ef2gamesource/dlls/game/q_math.c
2012-12-31 17:38:54 +01:00

2571 lines
56 KiB
C

//-----------------------------------------------------------------------------
//
// $Logfile:: /Code/DLLs/game/q_math.c $
// $Revision:: 15 $
// $Author:: Steven $
// $Date:: 10/13/03 9:11a $
//
// Copyright (C) 1998 by Ritual Entertainment, Inc.
// All rights reserved.
//
// This source may not be distributed and/or modified without
// expressly written permission by Ritual Entertainment, Inc.
//
//
// DESCRIPTION:
// stateless support routines that are included in each code dll
#include <qcommon/platform.h>
#include "q_shared.h"
#include <math.h>
#include "float.h"
//intel addition
#if !defined ( MSVC_BUILD ) && !defined( LINUX )
#include "xmmintrin.h"
#endif
//
#define X 0
#define Y 1
#define Z 2
#define W 3
//#define QUAT_EPSILON 0.00001
//intel change to accomodate manual cpu dispatch feature in intel compiler
#if !defined( MSVC_BUILD ) && !defined (LINUX)
__declspec(cpu_dispatch(generic,pentium_4))
void _VectorSubtract( const vec3_t veca, const vec3_t vecb, vec3_t out )
{
};
__declspec(cpu_dispatch(generic,pentium_4))
void _VectorAdd( const vec3_t veca, const vec3_t vecb, vec3_t out )
{
};
#endif
vec3_t vec3_origin = { 0.0f, 0.0f, 0.0f };
vec3_t axisDefault[3] = { { 1.0f, 0.0f, 0.0f }, { 0.0f, 1.0f, 0.0f }, { 0.0f, 0.0f, 1.0f } };
vec4_t colorBlack = { 0.0f, 0.0f, 0.0f, 1.0f };
vec4_t colorRed = { 1.0f, 0.0f, 0.0f, 1.0f };
vec4_t colorGreen = { 1.0f, 1.0f, 0.0f, 1.0f };
vec4_t colorBlue = { 0.0f, 0.0f, 1.0f, 1.0f };
vec4_t colorYellow = { 1.0f, 1.0f, 0.0f, 1.0f };
vec4_t colorMagenta= { 1.0f, 0.0f, 1.0f, 1.0f };
vec4_t colorCyan = { 0.0f, 1.0f, 1.0f, 1.0f };
vec4_t colorWhite = { 1.0f, 1.0f, 1.0f, 1.0f };
vec4_t colorLtGrey = { 0.75f, 0.75f, 0.75f, 1.0f };
vec4_t colorMdGrey = { 0.5f, 0.5f, 0.5f, 1.0f };
vec4_t colorDkGrey = { 0.25f, 0.25f, 0.25f, 1.0f };
vec4_t g_color_table[8] =
{
{ 0.0f, 0.0f, 0.0f, 1.0f },
{ 1.0f, 0.0f, 0.0f, 1.0f },
{ 0.0f, 1.0f, 0.0f, 1.0f },
{ 1.0f, 1.0f, 0.0f, 1.0f },
{ 0.0f, 0.0f, 1.0f, 1.0f },
{ 0.0f, 1.0f, 1.0f, 1.0f },
{ 1.0f, 0.0f, 1.0f, 1.0f },
{ 1.0f, 1.0f, 1.0f, 1.0f }
};
vec3_t bytedirs[NUMVERTEXNORMALS] =
{
{ -0.525731f, 0.000000f, 0.850651f }, { -0.442863f, 0.238856f, 0.864188f },
{ -0.295242f, 0.000000f, 0.955423f }, { -0.309017f, 0.500000f, 0.809017f },
{ -0.162460f, 0.262866f, 0.951056f }, { 0.000000f, 0.000000f, 1.000000f },
{ 0.000000f, 0.850651f, 0.525731f }, { -0.147621f, 0.716567f, 0.681718f },
{ 0.147621f, 0.716567f, 0.681718f }, { 0.000000f, 0.525731f, 0.850651f },
{ 0.309017f, 0.500000f, 0.809017f }, { 0.525731f, 0.000000f, 0.850651f },
{ 0.295242f, 0.000000f, 0.955423f }, { 0.442863f, 0.238856f, 0.864188f },
{ 0.162460f, 0.262866f, 0.951056f }, { -0.681718f, 0.147621f, 0.716567f },
{ -0.809017f, 0.309017f, 0.500000f }, { -0.587785f, 0.425325f, 0.688191f },
{ -0.850651f, 0.525731f, 0.000000f }, { -0.864188f, 0.442863f, 0.238856f },
{ -0.716567f, 0.681718f, 0.147621f }, { -0.688191f, 0.587785f, 0.425325f },
{ -0.500000f, 0.809017f, 0.309017f }, { -0.238856f, 0.864188f, 0.442863f },
{ -0.425325f, 0.688191f, 0.587785f }, { -0.716567f, 0.681718f, -0.147621f },
{ -0.500000f, 0.809017f, -0.309017f }, { -0.525731f, 0.850651f, 0.000000f },
{ 0.000000f, 0.850651f, -0.525731f }, { -0.238856f, 0.864188f, -0.442863f },
{ 0.000000f, 0.955423f, -0.295242f }, { -0.262866f, 0.951056f, -0.162460f },
{ 0.000000f, 1.000000f, 0.000000f }, { 0.000000f, 0.955423f, 0.295242f },
{ -0.262866f, 0.951056f, 0.162460f }, { 0.238856f, 0.864188f, 0.442863f },
{ 0.262866f, 0.951056f, 0.162460f }, { 0.500000f, 0.809017f, 0.309017f },
{ 0.238856f, 0.864188f, -0.442863f }, { 0.262866f, 0.951056f, -0.162460f },
{ 0.500000f, 0.809017f, -0.309017f }, { 0.850651f, 0.525731f, 0.000000f },
{ 0.716567f, 0.681718f, 0.147621f }, { 0.716567f, 0.681718f, -0.147621f },
{ 0.525731f, 0.850651f, 0.000000f }, { 0.425325f, 0.688191f, 0.587785f },
{ 0.864188f, 0.442863f, 0.238856f }, { 0.688191f, 0.587785f, 0.425325f },
{ 0.809017f, 0.309017f, 0.500000f }, { 0.681718f, 0.147621f, 0.716567f },
{ 0.587785f, 0.425325f, 0.688191f }, { 0.955423f, 0.295242f, 0.000000f },
{ 1.000000f, 0.000000f, 0.000000f }, { 0.951056f, 0.162460f, 0.262866f },
{ 0.850651f, -0.525731f, 0.000000f }, { 0.955423f, -0.295242f, 0.000000f },
{ 0.864188f, -0.442863f, 0.238856f }, { 0.951056f, -0.162460f, 0.262866f },
{ 0.809017f, -0.309017f, 0.500000f }, { 0.681718f, -0.147621f, 0.716567f },
{ 0.850651f, 0.000000f, 0.525731f }, { 0.864188f, 0.442863f, -0.238856f },
{ 0.809017f, 0.309017f, -0.500000f }, { 0.951056f, 0.162460f, -0.262866f },
{ 0.525731f, 0.000000f, -0.850651f }, { 0.681718f, 0.147621f, -0.716567f },
{ 0.681718f, -0.147621f, -0.716567f }, { 0.850651f, 0.000000f, -0.525731f },
{ 0.809017f, -0.309017f, -0.500000f }, { 0.864188f, -0.442863f, -0.238856f },
{ 0.951056f, -0.162460f, -0.262866f }, { 0.147621f, 0.716567f, -0.681718f },
{ 0.309017f, 0.500000f, -0.809017f }, { 0.425325f, 0.688191f, -0.587785f },
{ 0.442863f, 0.238856f, -0.864188f }, { 0.587785f, 0.425325f, -0.688191f },
{ 0.688191f, 0.587785f, -0.425325f }, { -0.147621f, 0.716567f, -0.681718f },
{ -0.309017f, 0.500000f, -0.809017f }, { 0.000000f, 0.525731f, -0.850651f },
{ -0.525731f, 0.000000f, -0.850651f }, { -0.442863f, 0.238856f, -0.864188f },
{ -0.295242f, 0.000000f, -0.955423f }, { -0.162460f, 0.262866f, -0.951056f },
{ 0.000000f, 0.000000f, -1.000000f }, { 0.295242f, 0.000000f, -0.955423f },
{ 0.162460f, 0.262866f, -0.951056f }, { -0.442863f, -0.238856f, -0.864188f },
{ -0.309017f, -0.500000f, -0.809017f },{ -0.162460f, -0.262866f, -0.951056f },
{ 0.000000f, -0.850651f, -0.525731f }, { -0.147621f, -0.716567f, -0.681718f },
{ 0.147621f, -0.716567f, -0.681718f }, { 0.000000f, -0.525731f, -0.850651f },
{ 0.309017f, -0.500000f, -0.809017f }, { 0.442863f, -0.238856f, -0.864188f },
{ 0.162460f, -0.262866f, -0.951056f }, { 0.238856f, -0.864188f, -0.442863f },
{ 0.500000f, -0.809017f, -0.309017f }, { 0.425325f, -0.688191f, -0.587785f },
{ 0.716567f, -0.681718f, -0.147621f }, { 0.688191f, -0.587785f, -0.425325f },
{ 0.587785f, -0.425325f, -0.688191f }, { 0.000000f, -0.955423f, -0.295242f },
{ 0.000000f, -1.000000f, 0.000000f }, { 0.262866f, -0.951056f, -0.162460f },
{ 0.000000f, -0.850651f, 0.525731f }, { 0.000000f, -0.955423f, 0.295242f },
