength = 1.0f / length;
|
|
v[0] *= ilength;
|
|
v[1] *= ilength;
|
|
v[2] *= ilength;
|
|
}
|
|
|
|
return length;
|
|
}
|
|
|
|
//
|
|
// fast vector normalize routine that does not check to make sure
|
|
// that length != 0, nor does it return length
|
|
//
|
|
void VectorNormalizeFast( vec3_t v )
|
|
{
|
|
float ilength;
|
|
|
|
ilength = Q_rsqrt( DotProduct( v, v ) );
|
|
|
|
v[0] *= ilength;
|
|
v[1] *= ilength;
|
|
v[2] *= ilength;
|
|
}
|
|
|
|
vec_t VectorNormalize2( const vec3_t v, vec3_t out) {
|
|
float length, ilength;
|
|
|
|
length = ( v[0] * v[0] ) + ( v[1] * v[1] ) + ( v[2] * v[2] );
|
|
length = (float)sqrt (length);
|
|
|
|
if (length)
|
|
{
|
|
ilength = 1.0f / length;
|
|
out[0] = v[0] * ilength;
|
|
out[1] = v[1] * ilength;
|
|
out[2] = v[2] * ilength;
|
|
} else {
|
|
VectorClear( out );
|
|
}
|
|
|
|
return length;
|
|
|
|
}
|
|
|
|
void _VectorMA( const vec3_t veca, float scale, const vec3_t vecb, vec3_t vecc) {
|
|
vecc[0] = veca[0] + ( scale * vecb[0] );
|
|
vecc[1] = veca[1] + ( scale * vecb[1] );
|
|
vecc[2] = veca[2] + ( scale * vecb[2] );
|
|
}
|
|
|
|
|
|
vec_t _DotProduct( const vec3_t v1, const vec3_t v2 ) {
|
|
return ( v1[0] * v2[0] ) + ( v1[1] * v2[1] ) + ( v1[2] * v2[2] );
|
|
}
|
|
|
|
//intel change
|
|
#if !defined (MSVC_BUILD) && !defined( LINUX )
|
|
//intel optimized version
|
|
__declspec(cpu_specific(pentium_4))
|
|
void _VectorSubtract( const vec3_t veca, const vec3_t vecb, vec3_t out ) {
|
|
__m128 xmm_veca, xmm_vecb, xmm_out;
|
|
|
|
xmm_veca = _mm_load_ss(&veca[0]);
|
|
xmm_vecb = _mm_load_ss(&vecb[0]);
|
|
xmm_out = _mm_sub_ss(xmm_veca,xmm_vecb);
|
|
_mm_store_ss(&out[0],xmm_out);
|
|
|
|
xmm_veca = _mm_load_ss(&veca[1]);
|
|
xmm_vecb = _mm_load_ss(&vecb[1]);
|
|
xmm_out = _mm_sub_ss(xmm_veca,xmm_vecb);
|
|
_mm_store_ss(&out[1],xmm_out);
|
|
|
|
xmm_veca = _mm_load_ss(&veca[2]);
|
|
xmm_vecb = _mm_load_ss(&vecb[2]);
|
|
xmm_out = _mm_sub_ss(xmm_veca,xmm_vecb);
|
|
_mm_store_ss(&out[2],xmm_out);
|
|
}
|
|
__declspec(cpu_specific(generic))
|
|
//original
|
|
void _VectorSubtract( const vec3_t veca, const vec3_t vecb, vec3_t out ) {
|
|
out[0] = veca[0]-vecb[0];
|
|
out[1] = veca[1]-vecb[1];
|
|
out[2] = veca[2]-vecb[2];
|
|
}
|
|
#else
|
|
//original code for MSVC builds
|
|
void _VectorSubtract( const vec3_t veca, const vec3_t vecb, vec3_t out ) {
|
|
out[0] = veca[0]-vecb[0];
|
|
out[1] = veca[1]-vecb[1];
|
|
out[2] = veca[2]-vecb[2];
|
|
}
|
|
#endif
|
|
|
|
//intel change
|
|
#if !defined(MSVC_BUILD) && !defined (LINUX)
|
|
//intel optimized version
|
|
__declspec(cpu_specific(pentium_4))
|
|
void _VectorAdd( const vec3_t veca, const vec3_t vecb, vec3_t out ) {
|
|
__m128 xmm_veca, xmm_vecb, xmm_out;
|
|
|
|
xmm_veca = _mm_load_ss(&veca[0]);
|
|
xmm_vecb = _mm_load_ss(&vecb[0]);
|
|
xmm_out = _mm_add_ss(xmm_veca,xmm_vecb);
|
|
_mm_store_ss(&out[0],xmm_out);
|
|
|
|
xmm_veca = _mm_load_ss(&veca[1]);
|
|
xmm_vecb = _mm_load_ss(&vecb[1]);
|
|
xmm_out = _mm_add_ss(xmm_veca,xmm_vecb);
|
|
_mm_store_ss(&out[1],xmm_out);
|
|
|
|
xmm_veca = _mm_load_ss(&veca[2]);
|
|
xmm_vecb = _mm_load_ss(&vecb[2]);
|
|
xmm_out = _mm_add_ss(xmm_veca,xmm_vecb);
|
|
_mm_store_ss(&out[2],xmm_out);
|
|
}
|
|
__declspec(cpu_specific(generic))
|
|
//original
|
|
void _VectorAdd( const vec3_t veca, const vec3_t vecb, vec3_t out ) {
|
|
out[0] = veca[0]+vecb[0];
|
|
out[1] = veca[1]+vecb[1];
