ef2gamesource/dlls/game/vector.h

1079 lines
25 KiB
C
Raw Permalink Normal View History

2012-12-30 16:37:54 +00:00
//-----------------------------------------------------------------------------
//
// $Logfile:: /Code/DLLs/game/vector.h $
// $Revision:: 24 $
// $Author:: Steven $
// $Date:: 10/13/03 8:54a $
//
// Copyright (C) 1997 by Ritual Entertainment, Inc.
// All rights reserved.
//
// This source is may not be distributed and/or modified without
// expressly written permission by Ritual Entertainment, Inc.
//
//
// DESCRIPTION:
// C++ implemention of a Vector object. Handles standard vector operations
// such as addition, subtraction, normalization, scaling, dot product,
// cross product, length, and decomposition into Euler angles.
//
// WARNING: This file is shared between game, cgame and possibly the user interface.
// It is instanced in each one of these directories because of the way that SourceSafe works.
//
#ifndef __VECTOR_H__
#define __VECTOR_H__
#ifdef GAME_DLL
#include "g_local.h"
#endif
#include <math.h>
#include <stdio.h>
#ifdef __Q_FABS__
#define VECTOR_FABS Q_fabs
#else
#define VECTOR_FABS fabs
#endif
class Vector
{
public:
float x;
float y;
float z;
Vector();
Vector( const vec3_t src );
Vector( const float x, const float y, const float z );
explicit Vector( const char *text );
operator float * ();
operator float const * () const;
float pitch( void ) const;
float yaw( void ) const;
float roll( void ) const;
float operator[]( const int index ) const;
float & operator[]( const int index );
void copyTo( vec3_t vec ) const;
void setPitch( const float x );
void setYaw( const float y );
void setRoll( const float z );
void setXYZ( const float x, const float y, const float z );
const Vector & operator=( const Vector &a );
const Vector & operator=( vec3_t a );
friend Vector operator+( const Vector &a, const Vector &b );
friend Vector operator+( vec3_t a, const Vector &b );
friend Vector operator+( const Vector &a, vec3_t b );
const Vector & operator+=( const Vector &a );
const Vector & operator+=( vec3_t a );
friend Vector operator-( const Vector &a, const Vector &b );
friend Vector operator-( vec3_t a, const Vector &b );
friend Vector operator-( const Vector &a, vec3_t b );
const Vector & operator-=( const Vector &a );
const Vector & operator-=( vec3_t a );
friend Vector operator*( const Vector &a, const float b );
friend Vector operator*( const float a, const Vector &b );
friend float operator*( const Vector &a, const Vector &b );
friend float operator*( vec3_t a, const Vector &b );
friend float operator*( const Vector &a, vec3_t b );
const Vector & operator*=( const float a );
friend Vector operator/( const Vector &a, const float b );
const Vector & operator/=( const float a );
friend int operator==( const Vector &a, const Vector &b );
friend int operator==( vec3_t a, const Vector &b );
friend int operator==( const Vector &a, vec3_t b );
friend int operator!=( const Vector &a, const Vector &b );
friend int operator!=( vec3_t a, const Vector &b );
friend int operator!=( const Vector &a, vec3_t b );
int FuzzyEqual( const Vector &b, const float epsilon ) const;
int FuzzyEqual( vec3_t b, const float epsilon ) const;
const Vector & CrossProduct( const Vector &a, const Vector &b );
const Vector & CrossProduct( vec3_t a, const Vector &b );
const Vector & CrossProduct( const Vector &a, vec3_t b );
float length( void ) const;
float lengthSquared( void ) const;
float lengthXY( void ) const;
float normalize( void );
void EulerNormalize( void );