{ 0.238856f, -0.864188f, 0.442863f }, { 0.262866f, -0.951056f, 0.162460f },
{ 0.500000f, -0.809017f, 0.309017f }, { 0.716567f, -0.681718f, 0.147621f },
{ 0.525731f, -0.850651f, 0.000000f }, { -0.238856f, -0.864188f, -0.442863f },
{ -0.500000f, -0.809017f, -0.309017f },{ -0.262866f, -0.951056f, -0.162460f },
{ -0.850651f, -0.525731f, 0.000000f }, { -0.716567f, -0.681718f, -0.147621f },
{ -0.716567f, -0.681718f, 0.147621f }, { -0.525731f, -0.850651f, 0.000000f },
{ -0.500000f, -0.809017f, 0.309017f }, { -0.238856f, -0.864188f, 0.442863f },
{ -0.262866f, -0.951056f, 0.162460f }, { -0.864188f, -0.442863f, 0.238856f },
{ -0.809017f, -0.309017f, 0.500000f }, { -0.688191f, -0.587785f, 0.425325f },
{ -0.681718f, -0.147621f, 0.716567f }, { -0.442863f, -0.238856f, 0.864188f },
{ -0.587785f, -0.425325f, 0.688191f }, { -0.309017f, -0.500000f, 0.809017f },
{ -0.147621f, -0.716567f, 0.681718f }, { -0.425325f, -0.688191f, 0.587785f },
{ -0.162460f, -0.262866f, 0.951056f }, { 0.442863f, -0.238856f, 0.864188f },
{ 0.162460f, -0.262866f, 0.951056f }, { 0.309017f, -0.500000f, 0.809017f },
{ 0.147621f, -0.716567f, 0.681718f }, { 0.000000f, -0.525731f, 0.850651f },
{ 0.425325f, -0.688191f, 0.587785f }, { 0.587785f, -0.425325f, 0.688191f },
{ 0.688191f, -0.587785f, 0.425325f }, { -0.955423f, 0.295242f, 0.000000f },
{ -0.951056f, 0.162460f, 0.262866f }, { -1.000000f, 0.000000f, 0.000000f },
{ -0.850651f, 0.000000f, 0.525731f }, { -0.955423f, -0.295242f, 0.000000f },
{ -0.951056f, -0.162460f, 0.262866f }, { -0.864188f, 0.442863f, -0.238856f },
{ -0.951056f, 0.162460f, -0.262866f }, { -0.809017f, 0.309017f, -0.500000f },
{ -0.864188f, -0.442863f, -0.238856f },{ -0.951056f, -0.162460f, -0.262866f },
{ -0.809017f, -0.309017f, -0.500000f },{ -0.681718f, 0.147621f, -0.716567f },
{ -0.681718f, -0.147621f, -0.716567f },{ -0.850651f, 0.000000f, -0.525731f },
{ -0.688191f, 0.587785f, -0.425325f }, { -0.587785f, 0.425325f, -0.688191f },
{ -0.425325f, 0.688191f, -0.587785f }, { -0.425325f, -0.688191f, -0.587785f },
{ -0.587785f, -0.425325f, -0.688191f },{ -0.688191f, -0.587785f, -0.425325f }
};
int Q_rand( int *seed ) {
*seed = (69069 * *seed + 1);
return *seed;
}
float Q_random( int *seed ) {
return ( Q_rand( seed ) & 0xffff ) / (float)0x10000;
}
float Q_crandom( int *seed ) {
return 2.0f * ( Q_random( seed ) - 0.5f );
}
/*
grealrandom
This function produces a random number with a gaussian
distribution. This is also known as a normal or bell
curve distribution; it has a mean value of zero and a
standard deviation of one.
*/
float grealrandom ( void ) {
double v1;
double v2;
double s;
float x1;
static float x2 = 0;
static int toggle = 0;
if ( toggle ) {
toggle = 0;
return x2;
}
do {
v1 = -1.0 + ( 2.0 * random () );
v2 = -1.0 + ( 2.0 * random () );
s = ( v1 * v1 ) + ( v2 * v2 );
}
while ( ( s >= 1.0 ) || ( s == 0 ) );
s = sqrt ( -2.0 * log ( s ) / s );
x1 = (float)( v1 * s );
x2 = (float)( v2 * s );
toggle = 1;
return x1;
}
/*
erandom
This function produces a random number with a exponential
distribution and the specified mean value.
*/
float erandom( float mean ) {
float r;
do {
r = random();
} while ( r == 0.0f );
return -mean * (float)log( r );
}
float randomrange( float min, float max )
{
return min + ( random() * ( max - min ) );
}
float crandomrange( float min, float max )
{
float random_number;
random_number = crandom();
if ( random_number >= 0.0f )
return min + ( crandom() * ( max - min ) );
else
return ( crandom() * ( max - min ) ) - min;
}
float grandom( float average, float deviation )
{
return average + ( grealrandom() * deviation );
}
signed char ClampChar( int i ) {
if ( i < DATATYPE_SCHAR_MIN ) {
return DATATYPE_SCHAR_MIN;
}
if ( i > DATATYPE_SCHAR_MAX ) {
return DATATYPE_SCHAR_MAX;
}
return i;
}
signed short ClampShort( int i ) {
if ( i < DATATYPE_SSHORT_MIN ) {
return DATATYPE_SSHORT_MIN;
}
if ( i > DATATYPE_SSHORT_MAX ) {
return DATATYPE_SSHORT_MAX;
}
return i;
}
//===========================================================================
//
// Global functions base on type double
//
//===========================================================================
#define SCALAR_EPSILON (0.000001f)
#define SCALAR_IDENTITY (0.0f)
double dEpsilon( void )
{
return (double)SCALAR_EPSILON;
}
double dIdentity( void )
{
return (double)SCALAR_IDENTITY;
}
double dSign( const double number )
{
if (number >= 0.0)
{
return 1;
}
else
{
return -1;
}
}
double dClamp( const double value, const double min, const double max )
{
assert( min <= max );
if ( value < min )
{
return min;
}
if ( value > max )
{
return max;
}
return value;
}
double dDistance (const double value1, const double value2 )
{
return fabs ( value1 - value2);
}
qboolean dCloseEnough( const double value1, const double value2, const double epsilon )
{
return dDistance( value1, value2) < epsilon;
}
qboolean dSmallEnough( const double value, const double epsilon )
{
return dDistance( dIdentity(), value ) < epsilon;
}
//===========================================================================
//
// Global functions base on type float
//
//===========================================================================
float fEpsilon(void)
{
return SCALAR_EPSILON;
}
float fIdentity(void)
{
return SCALAR_IDENTITY;
}
float fSign( const float number)
{
if (number >= 0.0f)
{
return 1;
}
else
{
return -1;
}
}
float fClamp( const float value, const float min, const float max )
{
assert( min <= max );
if ( value < min )
{
return min;
}
if ( value > max )
{
return max;
}
return value;
}
float fDistance (const float value1, const float value2 )
{
return fabs ( value1 - value2);
}
qboolean fCloseEnough(const float value1, const float value2, const float epsilon )
{
return fDistance( value1, value2) < epsilon;
}
qboolean fSmallEnough(const float value, const float epsilon )
{
return fDistance( fIdentity(), value ) < epsilon;
}
//===========================================================================
//
// Global functions base on type int
//
//===========================================================================
int iSign( const int number)
{
if (number >= 0)
{
return 1;
}
else
{
return -1;
}
}
int iClamp( const int value, const int min, const int max )
{
assert( min <= max );
if ( value < min )
{
return min;
}
if ( value > max )
{
return max;
}
return value;
}
// this isn't a real cheap function to call!