|
|
out[2] = veca[2]+vecb[2];
|
|
}
|
|
#else
|
|
//original code for MSVC builds
|
|
void _VectorAdd( const vec3_t veca, const vec3_t vecb, vec3_t out ) {
|
|
out[0] = veca[0]+vecb[0];
|
|
out[1] = veca[1]+vecb[1];
|
|
out[2] = veca[2]+vecb[2];
|
|
}
|
|
#endif
|
|
|
|
void _VectorCopy( const vec3_t in, vec3_t out ) {
|
|
out[0] = in[0];
|
|
out[1] = in[1];
|
|
out[2] = in[2];
|
|
}
|
|
|
|
void _VectorScale( const vec3_t in, vec_t scale, vec3_t out ) {
|
|
out[0] = in[0]*scale;
|
|
out[1] = in[1]*scale;
|
|
out[2] = in[2]*scale;
|
|
}
|
|
|
|
void CrossProduct( const vec3_t v1, const vec3_t v2, vec3_t cross ) {
|
|
cross[0] = ( v1[1] * v2[2] ) - ( v1[2] * v2[1] );
|
|
cross[1] = ( v1[2] * v2[0] ) - ( v1[0] * v2[2] );
|
|
cross[2] = ( v1[0] * v2[1] ) - ( v1[1] * v2[0] );
|
|
}
|
|
|
|
vec_t VectorLength( const vec3_t v ) {
|
|
return sqrt ( ( v[0] * v[0] ) + ( v[1] * v[1] ) + ( v[2] * v[2] ) );
|
|
}
|
|
|
|
|
|
vec_t VectorLengthSquared( const vec3_t v ) {
|
|
return ( ( v[0] * v[0] ) + ( v[1] * v[1] ) + ( v[2] * v[2] ) );
|
|
}
|
|
|
|
|
|
vec_t Distance( const vec3_t p1, const vec3_t p2 ) {
|
|
vec3_t v;
|
|
|
|
VectorSubtract (p2, p1, v);
|
|
return VectorLength( v );
|
|
}
|
|
|
|
vec_t DistanceSquared( const vec3_t p1, const vec3_t p2 ) {
|
|
vec3_t v;
|
|
|
|
VectorSubtract (p2, p1, v);
|
|
return ( v[0] * v[0] ) + ( v[1] * v[1] ) + ( v[2] * v[2] );
|
|
}
|
|
|
|
|
|
void VectorInverse( vec3_t v ){
|
|
v[0] = -v[0];
|
|
v[1] = -v[1];
|
|
v[2] = -v[2];
|
|
}
|
|
|
|
void Vector4Scale( const vec4_t in, vec_t scale, vec4_t out ) {
|
|
out[0] = in[0]*scale;
|
|
out[1] = in[1]*scale;
|
|
out[2] = in[2]*scale;
|
|
out[3] = in[3]*scale;
|
|
}
|
|
|
|
|
|
int Q_log2( int val ) {
|
|
int answer;
|
|
|
|
answer = 0;
|
|
while ( ( val>>=1 ) != 0 ) {
|
|
answer++;
|
|
}
|
|
return answer;
|
|
}
|
|
|
|
/*
|
|
** NormalToLatLong
|
|
**
|
|
** Lat = 0 at (1,0,0) to 360 (-1,0,0), encoded in 8-bit sine table format
|
|
** Lng = 0 at (0,0,1) to 180 (0,0,-1), encoded in 8-bit sine table format
|
|
**
|
|
** Latitude is encoded in high 8 bits
|
|
*/
|
|
unsigned short NormalToLatLong( const vec3_t normal )
|
|
{
|
|
unsigned short ll;
|
|
|
|
// check for singularities
|
|
if ( ( normal[0] == 0 ) && ( normal[1] == 0 ) )
|
|
{
|
|
if ( normal[2] > 0.0f )
|
|
{
|
|
ll = 0; // lat = 0, long = 0
|
|
}
|
|
else
|
|
{
|
|
ll = 128; // lat = 0, long = 128
|
|
}
|
|
}
|
|
else
|
|
{
|
|
unsigned short a, b;
|
|
|
|
a = RAD2DEG( atan2( normal[1], normal[0] ) ) * (255.0f / 360.0f );
|
|
a &= 0xff;
|
|
|
|
b = RAD2DEG( acos( normal[2] ) ) * ( 255.0f / 360.0f );
|
|
b &= 0xff;
|
|
|
|
ll = ( a << 8 ) | b;
|
|
}
|
|
|
|
return ll;
|
|
}
|
|
|
|
|
|
float bias(float a, float b)
|
|
{
|
|
return (float)( pow(a, log(b) / log(0.5)) );
|
|
}
|
|
|
|
float gain(float a, float b)
|
|
{
|
|
float p = (float)( log(1. - b) / log(0.5) );
|
|
|
|
if ( a < .001f )
|
|
return 0.0f;
|
|
else if ( a > .999f )
|
|
return 1.0f;
|
|
if ( a < 0.5f )
|
|
return (float)pow( 2.0 * a, p) / 2.0f;
|
|
else
|
|
return 1.0f - (float)pow( 2.0 * (1.0 - a), p ) / 2.0f;
|
|
}
|
|
|
|
float noise(float vec[], int len)
|
|
{
|
|
switch (len) {
|
|
case 0:
|
|
return 0.;
|
|
case 1:
|
|
return noise1(vec[0]);
|
|
case 2:
|
|
return noise2(vec);
|
|
default:
|
|
return noise3(vec);
|
|
}
|
|
}
|
|
|
|
float turbulence( const float *v, float freq)
|
|
{