void EulerNormalize360( void );
static Vector Clamp( Vector &value, const Vector &min, const Vector &max );
static Vector Cross( const Vector &vector1, const Vector &vector2 );
static float Dot( const Vector &vector1, const Vector &vector2 );
static float Dot( vec3_t a, const Vector &b );
static float Dot( const Vector &a, vec3_t b );
static float Distance( const Vector &vector1, const Vector &vector2 );
static float DistanceSquared( const Vector &vector1, const Vector &vector2 );
static float DistanceXY( const Vector &vector1, const Vector &vector2 );
static Vector AnglesBetween( const Vector &vector1, const Vector &vector2 );
static float AngleBetween( const Vector &vector1, const Vector &vector2 );
static bool CloseEnough( const Vector &vector1, const Vector &vector2, const float epsilon = Vector::Epsilon()) ;
static bool SmallEnough( const Vector &vector, const float epsilon = Vector::Epsilon() );
static float Epsilon( void );
static Vector & Identity( void );
Vector operator-( void ) const;
friend Vector fabs( const Vector &a );
float toYaw( void ) const;
float toPitch( void ) const;
Vector toAngles( void ) const;
void AngleVectors( Vector *forward, Vector *left = NULL, Vector *up = NULL ) const;
friend Vector LerpVector( const Vector &w1, const Vector &w2, const float t );
friend float MaxValue( const Vector &a );
};
extern Vector vec_zero;
inline float Vector::pitch( void ) const { return x; }
inline float Vector::yaw( void ) const { return y; }
inline float Vector::roll( void ) const { return z; }
inline void Vector::setPitch( float pitch ) { x = pitch; }
inline void Vector::setYaw( float yaw ) { y = yaw; }
inline void Vector::setRoll( float roll ) { z = roll; }
inline void Vector::copyTo( vec3_t vec ) const
{
vec[ 0 ] = x;
vec[ 1 ] = y;
vec[ 2 ] = z;
}
inline float Vector::operator[]( const int index ) const
{
assert( ( index >= 0 ) && ( index < 3 ) );
return ( &x )[ index ];
}
inline float& Vector::operator[]( const int index )
{
assert( ( index >= 0 ) && ( index < 3 ) );
return ( &x )[ index ];
}
inline void Vector::setXYZ( const float new_x, const float new_y,const float new_z )
{
x = new_x;
y = new_y;
z = new_z;
}
inline Vector::Vector(): x( 0 ), y( 0 ), z( 0 )
{
}
inline Vector::Vector( const vec3_t src ): x( src[0] ), y( src[1] ), z( src[2] )
{
}
inline Vector::Vector( const float init_x, const float init_y, const float init_z ): x( init_x ), y( init_y ), z( init_z )
{
}
inline Vector::Vector( const char *text ): x( 0 ), y( 0 ), z( 0 )
{
if ( text )
{
if ( text[0] == '"' )
sscanf( text, "\"%f %f %f\"", &x, &y, &z );
else
sscanf( text, "%f %f %f", &x, &y, &z );
}
}
inline Vector::operator float * ( void )
{
return &x;
}
inline Vector::operator float const * ( void ) const
{
return &x;
}
inline const Vector & Vector::operator=( const Vector &a )
{
x = a.x;
y = a.y;
z = a.z;
return *this;
}
inline const Vector & Vector::operator=( vec3_t a )
{
x = a[ 0 ];
y = a[ 1 ];
z = a[ 2 ];
return *this;
}
inline Vector operator+( const Vector &a, const Vector &b )
{
return Vector( a.x + b.x, a.y + b.y, a.z + b.z );
}
inline Vector operator+( vec3_t a, const Vector &b )
{
return Vector( a[ 0 ] + b.x, a[ 1 ] + b.y, a[ 2 ] + b.z );
}
inline Vector operator+( const Vector &a, vec3_t b )
{
return Vector( a.x + b[ 0 ], a.y + b[ 1 ], a.z + b[ 2 ] );
}
inline const Vector & Vector::operator+=( const Vector &a )
{
x += a.x;
y += a.y;
z += a.z;
return *this;
}
inline const Vector & Vector::operator+=( vec3_t a )
{
x += a[ 0 ];