int DirToByte( const vec3_t dir ) {
int i, best;
float d, bestd;
if ( !dir ) {
return 0;
}
bestd = 0;
best = 0;
for (i=0 ; i<NUMVERTEXNORMALS ; i++)
{
d = DotProduct (dir, bytedirs[i]);
if (d > bestd)
{
bestd = d;
best = i;
}
}
return best;
}
void ByteToDir( int b, vec3_t dir ) {
if ( ( b < 0 ) || ( b >= NUMVERTEXNORMALS ) ) {
VectorCopy( vec3_origin, dir );
return;
}
VectorCopy (bytedirs[b], dir);
}
unsigned ColorBytes3 (float r, float g, float b) {
unsigned i;
( (byte *)&i )[0] = r * 255.0f;
( (byte *)&i )[1] = g * 255.0f;
( (byte *)&i )[2] = b * 255.0f;
return i;
}
unsigned ColorBytes4 (float r, float g, float b, float a) {
unsigned i;
( (byte *)&i )[0] = r * 255.0f;
( (byte *)&i )[1] = g * 255.0f;
( (byte *)&i )[2] = b * 255.0f;
( (byte *)&i )[3] = a * 255.0f;
return i;
}
float NormalizeColor( const vec3_t in, vec3_t out ) {
float max;
USES_CLAMP_ZERO;
max = in[0] - in[1];
ClampZero ( max );
max = ( max + in[1] ) - in[2];
ClampZero ( max );
max += in[2];
if ( !max ) {
VectorClear( out );
} else {
float oomax = 1.f / max;
out[0] = in[0] * oomax;
out[1] = in[1] * oomax;
out[2] = in[2] * oomax;
}
return max;
}
//============================================================================
void RotatePointAroundVector( vec3_t dst, const vec3_t dir, const vec3_t point,
float degrees )
{
float m[3][3];
float im[3][3];
float zrot[3][3];
float tmpmat[3][3];
float rot[3][3];
int i;
vec3_t vr, vup, vf;
float rad;
vf[0] = dir[0];
vf[1] = dir[1];
vf[2] = dir[2];
PerpendicularVector( vr, dir );
CrossProduct( vr, vf, vup );
m[0][0] = vr[0];
m[1][0] = vr[1];
m[2][0] = vr[2];
m[0][1] = vup[0];
m[1][1] = vup[1];
m[2][1] = vup[2];
m[0][2] = vf[0];
m[1][2] = vf[1];
m[2][2] = vf[2];
memcpy( im, m, sizeof( im ) );
im[0][1] = m[1][0];
im[0][2] = m[2][0];
im[1][0] = m[0][1];
im[1][2] = m[2][1];
im[2][0] = m[0][2];
im[2][1] = m[1][2];
memset( zrot, 0, sizeof( zrot ) );
zrot[0][0] = zrot[1][1] = zrot[2][2] = 1.0F;
rad = DEG2RAD( degrees );
zrot[0][0] = (float)cos( rad );
zrot[0][1] = (float)sin( rad );
zrot[1][0] = (float)-sin( rad );
zrot[1][1] = (float)cos( rad );
MatrixMultiply( m, zrot, tmpmat );
MatrixMultiply( tmpmat, im, rot );
for ( i = 0; i < 3; i++ )
{
dst[i] = ( rot[i][0] * point[0] ) + ( rot[i][1] * point[1] ) + ( rot[i][2] * point[2] );
}
}
/*
===============
RotateAroundDirection
===============
*/
void RotateAroundDirection( vec3_t axis[3], float yaw ) {
// create an arbitrary axis[1]
PerpendicularVector( axis[1], axis[0] );
// rotate it around axis[0] by yaw
if ( yaw ) {
vec3_t temp;
VectorCopy( axis[1], temp );
RotatePointAroundVector( axis[1], axis[0], temp, yaw );
}
// cross to get axis[2]
CrossProduct( axis[0], axis[1], axis[2] );
}
void vectoangles( const vec3_t value1, vec3_t angles ) {
float forward;
float yaw, pitch;
if ( ( value1[1] == 0.0f ) && ( value1[0] == 0.0f ) ) {
yaw = 0.0f;
if ( value1[2] > 0.0f ) {
pitch = 90.0f;
}
else {
pitch = 270.0f;
}
}
else {
if ( value1[0] ) {
yaw = ( atan2 ( value1[1], value1[0] ) * 180.0f / M_PI );
}
else if ( value1[1] > 0.0f ) {
yaw = 90.0f;
}
else {
yaw = 270.0f;
}
if ( yaw < 0.0f ) {
yaw += 360.0f;
}
forward = sqrt ( ( value1[0] * value1[0] ) + ( value1[1] * value1[1] ) );
pitch = ( atan2(value1[2], forward) * 180.0f / M_PI );
if ( pitch < 0.0f ) {
pitch += 360.0f;
}
}
angles[PITCH] = -pitch;
angles[YAW] = yaw;
angles[ROLL] = 0.0f;
}
float vectoyaw( const vec3_t vec ) {
float yaw;
if ( ( vec[YAW] == 0.0f ) && ( vec[PITCH] == 0.0f ) ) {
yaw = 0.0f;
} else {
if (vec[PITCH]) {
yaw = ( atan2( vec[YAW], vec[PITCH]) * 180.0f / M_PI );
} else if (vec[YAW] > 0.0f) {
yaw = 90.0f;
} else {
yaw = 270.0f;
}
if (yaw < 0.0f) {
yaw += 360.0f;
}
}
return yaw;
}
void AxisClear( vec3_t axis[3] ) {
axis[0][0] = 1;
axis[0][1] = 0;
axis[0][2] = 0;
axis[1][0] = 0;
axis[1][1] = 1;
axis[1][2] = 0;
axis[2][0] = 0;
axis[2][1] = 0;
axis[2][2] = 1;
}
void AxisCopy( const vec3_t in[3], vec3_t out[3] ) {
VectorCopy( in[0], out[0] );
VectorCopy( in[1], out[1] );
VectorCopy( in[2], out[2] );
}
void ProjectPointOnPlane( vec3_t dst, const vec3_t p, const vec3_t normal )
{
float d;
vec3_t n;
float inv_denom;
inv_denom = 1.0F / DotProduct( normal, normal );
d = DotProduct( normal, p ) * inv_denom;
n[0] = normal[0] * inv_denom;
n[1] = normal[1] * inv_denom;
n[2] = normal[2] * inv_denom;
dst[0] = p[0] - ( d * n[0] );
dst[1] = p[1] - ( d * n[1] );
dst[2] = p[2] - ( d * n[2] );
}
/*
================
MakeNormalVectors
Given a normalized forward vector, create two
other perpendicular vectors
================
*/
void MakeNormalVectors (const vec3_t forward, vec3_t right, vec3_t up)
{
float d;
// this rotate and negate guarantees a vector
// not colinear with the original
right[1] = -forward[0];
right[2] = forward[1];
right[0] = forward[2];
d = DotProduct (right, forward);
VectorMA (right, -d, forward, right);
VectorNormalize (right);
CrossProduct (right, forward, up);
}
void VectorRotate( const vec3_t in, const vec3_t matrix[3], vec3_t out )
{
out[0] = DotProduct( in, matrix[0] );
out[1] = DotProduct( in, matrix[1] );
out[2] = DotProduct( in, matrix[2] );
}
void AccumulateTransform( vec3_t dstOrigin, vec3_t dstAxes[3],
const vec3_t childOrigin, const vec3_t childAxes[3],
const vec3_t parentOrigin, const vec3_t parentAxes[3] )
{
vec3_t tmpVector;
// compute final angles
MatrixMultiply( childAxes, parentAxes, dstAxes );
// compute final origin as parent * p
VectorRotate( childOrigin, parentAxes, tmpVector );
VectorAdd( tmpVector, parentOrigin, dstOrigin );
}
void AccumulatePosition( vec3_t dstOrigin, const vec3_t childOrigin, const vec3_t parentOrigin, const vec3_t parentAxes[3] )
{
vec3_t tmpVector;
// compute final origin as parent * p
VectorRotate( childOrigin, parentAxes, tmpVector );
VectorAdd( tmpVector, parentOrigin, dstOrigin );
}
//============================================================================
/*
** float q_rsqrt( float number )
*/
#if !id386 || defined LINUX
float Q_rsqrt( float number )
{
long i;
float x2, y;
const float threehalfs = 1.5F;
x2 = number * 0.5F;
y = number;
i = * ( long * ) &y; // evil floating point bit level hacking
i = 0x5f3759df - ( i >> 1 ); // what is this?
y = * ( float * ) &i;
y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
// y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
return y;
}
#else
static const float ONE_HALF = 0.5f;
static const float THREE_HALVES = 1.5f;
__declspec(naked) float Q_rsqrt ( float f )
{
__asm
{
fld dword ptr [esp + 4]
fmul dword ptr [ONE_HALF]
mov eax, [esp + 4]
mov ecx, 0x5f3759df
shr eax, 1
sub ecx, eax
mov [esp + 4], ecx
fmul dword ptr [esp + 4]
fld dword ptr [esp + 4]
fmul dword ptr [esp + 4]
fld dword ptr [THREE_HALVES]
fmul dword ptr [esp + 4]
fxch st(2)
fmulp st(1), st