|
|
float t, vec[3];
|
|
|
|
for ( t = 0.0f ; freq >= 1.0f ; freq /= 2.0f ) {
|
|
vec[0] = freq * v[0];
|
|
vec[1] = freq * v[1];
|
|
vec[2] = freq * v[2];
|
|
t += (float)fabs(noise3(vec)) / freq;
|
|
}
|
|
return t;
|
|
}
|
|
|
|
/* noise functions over 1, 2, and 3 dimensions */
|
|
|
|
#define B 0x100
|
|
#define BM 0xff
|
|
|
|
#define N 0x1000
|
|
//#define NP 12 /* 2^N */
|
|
//#define NM 0xfff
|
|
|
|
static int p[B + B + 2];
|
|
static float g3[B + B + 2][3];
|
|
static float g2[B + B + 2][2];
|
|
static float g1[B + B + 2];
|
|
static int start = 1;
|
|
|
|
static void init(void);
|
|
|
|
#define s_curve(t) ( t * t * (3.0f - ( 2.0f * t ) ) )
|
|
|
|
#define lerp(t, a, b) ( a + ( t * (b - a) ) )
|
|
|
|
#define setup(i,b0,b1,r0,r1)\
|
|
t = vec[i] + N;\
|
|
b0 = ((int)t) & BM;\
|
|
b1 = (b0+1) & BM;\
|
|
r0 = t - (int)t;\
|
|
r1 = r0 - 1.0f;
|
|
|
|
float noise1(float arg)
|
|
{
|
|
int bx0, bx1;
|
|
float rx0, rx1, sx, t, u, v, vec[1];
|
|
|
|
vec[0] = arg;
|
|
if (start) {
|
|
start = 0;
|
|
init();
|
|
}
|
|
|
|
setup(0, bx0,bx1, rx0,rx1);
|
|
|
|
sx = s_curve(rx0);
|
|
|
|
u = rx0 * g1[ p[ bx0 ] ];
|
|
v = rx1 * g1[ p[ bx1 ] ];
|
|
|
|
return lerp(sx, u, v);
|
|
}
|
|
|
|
#define at2(rx,ry) ( ( rx * q[0] ) + ( ry * q[1] ) )
|
|
|
|
float noise2( const float vec[2] )
|
|
{
|
|
int bx0, bx1, by0, by1, b00, b10, b01, b11;
|
|
float rx0, rx1, ry0, ry1, *q, sx, sy, a, b, t, u, v;
|
|
register int i, j;
|
|
|
|
if (start) {
|
|
start = 0;
|
|
init();
|
|
}
|
|
|
|
setup(0, bx0,bx1, rx0,rx1);
|
|
setup(1, by0,by1, ry0,ry1);
|
|
|
|
i = p[ bx0 ];
|
|
j = p[ bx1 ];
|
|
|
|
b00 = p[ i + by0 ];
|
|
b10 = p[ j + by0 ];
|
|
b01 = p[ i + by1 ];
|
|
b11 = p[ j + by1 ];
|
|
|
|
sx = s_curve(rx0);
|
|
sy = s_curve(ry0);
|
|
|
|
q = g2[ b00 ] ; u = at2(rx0,ry0);
|
|
q = g2[ b10 ] ; v = at2(rx1,ry0);
|
|
a = lerp(sx, u, v);
|
|
|
|
q = g2[ b01 ] ; u = at2(rx0,ry1);
|
|
q = g2[ b11 ] ; v = at2(rx1,ry1);
|
|
b = lerp(sx, u, v);
|
|
|
|
return lerp(sy, a, b);
|
|
}
|
|
|
|
#define at3(rx,ry,rz) ( ( rx * q[0] ) + ( ry * q[1] ) + ( rz * q[2] ) )
|
|
|
|
float noise3( const float vec[3] )
|
|
{
|
|
int bx0, bx1, by0, by1, bz0, bz1, b00, b10, b01, b11;
|
|
float rx0, rx1, ry0, ry1, rz0, rz1, *q, sy, sz, a, b, c, d, t, u, v;
|
|
register int i, j;
|
|
|
|
if (start) {
|
|
start = 0;
|
|
init();
|
|
}
|
|
|
|
setup(0, bx0,bx1, rx0,rx1);
|
|
setup(1, by0,by1, ry0,ry1);
|
|
setup(2, bz0,bz1, rz0,rz1);
|
|
|
|
i = p[ bx0 ];
|
|
j = p[ bx1 ];
|
|
|
|
b00 = p[ i + by0 ];
|
|
b10 = p[ j + by0 ];
|
|
b01 = p[ i + by1 ];
|
|
b11 = p[ j + by1 ];
|
|
|
|
t = s_curve(rx0);
|
|
sy = s_curve(ry0);
|
|
sz = s_curve(rz0);
|
|
|
|
q = g3[ b00 + bz0 ] ; u = at3(rx0,ry0,rz0);
|
|
q = g3[ b10 + bz0 ] ; v = at3(rx1,ry0,rz0);
|
|
a = lerp(t, u, v);
|
|
|
|
q = g3[ b01 + bz0 ] ; u = at3(rx0,ry1,rz0);
|
|
q = g3[ b11 + bz0 ] ; v = at3(rx1,ry1,rz0);
|
|
b = lerp(t, u, v);
|
|
|
|
c = lerp(sy, a, b);
|
|
|
|
q = g3[ b00 + bz1 ] ; u = at3(rx0,ry0,rz1);
|
|
q = g3[ b10 + bz1 ] ; v = at3(rx1,ry0,rz1);
|
|
a = lerp(t, u, v);
|
|
|
|
q = g3[ b01 + bz1 ] ; u = at3(rx0,ry1,rz1);
|
|
q = g3[ b11 + bz1 ] ; v = at3(rx1,ry1,rz1);
|
|
b = lerp(t, u, v);
|
|
|
|
d = lerp(sy, a, b);
|
|
|
|
return lerp(sz, c, d);
|
|
}
|
|
|
|
static void normalize2(float v[2])
|
|
{
|
|
float s;
|
|
|
|
s = sqrt( ( v[0] * v[0] ) + ( v[1] * v[1] ) );
|
|
v[0] = v[0] / s;
|
|