y += a[ 1 ];
z += a[ 2 ];
return *this;
}
inline Vector operator-( const Vector &a, const Vector &b )
{
return Vector( a.x - b.x, a.y - b.y, a.z - b.z );
}
inline Vector operator-( vec3_t a, const Vector &b )
{
return Vector( a[ 0 ] - b.x, a[ 1 ] - b.y, a[ 2 ] - b.z );
}
inline Vector operator-( const Vector &a, vec3_t b )
{
return Vector( a.x - b[ 0 ], a.y - b[ 1 ], a.z - b[ 2 ] );
}
inline const Vector & Vector::operator-=( const Vector &a )
{
x -= a.x;
y -= a.y;
z -= a.z;
return *this;
}
inline const Vector & Vector::operator-=( vec3_t a )
{
x -= a[ 0 ];
y -= a[ 1 ];
z -= a[ 2 ];
return *this;
}
inline Vector operator*( const Vector &a, const float b )
{
return Vector( a.x * b, a.y * b, a.z * b );
}
inline Vector operator*( const float a, const Vector &b )
{
return b * a;
}
inline float operator*( const Vector &a, const Vector &b )
{
return ( a.x * b.x ) + ( a.y * b.y ) + ( a.z * b.z );
}
inline float operator*( vec3_t a, const Vector &b )
{
return ( a[ 0 ] * b.x ) + ( a[ 1 ] * b.y ) + ( a[ 2 ] * b.z );
}
inline float operator*( const Vector &a, vec3_t b )
{
return ( a.x * b[ 0 ] ) + ( a.y * b[ 1 ] ) + ( a.z * b[ 2 ] );
}
inline const Vector& Vector::operator*=( const float a )
{
x *= a;
y *= a;
z *= a;
return *this;
}
inline Vector operator/( const Vector &a, const float b )
{
return Vector (a.x/b, a.y/b, a.z/b);
}
inline const Vector & Vector::operator/=( const float a )
{
*this=*this/a;
return *this;
}
inline int Vector::FuzzyEqual( const Vector &b, const float epsilon ) const
{
return
(
( VECTOR_FABS( x - b.x ) < epsilon ) &&
( VECTOR_FABS( y - b.y ) < epsilon ) &&
( VECTOR_FABS( z - b.z ) < epsilon )
);
}
inline int Vector::FuzzyEqual( vec3_t b, const float epsilon ) const
{
return
(
( VECTOR_FABS( x - b[ 0 ] ) < epsilon ) &&
( VECTOR_FABS( y - b[ 1 ] ) < epsilon ) &&
( VECTOR_FABS( z - b[ 2 ] ) < epsilon )
);
}
inline int operator==( const Vector &a, const Vector &b )
{
return ( ( a.x == b.x ) && ( a.y == b.y ) && ( a.z == b.z ) );
}
inline int operator==( vec3_t a, const Vector &b )
{
return ( ( a[ 0 ] == b.x ) && ( a[ 1 ] == b.y ) && ( a[ 2 ] == b.z ) );
}
inline int operator==( const Vector &a, vec3_t b )
{
return ( ( a.x == b[ 0 ] ) && ( a.y == b[ 1 ] ) && ( a.z == b[ 2 ] ) );
}
inline int operator!=( const Vector &a, const Vector &b )
{
return ( ( a.x != b.x ) || ( a.y != b.y ) || ( a.z != b.z ) );
}
inline int operator!=( vec3_t a, const Vector &b )
{
return ( ( a[ 0 ] != b.x ) || ( a[ 1 ] != b.y ) || ( a[ 2 ] != b.z ) );
}
inline int operator!=( const Vector &a, vec3_t b )
{
return ( ( a.x != b[ 0 ] ) || ( a.y != b[ 1 ] ) || ( a.z != b[ 2 ] ) );
}
inline const Vector & Vector::CrossProduct( const Vector &a, const Vector &b )
{
x = ( a.y * b.z ) - ( a.z * b.y );
y = ( a.z * b.x ) - ( a.x * b.z );
z = ( a.x * b.y ) - ( a.y * b.x );
return *this;
}
inline const Vector & Vector::CrossProduct( vec3_t a, const Vector &b )
{
x = ( a[ 1 ] * b.z ) - ( a[ 2 ] * b.y );
y = ( a[ 2 ] * b.x ) - ( a[ 0 ] * b.z );
z = ( a[ 0 ] * b.y ) - ( a[ 1 ] * b.x );
return *this;
}
inline const Vector & Vector::CrossProduct( const Vector &a, vec3_t b )
{
x = ( a.y * b[ 2 ] ) - ( a.z * b[ 1 ] );
y = ( a.z * b[ 0 ] ) - ( a.x * b[ 2 ] );
z = ( a.x * b[ 1 ] ) - ( a.y * b[ 0 ] );
return *this;
}
inline Vector Vector::Clamp( Vector &value, const Vector &minimum, const Vector &maximum )
{
Vector clamped(value);
for (int i=0; i<3; i++)
{
const float min = minimum[i];
const float max = maximum[i];
assert( min <= max );
if (clamped[i] < min)
{
clamped[i] = min;
}