fsubp st(1), st
ret
}
Q_UNUSED(f);
}
#endif
float Q_fabs( float f ) {
int tmp = * ( int * ) &f;
tmp &= 0x7FFFFFFF;
return * ( float * ) &tmp;
}
//============================================================
/*
===============
LerpAngle
===============
*/
float LerpAngle (float from, float to, float frac) {
float a;
if ( to - from > 180.0f ) {
to -= 360.0f;
}
if ( to - from < -180.0f ) {
to += 360.0f;
}
a = from + ( frac * (to - from) );
return a;
}
/*
===============
LerpAngleFromCurrent
===============
*/
float LerpAngleFromCurrent (float from, float to, float current, float frac) {
float a;
if ( to - current > 180.0f ) {
to -= 360.0f;
}
if ( to - current < -180.0f ) {
to += 360.0f;
}
a = from + ( frac * (to - from) );
return a;
}
/*
=================
AngleSubtract
Always returns a value from -180 to 180
=================
*/
float AngleSubtract( float a1, float a2 ) {
float a;
a = a1 - a2;
while ( a > 180.0f ) {
a -= 360.0f;
}
while ( a < -180.0f ) {
a += 360.0f;
}
return a;
}
void AnglesSubtract( const vec3_t v1, const vec3_t v2, vec3_t v3 ) {
v3[0] = AngleSubtract( v1[0], v2[0] );
v3[1] = AngleSubtract( v1[1], v2[1] );
v3[2] = AngleSubtract( v1[2], v2[2] );
}
float AngleMod(float a)
{
/****************************************************************************
Squirrel : #if 0 / 1 block demoted to comment
#if 0
if (a >= 0)
a -= 360*(int)(a/360);
else
a += 360*( 1 + (int)(-a/360) );
#endif
****************************************************************************/
a = (360.0f/65536.0f) * (float)( (int)(a*(65536.0f/360.0f)) & 65535 );
return a;
}
/*
=================
AngleNormalize360
returns angle normalized to the range [0 <= angle < 360]
=================
*/
float AngleNormalize360 ( float angle ) {
// return (360.0f / 65536.0f) * (float)( (int)(angle * (65536.0f / 360.0f)) & 65535 );
while( angle > 360.0f )
angle -= 360.0f;
while( angle < 0.0f )
angle += 360.0f;
return( angle );
}
/*
=================
AngleNormalize180
returns angle normalized to the range [-180 < angle <= 180]
=================
*/
float AngleNormalize180 ( float angle ) {
angle = AngleNormalize360( angle );
if ( angle > 180.0f ) {
angle -= 360.0f;
}
return angle;
}
/*
=================
AngleNormalizeArbitrary
returns angle normalized to the range [minimumAngle < angle <= minimumAngle + 360]
=================
*/
float AngleNormalizeArbitrary ( const float angle, const float minimumAngle ) {
float maximumAngle = minimumAngle + 360.0f;
float normalizedAngle = angle;
while( normalizedAngle > maximumAngle )
normalizedAngle -= 360.0f;
while( normalizedAngle < minimumAngle )
normalizedAngle += 360.0f;
return( normalizedAngle );
}
/*
=================
AngleDelta
returns the normalized delta from angle1 to angle2
=================
*/
float AngleDelta ( float angle1, float angle2 ) {
// return AngleNormalize180( angle1 - angle2 );
float normalized1 = AngleNormalize360( angle1 );
float normalized2 = AngleNormalize360( angle2 );
float angularDistance = normalized1 - normalized2;
if( angularDistance < -180 )
angularDistance += 360;
if( angularDistance > 180 )
angularDistance -= 360;
return( angularDistance );
}
/*
=================
AnglesDelta
returns the normalized delta from angle1 to angle2
=================
*/
void AnglesDelta( const vec3_t v1, const vec3_t v2, vec3_t v3 ) {
v3[0] = AngleDelta( v1[0], v2[0] );
v3[1] = AngleDelta( v1[1], v2[1] );
v3[2] = AngleDelta( v1[2], v2[2] );
}
//============================================================
/*
=================
SetPlaneSignbits
=================
*/
void SetPlaneSignbits (cplane_t *out) {
int bits, j;
// for fast box on planeside test
bits = 0;
for (j=0 ; j<3 ; j++) {
if (out->normal[j] < 0.0f) {
bits |= 1<<j;
}
}
out->signbits = bits;
}
/*
==================
BoxOnPlaneSide
Returns 1, 2, or 1 + 2
// this is the slow, general version
int BoxOnPlaneSide2 (vec3_t emins, vec3_t emaxs, struct cplane_s *p)
{
int i;
float dist1, dist2;
int sides;
vec3_t corners[2];
for (i=0 ; i<3 ; i++)
{
if (p->normal[i] < 0)
{
corners[0][i] = emins[i];
corners[1][i] = emaxs[i];
}
else
{
corners[1][i] = emins[i];
corners[0][i] = emaxs[i];
}
}
dist1 = DotProduct (p->normal, corners[0]) - p->dist;
dist2 = DotProduct (p->normal, corners[1]) - p->dist;
sides = 0;
if (dist1 >= 0)
sides = 1;
if (dist2 < 0)
sides |= 2;
return sides;
}
==================
*/
#if !id386 || defined LINUX
int BoxOnPlaneSide (vec3_t emins, vec3_t emaxs, struct cplane_s *p)
{
float dist1, dist2;
int sides;
// fast axial cases
if (p->type < 3)
{
if (p->dist <= emins[p->type])
return 1;
if (p->dist >= emaxs[p->type])
return 2;
return 3;
}
// general case
switch (p->signbits)
{
case 0:
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
dist2 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
break;
case 1:
dist1 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
break;
case 2:
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
dist2 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
break;
case 3:
dist1 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
break;
case 4:
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
dist2 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
break;
case 5:
dist1 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
break;
case 6:
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
dist2 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
break;
case 7:
dist1 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
break;
default:
dist1 = dist2 = 0; // shut up compiler
break;
}
sides = 0;
if (dist1 >= p->dist)
sides = 1;
if (dist2 < p->dist)
sides |= 2;
return sides;
}
#else
#pragma warning( disable: 4035 )
__declspec( naked ) int BoxOnPlaneSide (vec3_t emins, vec3_t emaxs, struct cplane_s *p)
{
static int bops_initialized;
static int Ljmptab[8];
__asm {
push ebx
cmp bops_initialized, 1
je initialized
mov bops_initialized, 1
mov Ljmptab[0*4], offset Lcase0
mov Ljmptab[1*4], offset Lcase1
mov Ljmptab[2*4], offset Lcase2
mov Ljmptab[3*4], offset Lcase3
mov Ljmptab[4*4], offset Lcase4
mov Ljmptab[5*4], offset Lcase5
mov Ljmptab[6*4], offset Lcase6
mov Ljmptab[7*4], offset Lcase7
initialized:
mov edx,ds:dword ptr[4+12+esp]
mov ecx,ds:dword ptr[4+4+esp]
xor eax,eax
mov ebx,ds:dword ptr[4+8+esp]
mov al,ds:byte ptr[17+edx]
cmp al,8
jge Lerror
fld ds:dword ptr[0+edx]
fld st(0)
jmp dword ptr[Ljmptab+eax*4]
Lcase0:
fmul ds:dword ptr[ebx]
fld ds:dword ptr[0+4+edx]
fxch st(2)
fmul ds:dword ptr[ecx]
fxch st(2)
fld st(0)
fmul ds:dword ptr[4+ebx]
fld ds:dword ptr[0+8+edx]
fxch st(2)
fmul ds:dword ptr[4+ecx]
fxch st(2)
fld st(0)
fmul ds:dword ptr[8+ebx]
fxch st(5)
faddp st(3),st(0)
fmul ds:dword ptr[8+ecx]
fxch st(1)
faddp st(3),st(0)
fxch st(3)