v[1] = v[1] / s;
|
|
}
|
|
|
|
static void normalize3(float v[3])
|
|
{
|
|
float s;
|
|
|
|
s = sqrt( ( v[0] * v[0] ) + ( v[1] * v[1] ) + ( v[2] * v[2] ) );
|
|
v[0] = v[0] / s;
|
|
v[1] = v[1] / s;
|
|
v[2] = v[2] / s;
|
|
}
|
|
|
|
static void init(void)
|
|
{
|
|
int i, j, k;
|
|
|
|
for (i = 0 ; i < B ; i++) {
|
|
p[i] = i;
|
|
|
|
g1[i] = (float)((rand() % (B + B)) - B) / B;
|
|
|
|
for (j = 0 ; j < 2 ; j++)
|
|
g2[i][j] = (float)((rand() % (B + B)) - B) / B;
|
|
normalize2(g2[i]);
|
|
|
|
for (j = 0 ; j < 3 ; j++)
|
|
g3[i][j] = (float)((rand() % (B + B)) - B) / B;
|
|
normalize3(g3[i]);
|
|
}
|
|
|
|
while (--i) {
|
|
k = p[i];
|
|
p[i] = p[j = rand() % B];
|
|
p[j] = k;
|
|
}
|
|
|
|
for (i = 0 ; i < B + 2 ; i++) {
|
|
p[B + i] = p[i];
|
|
g1[B + i] = g1[i];
|
|
for (j = 0 ; j < 2 ; j++)
|
|
g2[B + i][j] = g2[i][j];
|
|
for (j = 0 ; j < 3 ; j++)
|
|
g3[B + i][j] = g3[i][j];
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
================
|
|
R_ConcatRotations
|
|
================
|
|
*/
|
|
void R_ConcatRotations ( const float in1[3][3], const float in2[3][3], float out[3][3] )
|
|
{
|
|
out[0][0] = ( in1[0][0] * in2[0][0] ) + ( in1[0][1] * in2[1][0] ) +
|
|
( in1[0][2] * in2[2][0] );
|
|
out[0][1] = ( in1[0][0] * in2[0][1] ) + ( in1[0][1] * in2[1][1] ) +
|
|
( in1[0][2] * in2[2][1] );
|
|
out[0][2] = ( in1[0][0] * in2[0][2] ) + ( in1[0][1] * in2[1][2] ) +
|
|
( in1[0][2] * in2[2][2] );
|
|
out[1][0] = ( in1[1][0] * in2[0][0] ) + ( in1[1][1] * in2[1][0] ) +
|
|
( in1[1][2] * in2[2][0] );
|
|
out[1][1] = ( in1[1][0] * in2[0][1] ) + ( in1[1][1] * in2[1][1] ) +
|
|
( in1[1][2] * in2[2][1] );
|
|
out[1][2] = ( in1[1][0] * in2[0][2] ) + ( in1[1][1] * in2[1][2] ) +
|
|
( in1[1][2] * in2[2][2] );
|
|
out[2][0] = ( in1[2][0] * in2[0][0] ) + ( in1[2][1] * in2[1][0] ) +
|
|
( in1[2][2] * in2[2][0] );
|
|
out[2][1] = ( in1[2][0] * in2[0][1] ) + ( in1[2][1] * in2[1][1] ) +
|
|
( in1[2][2] * in2[2][1] );
|
|
out[2][2] = ( in1[2][0] * in2[0][2] ) + ( in1[2][1] * in2[1][2] ) +
|
|
( in1[2][2] * in2[2][2] );
|
|
}
|
|
|
|
|
|
/*
|
|
================
|
|
R_ConcatTransforms
|
|
================
|
|
*/
|
|
void R_ConcatTransforms ( const float in1[3][4], const float in2[3][4], float out[3][4] )
|
|
{
|
|
out[0][0] = ( in1[0][0] * in2[0][0] ) + ( in1[0][1] * in2[1][0] ) +
|
|
( in1[0][2] * in2[2][0] );
|
|
out[0][1] = ( in1[0][0] * in2[0][1] ) + ( in1[0][1] * in2[1][1] ) +
|
|
( in1[0][2] * in2[2][1] );
|
|
out[0][2] = ( in1[0][0] * in2[0][2] ) + ( in1[0][1] * in2[1][2] ) +
|
|
( in1[0][2] * in2[2][2] );
|
|
out[0][3] = ( in1[0][0] * in2[0][3] ) + ( in1[0][1] * in2[1][3] ) +
|
|
( in1[0][2] * in2[2][3] ) + in1[0][3];
|
|
out[1][0] = ( in1[1][0] * in2[0][0] ) + ( in1[1][1] * in2[1][0] ) +
|
|
( in1[1][2] * in2[2][0] );
|
|
out[1][1] = ( in1[1][0] * in2[0][1] ) + ( in1[1][1] * in2[1][1] ) +
|
|
( in1[1][2] * in2[2][1] );
|
|
out[1][2] = ( in1[1][0] * in2[0][2] ) + ( in1[1][1] * in2[1][2] ) +
|
|
( in1[1][2] * in2[2][2] );
|
|
out[1][3] = ( in1[1][0] * in2[0][3] ) + ( in1[1][1] * in2[1][3] ) +
|
|
( in1[1][2] * in2[2][3] ) + in1[1][3];
|
|
out[2][0] = ( in1[2][0] * in2[0][0] ) + ( in1[2][1] * in2[1][0] ) +
|
|
( in1[2][2] * in2[2][0] );
|
|
out[2][1] = ( in1[2][0] * in2[0][1] ) + ( in1[2][1] * in2[1][1] ) +
|
|
( in1[2][2] * in2[2][1] );
|
|
out[2][2] = ( in1[2][0] * in2[0][2] ) + ( in1[2][1] * in2[1][2] ) +
|