else if (clamped[i] > max)
{
clamped[i] = max;
}
}
return clamped;
}
inline Vector Vector::Cross( const Vector &vector1, const Vector &vector2 )
{
const Vector result (
( vector1.y * vector2.z ) - ( vector1.z * vector2.y ),
( vector1.z * vector2.x ) - ( vector1.x * vector2.z ),
( vector1.x * vector2.y ) - ( vector1.y * vector2.x )
);
return result;
}
inline float Vector::Dot( const Vector &vector1, const Vector &vector2 )
{
return vector1 * vector2;
}
inline float Vector::Dot( vec3_t vector1, const Vector &vector2 )
{
return vector1 * vector2;
}
inline float Vector::Dot( const Vector &vector1, vec3_t vector2 )
{
return vector1 * vector2;
}
//----------------------------------------------------------------
// Name: lengthSquared
// Class: Vector
//
// Description: Returns squared length of the vector
//
// Parameters: None
//
// Returns: float - squared length
//----------------------------------------------------------------
inline float Vector::lengthSquared( void ) const
{
return ( x * x ) + ( y * y ) + ( z * z );
}
inline float Vector::length( void ) const
{
return sqrt( lengthSquared() );
}
//----------------------------------------------------------------
// Name: lengthXY
// Class: Vector
//
// Description: Returns length of the vector (using only the x
// and y components
//
// Parameters: None
//
// Returns: float - length of the vector in the xy plane
//----------------------------------------------------------------
inline float Vector::lengthXY( void ) const
{
return sqrt(( x * x ) + ( y * y ));
}
//----------------------------------------------------------------
// Name: normalize
// Class: Vector
//
// Description: unitizes the vector
//
// Parameters: None
//
// Returns: float - length of the vector before the function
//----------------------------------------------------------------
inline float Vector::normalize( void )
{
float length, ilength;
length = this->length();
if ( length )
{
ilength = 1.0f / length;
x *= ilength;
y *= ilength;
z *= ilength;
}
return length;
}
//----------------------------------------------------------------
// Name: EulerNormalize
// Class: Vector
//
// Description: forces each component of the vector into the
// range (-180, +180) by adding or subtracting 360
// This is useful when the Vector is being used as
// EulerAngles to represent a rotational offset
//
// Parameters: None
//
// Returns: None
//----------------------------------------------------------------
inline void Vector::EulerNormalize( void )
{
x = AngleNormalize180( x );
y = AngleNormalize180( y );
z = AngleNormalize180( z );
}
//----------------------------------------------------------------
// Name: EulerNormalize360
// Class: Vector
//
// Description: forces each component of the vector into the
// range (0, +360) by adding or subtracting 360
// This is useful when the Vector is being used as
// EulerAngles to represent a rotational direction
//
// Parameters: None
//
// Returns: None
//----------------------------------------------------------------
inline void Vector::EulerNormalize360( void )
{
x = AngleNormalize360( x );
y = AngleNormalize360( y );
z = AngleNormalize360( z );
}
//----------------------------------------------------------------
// Name: Epsilon
// Class: Vector
//
// Description: returns a standard 'small' value for the class
//
// Parameters: None
//
// Returns: float - the epsilon constant for the class
//----------------------------------------------------------------
inline float Vector::Epsilon( void )