faddp st(2),st(0)
jmp LSetSides
Lcase1:
fmul ds:dword ptr[ecx]
fld ds:dword ptr[0+4+edx]
fxch st(2)
fmul ds:dword ptr[ebx]
fxch st(2)
fld st(0)
fmul ds:dword ptr[4+ebx]
fld ds:dword ptr[0+8+edx]
fxch st(2)
fmul ds:dword ptr[4+ecx]
fxch st(2)
fld st(0)
fmul ds:dword ptr[8+ebx]
fxch st(5)
faddp st(3),st(0)
fmul ds:dword ptr[8+ecx]
fxch st(1)
faddp st(3),st(0)
fxch st(3)
faddp st(2),st(0)
jmp LSetSides
Lcase2:
fmul ds:dword ptr[ebx]
fld ds:dword ptr[0+4+edx]
fxch st(2)
fmul ds:dword ptr[ecx]
fxch st(2)
fld st(0)
fmul ds:dword ptr[4+ecx]
fld ds:dword ptr[0+8+edx]
fxch st(2)
fmul ds:dword ptr[4+ebx]
fxch st(2)
fld st(0)
fmul ds:dword ptr[8+ebx]
fxch st(5)
faddp st(3),st(0)
fmul ds:dword ptr[8+ecx]
fxch st(1)
faddp st(3),st(0)
fxch st(3)
faddp st(2),st(0)
jmp LSetSides
Lcase3:
fmul ds:dword ptr[ecx]
fld ds:dword ptr[0+4+edx]
fxch st(2)
fmul ds:dword ptr[ebx]
fxch st(2)
fld st(0)
fmul ds:dword ptr[4+ecx]
fld ds:dword ptr[0+8+edx]
fxch st(2)
fmul ds:dword ptr[4+ebx]
fxch st(2)
fld st(0)
fmul ds:dword ptr[8+ebx]
fxch st(5)
faddp st(3),st(0)
fmul ds:dword ptr[8+ecx]
fxch st(1)
faddp st(3),st(0)
fxch st(3)
faddp st(2),st(0)
jmp LSetSides
Lcase4:
fmul ds:dword ptr[ebx]
fld ds:dword ptr[0+4+edx]
fxch st(2)
fmul ds:dword ptr[ecx]
fxch st(2)
fld st(0)
fmul ds:dword ptr[4+ebx]
fld ds:dword ptr[0+8+edx]
fxch st(2)
fmul ds:dword ptr[4+ecx]
fxch st(2)
fld st(0)
fmul ds:dword ptr[8+ecx]
fxch st(5)
faddp st(3),st(0)
fmul ds:dword ptr[8+ebx]
fxch st(1)
faddp st(3),st(0)
fxch st(3)
faddp st(2),st(0)
jmp LSetSides
Lcase5:
fmul ds:dword ptr[ecx]
fld ds:dword ptr[0+4+edx]
fxch st(2)
fmul ds:dword ptr[ebx]
fxch st(2)
fld st(0)
fmul ds:dword ptr[4+ebx]
fld ds:dword ptr[0+8+edx]
fxch st(2)
fmul ds:dword ptr[4+ecx]
fxch st(2)
fld st(0)
fmul ds:dword ptr[8+ecx]
fxch st(5)
faddp st(3),st(0)
fmul ds:dword ptr[8+ebx]
fxch st(1)
faddp st(3),st(0)
fxch st(3)
faddp st(2),st(0)
jmp LSetSides
Lcase6:
fmul ds:dword ptr[ebx]
fld ds:dword ptr[0+4+edx]
fxch st(2)
fmul ds:dword ptr[ecx]
fxch st(2)
fld st(0)
fmul ds:dword ptr[4+ecx]
fld ds:dword ptr[0+8+edx]
fxch st(2)
fmul ds:dword ptr[4+ebx]
fxch st(2)
fld st(0)
fmul ds:dword ptr[8+ecx]
fxch st(5)
faddp st(3),st(0)
fmul ds:dword ptr[8+ebx]
fxch st(1)
faddp st(3),st(0)
fxch st(3)
faddp st(2),st(0)
jmp LSetSides
Lcase7:
fmul ds:dword ptr[ecx]
fld ds:dword ptr[0+4+edx]
fxch st(2)
fmul ds:dword ptr[ebx]
fxch st(2)
fld st(0)
fmul ds:dword ptr[4+ecx]
fld ds:dword ptr[0+8+edx]
fxch st(2)
fmul ds:dword ptr[4+ebx]
fxch st(2)
fld st(0)
fmul ds:dword ptr[8+ecx]
fxch st(5)
faddp st(3),st(0)
fmul ds:dword ptr[8+ebx]
fxch st(1)
faddp st(3),st(0)
fxch st(3)
faddp st(2),st(0)
LSetSides:
faddp st(2),st(0)
fcomp ds:dword ptr[12+edx]
xor ecx,ecx
fnstsw ax
fcomp ds:dword ptr[12+edx]
and ah,1
xor ah,1
add cl,ah
fnstsw ax
and ah,1
add ah,ah
add cl,ah
pop ebx
mov eax,ecx
ret
Lerror:
int 3
}
Q_UNUSED(p);
Q_UNUSED(emins);
Q_UNUSED(emaxs);
}
#pragma warning( default: 4035 )
#endif
/*
=================
RadiusFromBounds
=================
*/
float RadiusFromBounds( const vec3_t mins, const vec3_t maxs ) {
int i;
vec3_t corner;
float a, b;
for (i=0 ; i<3 ; i++) {
a = (float)fabs( mins[i] );
b = (float)fabs( maxs[i] );
corner[i] = a > b ? a : b;
}
return VectorLength (corner);
}
#define BOUNDS_CLEAR_VALUE 99999
void ClearBounds( vec3_t mins, vec3_t maxs ) {
mins[0] = mins[1] = mins[2] = BOUNDS_CLEAR_VALUE;
maxs[0] = maxs[1] = maxs[2] = -BOUNDS_CLEAR_VALUE;
}
qboolean BoundsClear( const vec3_t mins, const vec3_t maxs )
{
if (
( mins[ 0 ] == BOUNDS_CLEAR_VALUE ) &&
( mins[ 1 ] == BOUNDS_CLEAR_VALUE ) &&
( mins[ 2 ] == BOUNDS_CLEAR_VALUE ) &&
( maxs[ 0 ] == -BOUNDS_CLEAR_VALUE ) &&
( maxs[ 1 ] == -BOUNDS_CLEAR_VALUE ) &&
( maxs[ 2 ] == -BOUNDS_CLEAR_VALUE )
)
{
return qtrue;
}
else
{
return qfalse;
}
}
void AddPointToBounds( const vec3_t v, vec3_t mins, vec3_t maxs ) {
if ( v[0] < mins[0] ) {
mins[0] = v[0];
}
if ( v[0] > maxs[0]) {
maxs[0] = v[0];
}
if ( v[1] < mins[1] ) {
mins[1] = v[1];
}
if ( v[1] > maxs[1]) {
maxs[1] = v[1];
}
if ( v[2] < mins[2] ) {
mins[2] = v[2];
}
if ( v[2] > maxs[2]) {
maxs[2] = v[2];
}
}
int VectorCompare( const vec3_t v1, const vec3_t v2 ) {
if ( ( v1[0] != v2[0] ) || ( v1[1] != v2[1] ) || ( v1[2] != v2[2] )) {
return qfalse;
}
return qtrue;
}
vec_t VectorNormalize( vec3_t v ) {
float length, ilength;
length = ( v[0] * v[0] ) + ( v[1] * v[1] ) + ( v[2] * v[2] );
length = (float)sqrt (length);
if ( length ) {
ilength = 1.0f / length;
v[0] *= ilength;
v[1] *= ilength;
v[2] *= ilength;
}
return length;
}
//
// fast vector normalize routine that does not check to make sure
// that length != 0, nor does it return length
//
void VectorNormalizeFast( vec3_t v )
{
float ilength;
ilength = Q_rsqrt( DotProduct( v, v ) );
v[0] *= ilength;
v[1] *= ilength;
v[2] *= ilength;
}
vec_t VectorNormalize2( const vec3_t v, vec3_t out) {
float length, ilength;
length = ( v[0] * v[0] ) + ( v[1] * v[1] ) + ( v[2] * v[2] );
length = (float)sqrt (length);
if (length)
{
ilength = 1.0f / length;
out[0] = v[0] * ilength;
out[1] = v[1] * ilength;
out[2] = v[2] * ilength;
} else {
VectorClear( out );
}
return length;
}
void _VectorMA( const vec3_t veca, float scale, const vec3_t vecb, vec3_t vecc) {
vecc[0] = veca[0] + ( scale * vecb[0] );
vecc[1] = veca[1] + ( scale * vecb[1] );
vecc[2] = veca[2] + ( scale * vecb[2] );
}
vec_t _DotProduct( const vec3_t v1, const vec3_t v2 ) {
return ( v1[0] * v2[0] ) + ( v1[1] * v2[1] ) + ( v1[2] * v2[2] );
}
//intel change
#if !defined (MSVC_BUILD) && !defined( LINUX )
//intel optimized version
__declspec(cpu_specific(pentium_4))
void _VectorSubtract( const vec3_t veca, const vec3_t vecb, vec3_t out ) {
__m128 xmm_veca, xmm_vecb, xmm_out;
xmm_veca = _mm_load_ss(&veca[0]);
xmm_vecb = _mm_load_ss(&vecb[0]);
xmm_out = _mm_sub_ss(xmm_veca,xmm_vecb);
_mm_store_ss(&out[0],xmm_out);
xmm_veca = _mm_load_ss(&veca[1]);
xmm_vecb = _mm_load_ss(&vecb[1]);
xmm_out = _mm_sub_ss(xmm_veca,xmm_vecb);
_mm_store_ss(&out[1],xmm_out);
xmm_veca = _mm_load_ss(&veca[2]);
xmm_vecb = _mm_load_ss(&vecb[2]);
xmm_out = _mm_sub_ss(xmm_veca,xmm_vecb);
_mm_store_ss(&out[2],xmm_out);
}
__declspec(cpu_specific(generic))
//original
void _VectorSubtract( const vec3_t veca, const vec3_t vecb, vec3_t out ) {
out[0] = veca[0]-vecb[0];
out[1] = veca[1]-vecb[1];
out[2] = veca[2]-vecb[2];
}
#else
//original code for MSVC builds
void _VectorSubtract( const vec3_t veca, const vec3_t vecb, vec3_t out ) {
out[0] = veca[0]-vecb[0];
out[1] = veca[1]-vecb[1];
out[2] = veca[2]-vecb[2];
}
#endif
//intel change
#if !defined(MSVC_BUILD) && !defined (LINUX)
//intel optimized version
__declspec(cpu_specific(pentium_4))
void _VectorAdd( const vec3_t veca, const vec3_t vecb, vec3_t out ) {