|
( in1[2][2] * in2[2][2] );
|
|
out[2][3] = ( in1[2][0] * in2[0][3] ) + ( in1[2][1] * in2[1][3] ) +
|
|
( in1[2][2] * in2[2][3] ) + in1[2][3];
|
|
}
|
|
|
|
|
|
//============================================================================
|
|
|
|
|
|
float anglemod(float a)
|
|
{
|
|
/****************************************************************************
|
|
Squirrel : #if 0 / 1 block demoted to comment
|
|
|
|
#if 0
|
|
if (a >= 0)
|
|
a -= 360*(int)(a/360);
|
|
else
|
|
a += 360*( 1 + (int)(-a/360) );
|
|
#endif
|
|
|
|
****************************************************************************/
|
|
|
|
a = (360.0f / 65536.0f ) * (float)( (int)(a*(65536.0f/360.0f)) & 65535 );
|
|
return a;
|
|
}
|
|
|
|
float angledist( float ang )
|
|
{
|
|
float a;
|
|
|
|
a = anglemod( ang );
|
|
if ( a > 180.0f )
|
|
{
|
|
a -= 360.0f;
|
|
}
|
|
|
|
return a;
|
|
}
|
|
|
|
// int i;
|
|
// vec3_t corners[2];
|
|
|
|
|
|
// this is the slow, general version
|
|
int BoxOnPlaneSide2 ( const vec3_t emins, const vec3_t emaxs, const struct cplane_s *p )
|
|
{
|
|
int i;
|
|
float dist1, dist2;
|
|
int sides;
|
|
vec3_t corners[2];
|
|
|
|
for (i=0 ; i<3 ; i++)
|
|
{
|
|
if (p->normal[i] < 0.0f)
|
|
{
|
|
corners[0][i] = emins[i];
|
|
corners[1][i] = emaxs[i];
|
|
}
|
|
else
|
|
{
|
|
corners[1][i] = emins[i];
|
|
corners[0][i] = emaxs[i];
|
|
}
|
|
}
|
|
dist1 = DotProduct (p->normal, corners[0]) - p->dist;
|
|
dist2 = DotProduct (p->normal, corners[1]) - p->dist;
|
|
sides = 0;
|
|
if (dist1 >= 0.0f)
|
|
sides = 1;
|
|
if (dist2 < 0.0f)
|
|
sides |= 2;
|
|
|
|
return sides;
|
|
}
|
|
|
|
/*
|
|
=================
|
|
CalculateRotatedBounds
|
|
=================
|
|
*/
|
|
void CalculateRotatedBounds( const vec3_t angles, vec3_t mins, vec3_t maxs )
|
|
{
|
|
int i;
|
|
vec3_t rotmins, rotmaxs;
|
|
float trans[3][3];
|
|
|
|
AnglesToAxis( angles, trans );
|
|
ClearBounds( rotmins, rotmaxs );
|
|
for ( i = 0; i < 8; i++ )
|
|
{
|
|
vec3_t tmp, rottemp;
|
|
|
|
if ( i & 1 )
|
|
tmp[0] = mins[0];
|
|
else
|
|
tmp[0] = maxs[0];
|
|
|
|
if ( i & 2 )
|
|
tmp[1] = mins[1];
|
|
else
|
|
tmp[1] = maxs[1];
|
|
|
|
if ( i & 4 )
|
|
tmp[2] = mins[2];
|
|
else
|
|
tmp[2] = maxs[2];
|
|
|
|
MatrixTransformVector( tmp, trans, rottemp );
|
|
AddPointToBounds( rottemp, rotmins, rotmaxs );
|
|
}
|
|
VectorCopy( rotmins, mins );
|
|
VectorCopy( rotmaxs, maxs );
|
|
}
|
|
|
|
/*
|
|
=================
|
|
CalculateRotatedBounds2
|
|
=================
|
|
*/
|
|
void CalculateRotatedBounds2( float trans[3][3], vec3_t mins, vec3_t maxs )
|
|
{
|
|
int i;
|
|
vec3_t rotmins, rotmaxs;
|
|
|
|
ClearBounds( rotmins, rotmaxs );
|
|
for ( i = 0; i < 8; i++ )
|
|
{
|
|
vec3_t tmp, rottemp;
|
|
|
|
if ( i & 1 )
|
|
tmp[0] = mins[0];
|
|
else
|
|
tmp[0] = maxs[0];
|
|
|
|
if ( i & 2 )
|
|
tmp[1] = mins[1];
|
|
else
|
|
tmp[1] = maxs[1];
|
|
|
|
if ( i & 4 )
|
|
tmp[2] = mins[2];
|
|
else
|
|
tmp[2] = maxs[2];
|
|
|
|
MatrixTransformVector( tmp, trans, rottemp );
|
|
AddPointToBounds( rottemp, rotmins, rotmaxs );
|
|
}
|
|
VectorCopy( rotmins, mins );
|
|
VectorCopy( rotmaxs, maxs );
|
|
}
|
|
|
|
#define BBOX_XBITS 9
|
|
#define BBOX_YBITS 8
|
|
#define BBOX_ZBOTTOMBITS 5
|
|
#define BBOX_ZTOPBITS 9
|
|
|
|
#define BBOX_MAX_X ( 1 << BBOX_XBITS )
|
|
#define BBOX_MAX_Y ( 1 << BBOX_YBITS )
|
|
#define BBOX_MAX_BOTTOM_Z ( 1 << ( BBOX_ZBOTTOMBITS - 1 ) )