{
return 0.000000001f;
}
//----------------------------------------------------------------
// Name: Identity
// Class: Vector
//
// Description: returns the additive identity for the class
//
// Parameters: None
//
// Returns: Vector - the identity for the class
//----------------------------------------------------------------
inline Vector & Vector::Identity(void)
{
return vec_zero;
}
//----------------------------------------------------------------
// Name: Distance
// Class: Vector
//
// Description: returns the distance between two vectors
//
// Parameters:
// Vector - first vector
// Vector - second vector
//
// Returns: float - distance between the two vectors
//----------------------------------------------------------------
inline float Vector::Distance(const Vector &vector1, const Vector &vector2)
{
return (vector1 - vector2).length();
}
//----------------------------------------------------------------
// Name: DistanceSquared
// Class: Vector
//
// Description: returns the squared distance between two vectors
//
// Parameters:
// Vector - first vector
// Vector - second vector
//
// Returns: float - distance between the two vectors squared
//----------------------------------------------------------------
inline float Vector::DistanceSquared(const Vector &vector1, const Vector &vector2)
{
return (vector1 - vector2).lengthSquared();
}
//----------------------------------------------------------------
// Name: DistanceXY
// Class: Vector
//
// Description: returns the distance between two vectors in the
// xy plane
//
// Parameters:
// Vector - first vector
// Vector - second vector
//
// Returns: float - distance between the two vectors in the
// xy plane
//----------------------------------------------------------------
inline float Vector::DistanceXY(const Vector &vector1, const Vector &vector2)
{
return (vector1 - vector2).lengthXY();
}
inline Vector Vector::toAngles( void ) const
{
float forward;
float yaw, pitch;
if ( ( x == 0.0f ) && ( y == 0.0f ) )
{
yaw = 0.0f;
if ( z > 0.0f )
{
pitch = 90.0f;
}
else
{
pitch = 270.0f;
}
}
else
{
yaw = atan2( y, x ) * 180.0f / M_PI;
if ( yaw < 0.0f )
{
yaw += 360.0f;
}
forward = ( float )sqrt( x * x + y * y );
pitch = atan2( z, forward ) * 180.0f / M_PI;
if ( pitch < 0.0f )
{
pitch += 360.0f;
}
}
return Vector( -pitch, yaw, 0.0f );
}
//----------------------------------------------------------------
// Name: AnglesBetween
// Class: Vector
//
// Description: returns the smaller of the angles formed by the
// two vectors
//
// Parameters:
// Vector - first vector
// Vector - second vector
//
// Returns: Vector - angles between the vectors
//----------------------------------------------------------------
inline Vector Vector::AnglesBetween(const Vector &vector1, const Vector &vector2)
{
Vector unitVector1(vector1);
unitVector1.normalize();
Vector unitVector2(vector2);
unitVector2.normalize();
Vector angles(unitVector1.toAngles() - unitVector2.toAngles());
angles.EulerNormalize();
return angles;
}
//----------------------------------------------------------------
// Name: AngleBetween
// Class: Vector
//
// Description: returns the smaller of the angles formed by the
// two vectors
//
// Parameters:
// Vector - first vector
// Vector - second vector
//
// Returns: float - angle between the vectors
//----------------------------------------------------------------
inline float Vector::AngleBetween(const Vector &vector1, const Vector &vector2)
{
Vector unitVector1(vector1);