__m128 xmm_veca, xmm_vecb, xmm_out;
xmm_veca = _mm_load_ss(&veca[0]);
xmm_vecb = _mm_load_ss(&vecb[0]);
xmm_out = _mm_add_ss(xmm_veca,xmm_vecb);
_mm_store_ss(&out[0],xmm_out);
xmm_veca = _mm_load_ss(&veca[1]);
xmm_vecb = _mm_load_ss(&vecb[1]);
xmm_out = _mm_add_ss(xmm_veca,xmm_vecb);
_mm_store_ss(&out[1],xmm_out);
xmm_veca = _mm_load_ss(&veca[2]);
xmm_vecb = _mm_load_ss(&vecb[2]);
xmm_out = _mm_add_ss(xmm_veca,xmm_vecb);
_mm_store_ss(&out[2],xmm_out);
}
__declspec(cpu_specific(generic))
//original
void _VectorAdd( const vec3_t veca, const vec3_t vecb, vec3_t out ) {
out[0] = veca[0]+vecb[0];
out[1] = veca[1]+vecb[1];
out[2] = veca[2]+vecb[2];
}
#else
//original code for MSVC builds
void _VectorAdd( const vec3_t veca, const vec3_t vecb, vec3_t out ) {
out[0] = veca[0]+vecb[0];
out[1] = veca[1]+vecb[1];
out[2] = veca[2]+vecb[2];
}
#endif
void _VectorCopy( const vec3_t in, vec3_t out ) {
out[0] = in[0];
out[1] = in[1];
out[2] = in[2];
}
void _VectorScale( const vec3_t in, vec_t scale, vec3_t out ) {
out[0] = in[0]*scale;
out[1] = in[1]*scale;
out[2] = in[2]*scale;
}
void CrossProduct( const vec3_t v1, const vec3_t v2, vec3_t cross ) {
cross[0] = ( v1[1] * v2[2] ) - ( v1[2] * v2[1] );
cross[1] = ( v1[2] * v2[0] ) - ( v1[0] * v2[2] );
cross[2] = ( v1[0] * v2[1] ) - ( v1[1] * v2[0] );
}
vec_t VectorLength( const vec3_t v ) {
return sqrt ( ( v[0] * v[0] ) + ( v[1] * v[1] ) + ( v[2] * v[2] ) );
}
vec_t VectorLengthSquared( const vec3_t v ) {
return ( ( v[0] * v[0] ) + ( v[1] * v[1] ) + ( v[2] * v[2] ) );
}
vec_t Distance( const vec3_t p1, const vec3_t p2 ) {
vec3_t v;
VectorSubtract (p2, p1, v);
return VectorLength( v );
}
vec_t DistanceSquared( const vec3_t p1, const vec3_t p2 ) {
vec3_t v;
VectorSubtract (p2, p1, v);
return ( v[0] * v[0] ) + ( v[1] * v[1] ) + ( v[2] * v[2] );
}
void VectorInverse( vec3_t v ){
v[0] = -v[0];
v[1] = -v[1];
v[2] = -v[2];
}
void Vector4Scale( const vec4_t in, vec_t scale, vec4_t out ) {
out[0] = in[0]*scale;
out[1] = in[1]*scale;
out[2] = in[2]*scale;
out[3] = in[3]*scale;
}
int Q_log2( int val ) {
int answer;
answer = 0;
while ( ( val>>=1 ) != 0 ) {
answer++;
}
return answer;
}
/*
** NormalToLatLong
**
** Lat = 0 at (1,0,0) to 360 (-1,0,0), encoded in 8-bit sine table format
** Lng = 0 at (0,0,1) to 180 (0,0,-1), encoded in 8-bit sine table format
**
** Latitude is encoded in high 8 bits
*/
unsigned short NormalToLatLong( const vec3_t normal )
{
unsigned short ll;
// check for singularities
if ( ( normal[0] == 0 ) && ( normal[1] == 0 ) )
{
if ( normal[2] > 0.0f )
{
ll = 0; // lat = 0, long = 0
}
else
{
ll = 128; // lat = 0, long = 128
}
}
else
{
unsigned short a, b;
a = RAD2DEG( atan2( normal[1], normal[0] ) ) * (255.0f / 360.0f );
a &= 0xff;
b = RAD2DEG( acos( normal[2] ) ) * ( 255.0f / 360.0f );
b &= 0xff;
ll = ( a << 8 ) | b;
}
return ll;
}
float bias(float a, float b)
{
return (float)( pow(a, (float)(log(b) / log(0.5))) );
}
float gain(float a, float b)
{
float p = (float)( log(1. - b) / log(0.5) );
if ( a < .001f )
return 0.0f;
else if ( a > .999f )
return 1.0f;
if ( a < 0.5f )
return (float)pow( (float)(2.0 * a), p) / 2.0f;
else
return 1.0f - (float)pow( (float)(2.0 * (1.0 - a)), p ) / 2.0f;
}
float noise(float vec[], int len)
{
switch (len) {
case 0:
return 0.;
case 1:
return noise1(vec[0]);
case 2:
return noise2(vec);
default:
return noise3(vec);
}
}
float turbulence( const float *v, float freq)
{
float t, vec[3];
for ( t = 0.0f ; freq >= 1.0f ; freq /= 2.0f ) {
vec[0] = freq * v[0];
vec[1] = freq * v[1];
vec[2] = freq * v[2];
t += (float)fabs(noise3(vec)) / freq;
}
return t;
}
/* noise functions over 1, 2, and 3 dimensions */
#define B 0x100
#define BM 0xff
#define N 0x1000
//#define NP 12 /* 2^N */
//#define NM 0xfff
static int p[B + B + 2];
static float g3[B + B + 2][3];
static float g2[B + B + 2][2];
static float g1[B + B + 2];
static int start = 1;
static void init(void);
#define s_curve(t) ( t * t * (3.0f - ( 2.0f * t ) ) )
#define lerp(t, a, b) ( a + ( t * (b - a) ) )
#define setup(i,b0,b1,r0,r1)\
t = vec[i] + N;\
b0 = ((int)t) & BM;\
b1 = (b0+1) & BM;\
r0 = t - (int)t;\
r1 = r0 - 1.0f;
float noise1(float arg)
{
int bx0, bx1;
float rx0, rx1, sx, t, u, v, vec[1];
vec[0] = arg;
if (start) {
start = 0;
init();
}
setup(0, bx0,bx1, rx0,rx1);
sx = s_curve(rx0);
u = rx0 * g1[ p[ bx0 ] ];
v = rx1 * g1[ p[ bx1 ] ];
return lerp(sx, u, v);
}
#define at2(rx,ry) ( ( rx * q[0] ) + ( ry * q[1] ) )
float noise2( const float vec[2] )
{
int bx0, bx1, by0, by1, b00, b10, b01, b11;
float rx0, rx1, ry0, ry1, *q, sx, sy, a, b, t, u, v;
register int i, j;
if (start) {
start = 0;
init();
}
setup(0, bx0,bx1, rx0,rx1);
setup(1, by0,by1, ry0,ry1);
i = p[ bx0 ];
j = p[ bx1 ];
b00 = p[ i + by0 ];
b10 = p[ j + by0 ];
b01 = p[ i + by1 ];
b11 = p[ j + by1 ];
sx = s_curve(rx0);
sy = s_curve(ry0);
q = g2[ b00 ] ; u = at2(rx0,ry0);
q = g2[ b10 ] ; v = at2(rx1,ry0);
a = lerp(sx, u, v);
q = g2[ b01 ] ; u = at2(rx0,ry1);
q = g2[ b11 ] ; v = at2(rx1,ry1);
b = lerp(sx, u, v);
return lerp(sy, a, b);
}
#define at3(rx,ry,rz) ( ( rx * q[0] ) + ( ry * q[1] ) + ( rz * q[2] ) )
float noise3( const float vec[3] )
{
int bx0, bx1, by0, by1, bz0, bz1, b00, b10, b01, b11;
float rx0, rx1, ry0, ry1, rz0, rz1, *q, sy, sz, a, b, c, d, t, u, v;
register int i, j;
if (start) {
start = 0;
init();
}
setup(0, bx0,bx1, rx0,rx1);
setup(1, by0,by1, ry0,ry1);
setup(2, bz0,bz1, rz0,rz1);
i = p[ bx0 ];
j = p[ bx1 ];
b00 = p[ i + by0 ];
b10 = p[ j + by0 ];
b01 = p[ i + by1 ];
b11 = p[ j + by1 ];
t = s_curve(rx0);
sy = s_curve(ry0);
sz = s_curve(rz0);
q = g3[ b00 + bz0 ] ; u = at3(rx0,ry0,rz0);
q = g3[ b10 + bz0 ] ; v = at3(rx1,ry0,rz0);
a = lerp(t, u, v);
q = g3[ b01 + bz0 ] ; u = at3(rx0,ry1,rz0);
q = g3[ b11 + bz0 ] ; v = at3(rx1,ry1,rz0);
b = lerp(t, u, v);
c = lerp(sy, a, b);
q = g3[ b00 + bz1 ] ; u = at3(rx0,ry0,rz1);
q = g3[ b10 + bz1 ] ; v = at3(rx1,ry0,rz1);
a = lerp(t, u, v);
q = g3[ b01 + bz1 ] ; u = at3(rx0,ry1,rz1);
q = g3[ b11 + bz1 ] ; v = at3(rx1,ry1,rz1);
b = lerp(t, u, v);
d = lerp(sy, a, b);
return lerp(sz, c, d);
}
static void normalize2(float v[2])
{
float s;
s = sqrt( ( v[0] * v[0] ) + ( v[1] * v[1] ) );
v[0] = v[0] / s;
v[1] = v[1] / s;
}
static void normalize3(float v[3])
{
float s;
s = sqrt( ( v[0] * v[0] ) + ( v[1] * v[1] ) + ( v[2] * v[2] ) );
v[0] = v[0] / s;
v[1] = v[1] / s;
v[2] = v[2] / s;
}
static void init(void)
{
int i, j, k;
for (i = 0 ; i < B ; i++) {
p[i] = i;
g1[i] = (float)((rand() % (B + B)) - B) / B;
for (j = 0 ; j < 2 ; j++)
g2[i][j] = (float)((rand() % (B + B)) - B) / B;
normalize2(g2[i]);
for (j = 0 ; j < 3 ; j++)
g3[i][j] = (float)((rand() % (B + B)) - B) / B;
normalize3(g3[i]);
}
while (--i) {
k = p[i];
p[i] = p[j = rand() % B];
p[j] = k;
}