|
|
#define BBOX_REALMAX_BOTTOM_Z ( 1 << BBOX_ZBOTTOMBITS )
|
|
#define BBOX_MAX_TOP_Z ( 1 << BBOX_ZTOPBITS )
|
|
|
|
/*
|
|
=================
|
|
BoundingBoxToInteger
|
|
=================
|
|
*/
|
|
int BoundingBoxToInteger( const vec3_t mins, const vec3_t maxs )
|
|
{
|
|
int x, y, zd, zu, result;
|
|
|
|
x = (int)maxs[ 0 ];
|
|
if ( x < 0 )
|
|
x = 0;
|
|
if ( x >= BBOX_MAX_X )
|
|
x = BBOX_MAX_X - 1;
|
|
|
|
y = (int)maxs[ 1 ];
|
|
if ( y < 0 )
|
|
y = 0;
|
|
if ( y >= BBOX_MAX_Y )
|
|
y = BBOX_MAX_Y - 1;
|
|
|
|
zd = (int)mins[ 2 ] + BBOX_MAX_BOTTOM_Z;
|
|
if ( zd < 0 )
|
|
{
|
|
zd = 0;
|
|
}
|
|
if ( zd >= BBOX_REALMAX_BOTTOM_Z )
|
|
{
|
|
zd = BBOX_REALMAX_BOTTOM_Z - 1;
|
|
}
|
|
|
|
zu = (int)maxs[ 2 ];
|
|
if ( zu < 0 )
|
|
zu = 0;
|
|
if ( zu >= BBOX_MAX_TOP_Z )
|
|
zu = BBOX_MAX_TOP_Z - 1;
|
|
|
|
result = x |
|
|
( y << BBOX_XBITS ) |
|
|
( zd << ( BBOX_XBITS + BBOX_YBITS ) ) |
|
|
( zu << ( BBOX_XBITS + BBOX_YBITS + BBOX_ZBOTTOMBITS ) );
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
=================
|
|
IntegerToBoundingBox
|
|
=================
|
|
*/
|
|
void IntegerToBoundingBox( int num, vec3_t mins, vec3_t maxs )
|
|
{
|
|
int x, y, zd, zu;
|
|
|
|
x = num & ( BBOX_MAX_X - 1 );
|
|
y = ( num >> ( BBOX_XBITS ) ) & ( BBOX_MAX_Y -1 );
|
|
zd = ( num >> ( BBOX_XBITS + BBOX_YBITS ) ) & ( BBOX_REALMAX_BOTTOM_Z - 1 );
|
|
zd -= BBOX_MAX_BOTTOM_Z;
|
|
zu = ( num >> ( BBOX_XBITS + BBOX_YBITS + BBOX_ZBOTTOMBITS ) ) & ( BBOX_MAX_TOP_Z - 1 );
|
|
|
|
mins[ 0 ] = -x;
|
|
mins[ 1 ] = -y;
|
|
mins[ 2 ] = zd;
|
|
|
|
maxs[ 0 ] = x;
|
|
maxs[ 1 ] = y;
|
|
maxs[ 2 ] = zu;
|
|
}
|
|
|
|
//====================================================================
|
|
|
|
|
|
void MatrixTransformVector
|
|
(
|
|
const vec3_t in,
|
|
const float mat[ 3 ][ 3 ],
|
|
vec3_t out
|
|
)
|
|
|
|
{
|
|
out[ 0 ] = ( in[ 0 ] * mat[ 0 ][ 0 ] ) + ( in[ 1 ] * mat[ 1 ][ 0 ] ) + ( in[ 2 ] * mat[ 2 ][ 0 ] );
|
|
out[ 1 ] = ( in[ 0 ] * mat[ 0 ][ 1 ] ) + ( in[ 1 ] * mat[ 1 ][ 1 ] ) + ( in[ 2 ] * mat[ 2 ][ 1 ] );
|
|
out[ 2 ] = ( in[ 0 ] * mat[ 0 ][ 2 ] ) + ( in[ 1 ] * mat[ 1 ][ 2 ] ) + ( in[ 2 ] * mat[ 2 ][ 2 ] );
|
|
}
|
|
|
|
void Matrix4TransformVector
|
|
(
|
|
const vec3_t in,
|
|
const float mat[ 4 ][ 4 ],
|
|
vec3_t out
|
|
)
|
|
|
|
{
|
|
out[ 0 ] = ( in[ 0 ] * mat[ 0 ][ 0 ] ) + ( in[ 1 ] * mat[ 1 ][ 0 ] ) + ( in[ 2 ] * mat[ 2 ][ 0 ] ) + mat[ 3 ][ 0 ];
|
|
out[ 1 ] = ( in[ 0 ] * mat[ 0 ][ 1 ] ) + ( in[ 1 ] * mat[ 1 ][ 1 ] ) + ( in[ 2 ] * mat[ 2 ][ 1 ] ) + mat[ 3 ][ 1 ];
|
|
out[ 2 ] = ( in[ 0 ] * mat[ 0 ][ 2 ] ) + ( in[ 1 ] * mat[ 1 ][ 2 ] ) + ( in[ 2 ] * mat[ 2 ][ 2 ] ) + mat[ 3 ][ 2 ];
|
|
}
|
|
|
|
void MatrixToEulerAngles
|
|
(
|
|
const float mat[ 3 ][ 3 ],
|
|
vec3_t ang
|
|
)
|
|
|
|
{
|
|
double theta;
|
|
double cp;
|
|
double sp;
|
|
|
|
sp = mat[ 0 ][ 2 ];
|
|
|
|
// cap off our sin value so that we don't get any NANs
|
|
if ( sp > 1.0 )
|
|
{
|
|
sp = 1.0;
|
|
}
|
|
if ( sp < -1.0 )
|
|
{
|
|
sp = -1.0;
|
|
}
|
|
|
|
theta = -asin( sp );
|
|
cp = cos( theta );
|
|
|
|
if ( cp > ( 8192.0 * FLT_EPSILON ) )
|
|
{
|
|
ang[ 0 ] = (float)( theta * 180.0 / M_PI );
|
|
ang[ 1 ] = (float)( atan2( mat[ 0 ][ 1 ], mat[ 0 ][ 0 ] ) * 180.0 / M_PI );
|
|
ang[ 2 ] = (float)( atan2( mat[ 1 ][ 2 ], mat[ 2 ][ 2 ] ) * 180.0 / M_PI );
|
|
}
|
|
else
|
|
{
|
|
ang[ 0 ] = (float)( theta * 180.0 / M_PI );
|
|