unitVector1.normalize();
Vector unitVector2(vector2);
unitVector2.normalize();
return acos( Vector::Dot( unitVector1, unitVector2 ) );
}
//----------------------------------------------------------------
// Name: CloseEnough
// Class: Vector
//
// Description: tests to see if the two vectors are within
// 'epsilon' of each other
//
// Parameters:
// Vector - first vector
// Vector - second vector
// float - amount that each component of the
// vectors can be apart
//
// Returns: bool - the result of the test for closeness
//----------------------------------------------------------------
inline bool Vector::CloseEnough(const Vector &vector1, const Vector &vector2, const float epsilon)
{
return Distance(vector1, vector2) < epsilon;
}
//----------------------------------------------------------------
// Name: SmallEnough
// Class: Vector
//
// Description: tests to see if the vectors are within
// 'epsilon' of the origin
//
// Parameters:
// Vector - vector
// float - amount that each component of the
// vectors can be from the origin
//
// Returns: bool - the result of the test for smallness
//----------------------------------------------------------------
inline bool Vector::SmallEnough(const Vector &vector, const float epsilon)
{
return CloseEnough(vector, Vector::Identity(), epsilon);
}
inline Vector Vector::operator-() const
{
return Vector( -x, -y, -z );
}
inline Vector fabs( const Vector &a )
{
return Vector( VECTOR_FABS( a.x ), VECTOR_FABS( a.y ), VECTOR_FABS( a.z ) );
}
inline float MaxValue( const Vector &a )
{
float maxy;
float maxz;
float max;
max = VECTOR_FABS( a.x );
maxy = VECTOR_FABS( a.y );
maxz = VECTOR_FABS( a.z );
if ( maxy > max )
{
max = maxy;
}
if ( maxz > max )
{
max = maxz;
}
return max;
}
inline float Vector::toYaw( void ) const
{
float yaw;
if ( ( y == 0.0f ) && ( x == 0.0f ) )
{
yaw = 0.0f;
}
else
{
yaw = ( float )( ( int )( atan2( y, x ) * 180.0f / M_PI ) );
if ( yaw < 0.0f )
{
yaw += 360.0f;
}
}
return yaw;
}
inline float Vector::toPitch( void ) const
{
float forward;
float pitch;
if ( ( x == 0.0f ) && ( y == 0.0f ) )
{
if ( z > 0.0f )
{
pitch = 90.0f;
}
else
{
pitch = 270.0f;
}
}
else
{
forward = ( float )sqrt( ( x * x ) + ( y * y ) );
pitch = ( float )( ( int )( atan2( z, forward ) * 180.0f / M_PI ) );
if ( pitch < 0.0f )
{
pitch += 360.0f;
}
}
return pitch;
}
inline void Vector::AngleVectors( Vector *forward, Vector *left, Vector *up ) const
{
float angle;
static float sr, sp, sy, cr, cp, cy; // static to help MS compiler fp bugs
angle = yaw() * ( M_PI * 2.0f / 360.0f );
sy = sin( angle );
cy = cos( angle );
angle = pitch() * ( M_PI * 2.0f / 360.0f );
sp = sin( angle );
cp = cos( angle );
angle = roll() * ( M_PI * 2.0f / 360.0f );
sr = sin( angle );
cr = cos( angle );
if ( forward )
{
forward->setXYZ( cp * cy, cp * sy, -sp );
}
if ( left )
{
left->setXYZ( ( sr * sp * cy ) + ( cr * -sy ), (sr * sp * sy ) + ( cr * cy ), sr * cp );
}
if ( up )
{
up->setXYZ( ( cr * sp * cy ) + ( -sr * -sy ), ( cr * sp * sy ) + ( -sr * cy ), cr * cp );
}
}
#define LERP_DELTA 1e-6
inline Vector LerpVector( const Vector &vector1, const Vector &vector2, const float t )
{
float omega, cosom, sinom, scale0, scale1;
Vector w1( vector1 );
Vector w2( vector2 );
w1.normalize();
w2.normalize();
cosom = w1 * w2;
if ( ( 1.0f - cosom ) > LERP_DELTA )
{
omega = acos( cosom );
sinom = sin( omega );
scale0 = sin( ( 1.0f - t ) * omega ) / sinom;
scale1 = sin( t * omega ) / sinom;
}
else
{
scale0 = 1.0f - t;
scale1 = t;
}
return ( ( w1 * scale0 ) + ( w2 * scale1 ) );