for (i = 0 ; i < B + 2 ; i++) {
p[B + i] = p[i];
g1[B + i] = g1[i];
for (j = 0 ; j < 2 ; j++)
g2[B + i][j] = g2[i][j];
for (j = 0 ; j < 3 ; j++)
g3[B + i][j] = g3[i][j];
}
}
/*
================
R_ConcatRotations
================
*/
void R_ConcatRotations ( const float in1[3][3], const float in2[3][3], float out[3][3] )
{
out[0][0] = ( in1[0][0] * in2[0][0] ) + ( in1[0][1] * in2[1][0] ) +
( in1[0][2] * in2[2][0] );
out[0][1] = ( in1[0][0] * in2[0][1] ) + ( in1[0][1] * in2[1][1] ) +
( in1[0][2] * in2[2][1] );
out[0][2] = ( in1[0][0] * in2[0][2] ) + ( in1[0][1] * in2[1][2] ) +
( in1[0][2] * in2[2][2] );
out[1][0] = ( in1[1][0] * in2[0][0] ) + ( in1[1][1] * in2[1][0] ) +
( in1[1][2] * in2[2][0] );
out[1][1] = ( in1[1][0] * in2[0][1] ) + ( in1[1][1] * in2[1][1] ) +
( in1[1][2] * in2[2][1] );
out[1][2] = ( in1[1][0] * in2[0][2] ) + ( in1[1][1] * in2[1][2] ) +
( in1[1][2] * in2[2][2] );
out[2][0] = ( in1[2][0] * in2[0][0] ) + ( in1[2][1] * in2[1][0] ) +
( in1[2][2] * in2[2][0] );
out[2][1] = ( in1[2][0] * in2[0][1] ) + ( in1[2][1] * in2[1][1] ) +
( in1[2][2] * in2[2][1] );
out[2][2] = ( in1[2][0] * in2[0][2] ) + ( in1[2][1] * in2[1][2] ) +
( in1[2][2] * in2[2][2] );
}
/*
================
R_ConcatTransforms
================
*/
void R_ConcatTransforms ( const float in1[3][4], const float in2[3][4], float out[3][4] )
{
out[0][0] = ( in1[0][0] * in2[0][0] ) + ( in1[0][1] * in2[1][0] ) +
( in1[0][2] * in2[2][0] );
out[0][1] = ( in1[0][0] * in2[0][1] ) + ( in1[0][1] * in2[1][1] ) +
( in1[0][2] * in2[2][1] );
out[0][2] = ( in1[0][0] * in2[0][2] ) + ( in1[0][1] * in2[1][2] ) +
( in1[0][2] * in2[2][2] );
out[0][3] = ( in1[0][0] * in2[0][3] ) + ( in1[0][1] * in2[1][3] ) +
( in1[0][2] * in2[2][3] ) + in1[0][3];
out[1][0] = ( in1[1][0] * in2[0][0] ) + ( in1[1][1] * in2[1][0] ) +
( in1[1][2] * in2[2][0] );
out[1][1] = ( in1[1][0] * in2[0][1] ) + ( in1[1][1] * in2[1][1] ) +
( in1[1][2] * in2[2][1] );
out[1][2] = ( in1[1][0] * in2[0][2] ) + ( in1[1][1] * in2[1][2] ) +
( in1[1][2] * in2[2][2] );
out[1][3] = ( in1[1][0] * in2[0][3] ) + ( in1[1][1] * in2[1][3] ) +
( in1[1][2] * in2[2][3] ) + in1[1][3];
out[2][0] = ( in1[2][0] * in2[0][0] ) + ( in1[2][1] * in2[1][0] ) +
( in1[2][2] * in2[2][0] );
out[2][1] = ( in1[2][0] * in2[0][1] ) + ( in1[2][1] * in2[1][1] ) +
( in1[2][2] * in2[2][1] );
out[2][2] = ( in1[2][0] * in2[0][2] ) + ( in1[2][1] * in2[1][2] ) +
( in1[2][2] * in2[2][2] );
out[2][3] = ( in1[2][0] * in2[0][3] ) + ( in1[2][1] * in2[1][3] ) +
( in1[2][2] * in2[2][3] ) + in1[2][3];
}
//============================================================================
float anglemod(float a)
{
/****************************************************************************
Squirrel : #if 0 / 1 block demoted to comment
#if 0
if (a >= 0)
a -= 360*(int)(a/360);
else
a += 360*( 1 + (int)(-a/360) );
#endif
****************************************************************************/
a = (360.0f / 65536.0f ) * (float)( (int)(a*(65536.0f/360.0f)) & 65535 );
return a;
}
float angledist( float ang )
{
float a;
a = anglemod( ang );
if ( a > 180.0f )
{
a -= 360.0f;
}
return a;
}
// int i;
// vec3_t corners[2];
// this is the slow, general version
int BoxOnPlaneSide2 ( const vec3_t emins, const vec3_t emaxs, const struct cplane_s *p )
{
int i;
float dist1, dist2;
int sides;
vec3_t corners[2];
for (i=0 ; i<3 ; i++)
{
if (p->normal[i] < 0.0f)
{
corners[0][i] = emins[i];
corners[1][i] = emaxs[i];
}
else
{
corners[1][i] = emins[i];
corners[0][i] = emaxs[i];
}
}
dist1 = DotProduct (p->normal, corners[0]) - p->dist;
dist2 = DotProduct (p->normal, corners[1]) - p->dist;
sides = 0;
if (dist1 >= 0.0f)
sides = 1;
if (dist2 < 0.0f)
sides |= 2;
return sides;
}
/*
=================
CalculateRotatedBounds
=================
*/
void CalculateRotatedBounds( const vec3_t angles, vec3_t mins, vec3_t maxs )
{
int i;
vec3_t rotmins, rotmaxs;
float trans[3][3];
AnglesToAxis( angles, trans );
ClearBounds( rotmins, rotmaxs );
for ( i = 0; i < 8; i++ )
{
vec3_t tmp, rottemp;
if ( i & 1 )
tmp[0] = mins[0];
else
tmp[0] = maxs[0];
if ( i & 2 )
tmp[1] = mins[1];
else
tmp[1] = maxs[1];
if ( i & 4 )
tmp[2] = mins[2];
else
tmp[2] = maxs[2];
MatrixTransformVector( tmp, trans, rottemp );
AddPointToBounds( rottemp, rotmins, rotmaxs );
}
VectorCopy( rotmins, mins );
VectorCopy( rotmaxs, maxs );
}
/*
=================
CalculateRotatedBounds2
=================
*/
void CalculateRotatedBounds2( float trans[3][3], vec3_t mins, vec3_t maxs )
{
int i;
vec3_t rotmins, rotmaxs;
ClearBounds( rotmins, rotmaxs );
for ( i = 0; i < 8; i++ )
{
vec3_t tmp, rottemp;
if ( i & 1 )
tmp[0] = mins[0];
else
tmp[0] = maxs[0];
if ( i & 2 )
tmp[1] = mins[1];
else
tmp[1] = maxs[1];
if ( i & 4 )
tmp[2] = mins[2];
else
tmp[2] = maxs[2];
MatrixTransformVector( tmp, trans, rottemp );
AddPointToBounds( rottemp, rotmins, rotmaxs );
}
VectorCopy( rotmins, mins );
VectorCopy( rotmaxs, maxs );
}
#define BBOX_XBITS 9
#define BBOX_YBITS 8
#define BBOX_ZBOTTOMBITS 5
#define BBOX_ZTOPBITS 9
#define BBOX_MAX_X ( 1 << BBOX_XBITS )
#define BBOX_MAX_Y ( 1 << BBOX_YBITS )
#define BBOX_MAX_BOTTOM_Z ( 1 << ( BBOX_ZBOTTOMBITS - 1 ) )
#define BBOX_REALMAX_BOTTOM_Z ( 1 << BBOX_ZBOTTOMBITS )
#define BBOX_MAX_TOP_Z ( 1 << BBOX_ZTOPBITS )
/*
=================
BoundingBoxToInteger
=================
*/
int BoundingBoxToInteger( const vec3_t mins, const vec3_t maxs )
{
int x, y, zd, zu, result;
x = (int)maxs[ 0 ];
if ( x < 0 )
x = 0;
if ( x >= BBOX_MAX_X )
x = BBOX_MAX_X - 1;
y = (int)maxs[ 1 ];
if ( y < 0 )
y = 0;
if ( y >= BBOX_MAX_Y )
y = BBOX_MAX_Y - 1;
zd = (int)mins[ 2 ] + BBOX_MAX_BOTTOM_Z;
if ( zd < 0 )
{
zd = 0;
}
if ( zd >= BBOX_REALMAX_BOTTOM_Z )
{
zd = BBOX_REALMAX_BOTTOM_Z - 1;
}
zu = (int)maxs[ 2 ];
if ( zu < 0 )
zu = 0;
if ( zu >= BBOX_MAX_TOP_Z )
zu = BBOX_MAX_TOP_Z - 1;
result = x |
( y << BBOX_XBITS ) |
( zd << ( BBOX_XBITS + BBOX_YBITS ) ) |
( zu << ( BBOX_XBITS + BBOX_YBITS + BBOX_ZBOTTOMBITS ) );
return result;
}
/*
=================
IntegerToBoundingBox
=================
*/
void IntegerToBoundingBox( int num, vec3_t mins, vec3_t maxs )
{
int x, y, zd, zu;
x = num & ( BBOX_MAX_X - 1 );
y = ( num >> ( BBOX_XBITS ) ) & ( BBOX_MAX_Y -1 );
zd = ( num >> ( BBOX_XBITS + BBOX_YBITS ) ) & ( BBOX_REALMAX_BOTTOM_Z - 1 );
zd -= BBOX_MAX_BOTTOM_Z;
zu = ( num >> ( BBOX_XBITS + BBOX_YBITS + BBOX_ZBOTTOMBITS ) ) & ( BBOX_MAX_TOP_Z - 1 );
mins[ 0 ] = -x;
mins[ 1 ] = -y;
mins[ 2 ] = zd;
maxs[ 0 ] = x;
maxs[ 1 ] = y;
maxs[ 2 ] = zu;
}
//====================================================================
void MatrixTransformVector
(
const vec3_t in,
const float mat[ 3 ][ 3 ],
vec3_t out
)
{
out[ 0 ] = ( in[ 0 ] * mat[ 0 ][ 0 ] ) + ( in[ 1 ] * mat[ 1 ][ 0 ] ) + ( in[ 2 ] * mat[ 2 ][ 0 ] );