ang[ 1 ] = (float)( -atan2( mat[ 1 ][ 0 ], mat[ 1 ][ 1 ] ) * 180.0 / M_PI );
|
|
ang[ 2 ] = 0.0f;
|
|
}
|
|
}
|
|
|
|
void TransposeMatrix
|
|
(
|
|
const float in[ 3 ][ 3 ],
|
|
float out[ 3 ][ 3 ]
|
|
)
|
|
|
|
{
|
|
out[ 0 ][ 0 ] = in[ 0 ][ 0 ];
|
|
out[ 0 ][ 1 ] = in[ 1 ][ 0 ];
|
|
out[ 0 ][ 2 ] = in[ 2 ][ 0 ];
|
|
out[ 1 ][ 0 ] = in[ 0 ][ 1 ];
|
|
out[ 1 ][ 1 ] = in[ 1 ][ 1 ];
|
|
out[ 1 ][ 2 ] = in[ 2 ][ 1 ];
|
|
out[ 2 ][ 0 ] = in[ 0 ][ 2 ];
|
|
out[ 2 ][ 1 ] = in[ 1 ][ 2 ];
|
|
out[ 2 ][ 2 ] = in[ 2 ][ 2 ];
|
|
}
|
|
|
|
void OrthoNormalize
|
|
(
|
|
float mat[3][3]
|
|
)
|
|
|
|
{
|
|
VectorNormalize( mat[ 0 ] );
|
|
CrossProduct( mat[ 0 ], mat[ 1 ], mat[ 2 ] );
|
|
VectorNormalize( mat[ 2 ] );
|
|
CrossProduct( mat[ 2 ], mat[ 0 ], mat[ 1 ] );
|
|
VectorNormalize( mat[ 1 ] );
|
|
}
|
|
|
|
float NormalizeQuat
|
|
(
|
|
float q[ 4 ]
|
|
)
|
|
|
|
{
|
|
float length, ilength;
|
|
|
|
length = ( q[ 0 ] * q[ 0 ] ) + ( q[ 1 ] * q[ 1 ] ) + ( q[ 2 ] * q[ 2 ] ) + ( q[ 3 ] * q[ 3 ] );
|
|
length = (float)sqrt( length );
|
|
|
|
if ( length )
|
|
{
|
|
ilength = 1.0f / length;
|
|
q[ 0 ] *= ilength;
|
|
q[ 1 ] *= ilength;
|
|
q[ 2 ] *= ilength;
|
|
q[ 3 ] *= ilength;
|
|
}
|
|
|
|
return length;
|
|
}
|
|
|
|
void MatToQuat
|
|
(
|
|
const float srcMatrix[ 3 ][ 3 ],
|
|
float destQuat[ 4 ]
|
|
)
|
|
|
|
{
|
|
double trace, s;
|
|
int i, j, k;
|
|
static int next[3] = {Y, Z, X};
|
|
|
|
trace = srcMatrix[X][X] + srcMatrix[Y][Y]+ srcMatrix[Z][Z];
|
|
|
|
if (trace > 0.0)
|
|
{
|
|
s = sqrt(trace + 1.0);
|
|
destQuat[W] = (float)( s * 0.5 );
|
|
s = 0.5 / s;
|
|
|
|
destQuat[X] = (float)( (srcMatrix[Z][Y] - srcMatrix[Y][Z]) * s );
|
|
destQuat[Y] = (float)( (srcMatrix[X][Z] - srcMatrix[Z][X]) * s );
|
|
destQuat[Z] = (float)( (srcMatrix[Y][X] - srcMatrix[X][Y]) * s );
|
|
}
|
|
else
|
|
{
|
|
i = X;
|
|
if (srcMatrix[Y][Y] > srcMatrix[X][X])
|
|
i = Y;
|
|
if (srcMatrix[Z][Z] > srcMatrix[i][i])
|
|
i = Z;
|
|
j = next[i];
|
|
k = next[j];
|
|
|
|
s = sqrt( (srcMatrix[i][i] - (srcMatrix[j][j]+srcMatrix[k][k])) + 1.0 );
|
|
destQuat[i] = (float)( s * 0.5 );
|
|
|
|
s = 0.5 / s;
|
|
|
|
destQuat[W] = (srcMatrix[k][j] - srcMatrix[j][k]) * s;
|
|
destQuat[j] = (srcMatrix[j][i] + srcMatrix[i][j]) * s;
|
|
destQuat[k] = (srcMatrix[k][i] + srcMatrix[i][k]) * s;
|
|
}
|
|
}
|
|
|
|
void RotateAxis
|
|
(
|
|
const float axis[ 3 ],
|
|
float angle,
|
|
float q[ 4 ]
|
|
)
|
|
|
|
{
|
|
float sin_a;
|
|
float inv_sin_a;
|
|
float cos_a;
|
|
float r;
|
|
|
|
r = angle * M_PI / 360.0f;
|
|
|
|
sin_a = sin( r );
|
|
if ( fabs( sin_a ) > 0.00000001 )
|
|
{
|
|
inv_sin_a = 1.0f / sin_a;
|
|
}
|
|
else
|
|
{
|
|
inv_sin_a = 0.0f;
|
|
}
|
|
cos_a = (float)cos( r );
|
|
|
|
q[ X ] = axis[ 0 ] * inv_sin_a;
|
|
q[ Y ] = axis[ 1 ] * inv_sin_a;
|
|
q[ Z ] = axis[ 2 ] * inv_sin_a;
|
|
q[ W ] = cos_a;
|
|
}
|
|
|
|
void MultQuat
|
|
(
|
|
const float q1[ 4 ],
|
|
const float q2[ 4 ],
|
|
float out[ 4 ]
|
|
)
|
|
|
|
{
|
|
out[ 0 ] = ( q1[X] * q2[X] ) - ( q1[Y] * q2[Y] ) - ( q1[Z] * q2[Z] ) - ( q1[W] * q2[W] );
|
|
out[ 1 ] = ( q1[X] * q2[Y] ) + ( q1[Y] * q2[X] ) + ( q1[Z] * q2[W] ) - ( q1[W] * q2[Z] );
|
|
out[ 2 ] = ( q1[X] * q2[Z] ) - ( q1[Y] * q2[W] ) + ( q1[Z] * q2[X] ) + ( q1[W] * q2[Y] );
|
|
out[ 3 ] = ( q1[X] * q2[W] ) + ( q1[Y] * q2[Z] ) - ( q1[Z] * q2[Y] ) + ( q1[W] * q2[X] );
|
|
}
|
|
|
|
void QuatToMat
|
|
(
|
|
const float q[ 4 ],