}
class Quat
{
public:
float x;
float y;
float z;
float w;
Quat();
Quat( Vector angles );
Quat( float scrMatrix[ 3 ][ 3 ] );
Quat( const float x, const float y, const float z, const float w );
float * vec4( void );
float operator[]( const int index ) const;
float & operator[]( const int index );
void set( const float x, const float y, const float z, const float w );
const Quat & operator=( const Quat &a );
friend Quat operator+( const Quat &a, const Quat &b );
const Quat & operator+=( const Quat &a );
friend Quat operator-( const Quat &a, const Quat &b );
const Quat & operator-=( const Quat &a );
friend Quat operator*( const Quat &a, const float b );
friend Quat operator*( const float a, const Quat &b );
const Quat & operator*=( const float a );
friend int operator==( const Quat &a, const Quat &b );
friend int operator!=( const Quat &a, const Quat &b );
float length( void ) const;
float lengthSquared( void ) const;
const Quat & normalize( void );
Quat operator-() const;
Vector toAngles( void );
};
inline Quat::Quat(): x( 0 ), y( 0 ), z( 0 ), w( 0 )
{
}
inline Quat::Quat( Vector Angles )
{
EulerToQuat( Angles, this->vec4() );
}
inline Quat::Quat( float srcMatrix[ 3 ][ 3 ] )
{
MatToQuat( srcMatrix, this->vec4() );
}
inline Quat::Quat( const float init_x, const float init_y, const float init_z, const float init_w ): x( init_x ), y( init_y ), z( init_z ), w( init_w )
{
}
inline float Quat::operator[]( const int index ) const
{
assert( ( index >= 0 ) && ( index < 4 ) );
return ( &x )[ index ];
}
inline float & Quat::operator[]( const int index)
{
assert( ( index >= 0 ) && ( index < 4 ) );
return ( &x )[ index ];
}
inline float *Quat::vec4( void )
{
return &x;
}
inline void Quat::set( const float new_x, const float new_y, const float new_z, const float new_w )
{
x = new_x;
y = new_y;
z = new_z;
w = new_w;
}
inline const Quat & Quat::operator=( const Quat &a )
{
x = a.x;
y = a.y;
z = a.z;
w = a.w;
return *this;
}
inline Quat operator+( const Quat &a, const Quat &b )
{
return Quat( a.x + b.x, a.y + b.y , a.z + b.z, a.w + b.w );
}
inline const Quat & Quat::operator+=( const Quat &a )
{
*this = *this + a;
return *this;
}
inline Quat operator-( const Quat &a, const Quat &b )
{
return Quat( a.x - b.x, a.y - b.y, a.z - b.z, a.w - b.w );
}
inline const Quat & Quat::operator-=( const Quat &a )
{
*this = *this - a;
return *this;
}
inline Quat operator*( const Quat &a, const float b )
{
return Quat( a.x * b, a.y * b, a.z * b, a.w * b );
}
inline Quat operator*( const float a, const Quat &b )
{
return b * a;
}
inline const Quat & Quat::operator*=( const float a )
{
*this = *this * a;
return *this;
}
inline int operator==( const Quat &a, const Quat &b )
{
return ( ( a.x == b.x ) && ( a.y == b.y ) && ( a.z == b.z ) && ( a.w == b.w ) );
}
inline int operator!=( const Quat &a, const Quat &b )
{
return ( ( a.x != b.x ) || ( a.y != b.y ) || ( a.z != b.z ) && ( a.w != b.w ) );
}
inline float Quat::length( void ) const
{
float length;
length = ( x * x ) + ( y * y ) + ( z * z ) + ( w * w );
return sqrt( length );
}
inline const Quat & Quat::normalize( void )
{
float length, ilength;
length = this->length();
if ( length )
{
ilength = 1.0f / length;
*this *= ilength;
}
return *this;
}
inline Quat Quat::operator-() const
{
return Quat( -x, -y, -z, -w );
}
inline Vector Quat::toAngles( void )
{
float m[ 3 ][ 3 ];
vec3_t angles;
QuatToMat( this->vec4(), m );
MatrixToEulerAngles( m, angles );
return Vector( angles );
}
#undef VECTOR_FABS
#endif /* Vector.h */