out[ 1 ] = ( in[ 0 ] * mat[ 0 ][ 1 ] ) + ( in[ 1 ] * mat[ 1 ][ 1 ] ) + ( in[ 2 ] * mat[ 2 ][ 1 ] );
out[ 2 ] = ( in[ 0 ] * mat[ 0 ][ 2 ] ) + ( in[ 1 ] * mat[ 1 ][ 2 ] ) + ( in[ 2 ] * mat[ 2 ][ 2 ] );
}
void Matrix4TransformVector
(
const vec3_t in,
const float mat[ 4 ][ 4 ],
vec3_t out
)
{
out[ 0 ] = ( in[ 0 ] * mat[ 0 ][ 0 ] ) + ( in[ 1 ] * mat[ 1 ][ 0 ] ) + ( in[ 2 ] * mat[ 2 ][ 0 ] ) + mat[ 3 ][ 0 ];
out[ 1 ] = ( in[ 0 ] * mat[ 0 ][ 1 ] ) + ( in[ 1 ] * mat[ 1 ][ 1 ] ) + ( in[ 2 ] * mat[ 2 ][ 1 ] ) + mat[ 3 ][ 1 ];
out[ 2 ] = ( in[ 0 ] * mat[ 0 ][ 2 ] ) + ( in[ 1 ] * mat[ 1 ][ 2 ] ) + ( in[ 2 ] * mat[ 2 ][ 2 ] ) + mat[ 3 ][ 2 ];
}
void MatrixToEulerAngles
(
const float mat[ 3 ][ 3 ],
vec3_t ang
)
{
double theta;
double cp;
double sp;
sp = mat[ 0 ][ 2 ];
// cap off our sin value so that we don't get any NANs
if ( sp > 1.0 )
{
sp = 1.0;
}
if ( sp < -1.0 )
{
sp = -1.0;
}
theta = -asin( sp );
cp = cos( theta );
if ( cp > ( 8192.0 * FLT_EPSILON ) )
{
ang[ 0 ] = (float)( theta * 180.0 / M_PI );
ang[ 1 ] = (float)( atan2( mat[ 0 ][ 1 ], mat[ 0 ][ 0 ] ) * 180.0 / M_PI );
ang[ 2 ] = (float)( atan2( mat[ 1 ][ 2 ], mat[ 2 ][ 2 ] ) * 180.0 / M_PI );
}
else
{
ang[ 0 ] = (float)( theta * 180.0 / M_PI );
ang[ 1 ] = (float)( -atan2( mat[ 1 ][ 0 ], mat[ 1 ][ 1 ] ) * 180.0 / M_PI );
ang[ 2 ] = 0.0f;
}
}
void TransposeMatrix
(
const float in[ 3 ][ 3 ],
float out[ 3 ][ 3 ]
)
{
out[ 0 ][ 0 ] = in[ 0 ][ 0 ];
out[ 0 ][ 1 ] = in[ 1 ][ 0 ];
out[ 0 ][ 2 ] = in[ 2 ][ 0 ];
out[ 1 ][ 0 ] = in[ 0 ][ 1 ];
out[ 1 ][ 1 ] = in[ 1 ][ 1 ];
out[ 1 ][ 2 ] = in[ 2 ][ 1 ];
out[ 2 ][ 0 ] = in[ 0 ][ 2 ];
out[ 2 ][ 1 ] = in[ 1 ][ 2 ];
out[ 2 ][ 2 ] = in[ 2 ][ 2 ];
}
void OrthoNormalize
(
float mat[3][3]
)
{
VectorNormalize( mat[ 0 ] );
CrossProduct( mat[ 0 ], mat[ 1 ], mat[ 2 ] );
VectorNormalize( mat[ 2 ] );
CrossProduct( mat[ 2 ], mat[ 0 ], mat[ 1 ] );
VectorNormalize( mat[ 1 ] );
}
float NormalizeQuat
(
float q[ 4 ]
)
{
float length, ilength;
length = ( q[ 0 ] * q[ 0 ] ) + ( q[ 1 ] * q[ 1 ] ) + ( q[ 2 ] * q[ 2 ] ) + ( q[ 3 ] * q[ 3 ] );
length = (float)sqrt( length );
if ( length )
{
ilength = 1.0f / length;
q[ 0 ] *= ilength;
q[ 1 ] *= ilength;
q[ 2 ] *= ilength;
q[ 3 ] *= ilength;
}
return length;
}
void MatToQuat
(
const float srcMatrix[ 3 ][ 3 ],
float destQuat[ 4 ]
)
{
double trace, s;
int i, j, k;
static int next[3] = {Y, Z, X};
trace = srcMatrix[X][X] + srcMatrix[Y][Y]+ srcMatrix[Z][Z];
if (trace > 0.0)
{
s = sqrt(trace + 1.0);
destQuat[W] = (float)( s * 0.5 );
s = 0.5 / s;
destQuat[X] = (float)( (srcMatrix[Z][Y] - srcMatrix[Y][Z]) * s );
destQuat[Y] = (float)( (srcMatrix[X][Z] - srcMatrix[Z][X]) * s );
destQuat[Z] = (float)( (srcMatrix[Y][X] - srcMatrix[X][Y]) * s );
}
else
{
i = X;
if (srcMatrix[Y][Y] > srcMatrix[X][X])
i = Y;
if (srcMatrix[Z][Z] > srcMatrix[i][i])
i = Z;
j = next[i];
k = next[j];
s = sqrt( (srcMatrix[i][i] - (srcMatrix[j][j]+srcMatrix[k][k])) + 1.0 );
destQuat[i] = (float)( s * 0.5 );
s = 0.5 / s;
destQuat[W] = (srcMatrix[k][j] - srcMatrix[j][k]) * s;
destQuat[j] = (srcMatrix[j][i] + srcMatrix[i][j]) * s;
destQuat[k] = (srcMatrix[k][i] + srcMatrix[i][k]) * s;
}
}
void RotateAxis
(
const float axis[ 3 ],
float angle,
float q[ 4 ]
)
{
float sin_a;
float inv_sin_a;
float cos_a;
float r;
r = angle * M_PI / 360.0f;
sin_a = sin( r );
if ( fabs( sin_a ) > 0.00000001 )
{
inv_sin_a = 1.0f / sin_a;
}
else
{
inv_sin_a = 0.0f;
}
cos_a = (float)cos( r );
q[ X ] = axis[ 0 ] * inv_sin_a;
q[ Y ] = axis[ 1 ] * inv_sin_a;
q[ Z ] = axis[ 2 ] * inv_sin_a;
q[ W ] = cos_a;
}
void MultQuat
(
const float q1[ 4 ],
const float q2[ 4 ],
float out[ 4 ]
)
{
out[ 0 ] = ( q1[X] * q2[X] ) - ( q1[Y] * q2[Y] ) - ( q1[Z] * q2[Z] ) - ( q1[W] * q2[W] );
out[ 1 ] = ( q1[X] * q2[Y] ) + ( q1[Y] * q2[X] ) + ( q1[Z] * q2[W] ) - ( q1[W] * q2[Z] );
out[ 2 ] = ( q1[X] * q2[Z] ) - ( q1[Y] * q2[W] ) + ( q1[Z] * q2[X] ) + ( q1[W] * q2[Y] );
out[ 3 ] = ( q1[X] * q2[W] ) + ( q1[Y] * q2[Z] ) - ( q1[Z] * q2[Y] ) + ( q1[W] * q2[X] );
}
void QuatToMat
(
const float q[ 4 ],
float m[ 3 ][ 3 ]
)
{
float wx, wy, wz;
float xx, yy, yz;
float xy, xz, zz;
float x2, y2, z2;
x2 = q[ X ] + q[ X ];
y2 = q[ Y ] + q[ Y ];
z2 = q[ Z ] + q[ Z ];
xx = q[ X ] * x2;
xy = q[ X ] * y2;
xz = q[ X ] * z2;
yy = q[ Y ] * y2;
yz = q[ Y ] * z2;
zz = q[ Z ] * z2;
wx = q[ W ] * x2;
wy = q[ W ] * y2;
wz = q[ W ] * z2;
m[ 0 ][ 0 ] = 1.0f - ( yy + zz );
m[ 0 ][ 1 ] = xy - wz;
m[ 0 ][ 2 ] = xz + wy;
m[ 1 ][ 0 ] = xy + wz;
m[ 1 ][ 1 ] = 1.0f - ( xx + zz );
m[ 1 ][ 2 ] = yz - wx;
m[ 2 ][ 0 ] = xz - wy;
m[ 2 ][ 1 ] = yz + wx;
m[ 2 ][ 2 ] = 1.0f - ( xx + yy );
}
#define DELTA 1e-6
void SlerpQuaternion
(
const float from[ 4 ],
const float to[ 4 ],
float t,
float res[ 4 ]
)
{
float to1[ 4 ];
double omega, cosom, sinom, scale0, scale1;
cosom = ( from[ X ] * to[ X ] ) + ( from[ Y ] * to[ Y ] ) + ( from[ Z ] * to[ Z ] ) + ( from[ W ] * to [ W ] );
if ( cosom < 0.0 )
{
cosom = -cosom;
to1[ X ] = -to[ X ];
to1[ Y ] = -to[ Y ];
to1[ Z ] = -to[ Z ];
to1[ W ] = -to[ W ];
}
else if
(
( from[ X ] == to[ X ] ) &&
( from[ Y ] == to[ Y ] ) &&
( from[ Z ] == to[ Z ] ) &&
( from[ W ] == to[ W ] )
)
{
// equal case, early exit
res[ X ] = to[ X ];
res[ Y ] = to[ Y ];
res[ Z ] = to[ Z ];
res[ W ] = to[ W ];
return;
}
else
{
to1[ X ] = to[ X ];
to1[ Y ] = to[ Y ];
to1[ Z ] = to[ Z ];
to1[ W ] = to[ W ];
}
if ( ( 1.0 - cosom ) > DELTA )
{
omega = acos( cosom );
sinom = sin( omega );
scale0 = sin( ( 1.0 - t ) * omega ) / sinom;
scale1 = sin( t * omega ) / sinom;
}
else
{
scale0 = 1.0 - t;
scale1 = t;
}
res[ X ] = scale0 * from[ X ] + scale1 * to1[ X ];
res[ Y ] = scale0 * from[ Y ] + scale1 * to1[ Y ];
res[ Z ] = scale0 * from[ Z ] + scale1 * to1[ Z ];
res[ W ] = scale0 * from[ W ] + scale1 * to1[ W ];
}
void EulerToQuat
(
float ang[ 3 ],
float q[ 4 ]
)
{
float mat[ 3 ][ 3 ];
int *i;
i = ( int * )ang;
if ( !i[ 0 ] && !i[ 1 ] && !i[ 2 ] )
{
q[ 0 ] = 0;
q[ 1 ] = 0;
q[ 2 ] = 0;
q[ 3 ] = 1.0f;
}
else
{
AnglesToAxis( ang, mat );
MatToQuat( mat, q );
}
}
/*
=====================
PlaneFromPoints
Returns false if the triangle is degenrate.
The normal will point out of the clock for clockwise ordered points
=====================
*/
qboolean PlaneFromPoints( vec4_t plane, const vec3_t a, const vec3_t b, const vec3_t c ) {
vec3_t d1, d2;
VectorSubtract( b, a, d1 );
VectorSubtract( c, a, d2 );
CrossProduct( d2, d1, plane );
if ( VectorNormalize( plane ) == 0 ) {
return qfalse;
}
plane[3] = DotProduct( a, plane );
return qtrue;
}
/*
=================
PlaneTypeForNormal
=================
*/
int PlaneTypeForNormal ( const vec3_t normal ) {
if ( normal[0] == 1.0f )
return PLANE_X;
if ( normal[1] == 1.0f )
return PLANE_Y;
if ( normal[2] == 1.0f )
return PLANE_Z;
return PLANE_NON_AXIAL;
}