|
|
float m[ 3 ][ 3 ]
|
|
)
|
|
|
|
{
|
|
float wx, wy, wz;
|
|
float xx, yy, yz;
|
|
float xy, xz, zz;
|
|
float x2, y2, z2;
|
|
|
|
x2 = q[ X ] + q[ X ];
|
|
y2 = q[ Y ] + q[ Y ];
|
|
z2 = q[ Z ] + q[ Z ];
|
|
|
|
xx = q[ X ] * x2;
|
|
xy = q[ X ] * y2;
|
|
xz = q[ X ] * z2;
|
|
|
|
yy = q[ Y ] * y2;
|
|
yz = q[ Y ] * z2;
|
|
zz = q[ Z ] * z2;
|
|
|
|
wx = q[ W ] * x2;
|
|
wy = q[ W ] * y2;
|
|
wz = q[ W ] * z2;
|
|
|
|
m[ 0 ][ 0 ] = 1.0f - ( yy + zz );
|
|
m[ 0 ][ 1 ] = xy - wz;
|
|
m[ 0 ][ 2 ] = xz + wy;
|
|
|
|
m[ 1 ][ 0 ] = xy + wz;
|
|
m[ 1 ][ 1 ] = 1.0f - ( xx + zz );
|
|
m[ 1 ][ 2 ] = yz - wx;
|
|
|
|
m[ 2 ][ 0 ] = xz - wy;
|
|
m[ 2 ][ 1 ] = yz + wx;
|
|
m[ 2 ][ 2 ] = 1.0f - ( xx + yy );
|
|
}
|
|
|
|
#define DELTA 1e-6
|
|
|
|
void SlerpQuaternion
|
|
(
|
|
const float from[ 4 ],
|
|
const float to[ 4 ],
|
|
float t,
|
|
float res[ 4 ]
|
|
)
|
|
|
|
{
|
|
float to1[ 4 ];
|
|
double omega, cosom, sinom, scale0, scale1;
|
|
|
|
cosom = ( from[ X ] * to[ X ] ) + ( from[ Y ] * to[ Y ] ) + ( from[ Z ] * to[ Z ] ) + ( from[ W ] * to [ W ] );
|
|
if ( cosom < 0.0 )
|
|
{
|
|
cosom = -cosom;
|
|
to1[ X ] = -to[ X ];
|
|
to1[ Y ] = -to[ Y ];
|
|
to1[ Z ] = -to[ Z ];
|
|
to1[ W ] = -to[ W ];
|
|
}
|
|
else if
|
|
(
|
|
( from[ X ] == to[ X ] ) &&
|
|
( from[ Y ] == to[ Y ] ) &&
|
|
( from[ Z ] == to[ Z ] ) &&
|
|
( from[ W ] == to[ W ] )
|
|
)
|
|
{
|
|
// equal case, early exit
|
|
res[ X ] = to[ X ];
|
|
res[ Y ] = to[ Y ];
|
|
res[ Z ] = to[ Z ];
|
|
res[ W ] = to[ W ];
|
|
return;
|
|
}
|
|
else
|
|
{
|
|
to1[ X ] = to[ X ];
|
|
to1[ Y ] = to[ Y ];
|
|
to1[ Z ] = to[ Z ];
|
|
to1[ W ] = to[ W ];
|
|
}
|
|
|
|
if ( ( 1.0 - cosom ) > DELTA )
|
|
{
|
|
omega = acos( cosom );
|
|
sinom = sin( omega );
|
|
scale0 = sin( ( 1.0 - t ) * omega ) / sinom;
|
|
scale1 = sin( t * omega ) / sinom;
|
|
}
|
|
else
|
|
{
|
|
scale0 = 1.0 - t;
|
|
scale1 = t;
|
|
}
|
|
|
|
res[ X ] = scale0 * from[ X ] + scale1 * to1[ X ];
|
|
res[ Y ] = scale0 * from[ Y ] + scale1 * to1[ Y ];
|
|
res[ Z ] = scale0 * from[ Z ] + scale1 * to1[ Z ];
|
|
res[ W ] = scale0 * from[ W ] + scale1 * to1[ W ];
|
|
}
|
|
|
|
void EulerToQuat
|
|
(
|
|
float ang[ 3 ],
|
|
float q[ 4 ]
|
|
)
|
|
|
|
{
|
|
float mat[ 3 ][ 3 ];
|
|
int *i;
|
|
|
|
i = ( int * )ang;
|
|
if ( !i[ 0 ] && !i[ 1 ] && !i[ 2 ] )
|
|
{
|
|
q[ 0 ] = 0;
|
|
q[ 1 ] = 0;
|
|
q[ 2 ] = 0;
|
|
q[ 3 ] = 1.0f;
|
|
}
|
|
else
|
|
{
|
|
AnglesToAxis( ang, mat );
|
|
MatToQuat( mat, q );
|
|
}
|
|
}
|
|
|
|
/*
|
|
=====================
|
|
PlaneFromPoints
|
|
|
|
Returns false if the triangle is degenrate.
|
|
The normal will point out of the clock for clockwise ordered points
|
|
=====================
|
|
*/
|
|
qboolean PlaneFromPoints( vec4_t plane, const vec3_t a, const vec3_t b, const vec3_t c ) {
|
|
vec3_t d1, d2;
|
|
|
|
VectorSubtract( b, a, d1 );
|
|
VectorSubtract( c, a, d2 );
|
|
CrossProduct( d2, d1, plane );
|
|
if ( VectorNormalize( plane ) == 0 ) {
|
|
return qfalse;
|
|
}
|
|
|
|
plane[3] = DotProduct( a, plane );
|
|
return qtrue;
|
|
}
|
|
|
|
/*
|
|
=================
|
|
PlaneTypeForNormal
|
|
=================
|
|
*/
|
|
int PlaneTypeForNormal ( const vec3_t normal ) {
|
|
if ( normal[0] == 1.0f )
|
|
return PLANE_X;
|
|
if ( normal[1] == 1.0f )
|
|
return PLANE_Y;
|
|
if ( normal[2] == 1.0f )
|
|
return PLANE_Z;
|
|
|
|
return PLANE_NON_AXIAL;
|
|
}
|
|
|
|
|