/* Copyright (C) 1996-1997 Id Software, Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ // mathlib.c -- math primitives #include #include "quakedef.h" void Sys_Error (char *error, ...); vec3_t vec3_origin = {0,0,0}; int nanmask = 255<<23; /*-----------------------------------------------------------------*/ void ProjectPointOnPlane( vec3_t dst, const vec3_t p, const vec3_t normal ) { float d; vec3_t n; float inv_denom; inv_denom = 1.0F / DotProduct( normal, normal ); d = DotProduct( normal, p ) * inv_denom; n[0] = normal[0] * inv_denom; n[1] = normal[1] * inv_denom; n[2] = normal[2] * inv_denom; dst[0] = p[0] - d * n[0]; dst[1] = p[1] - d * n[1]; dst[2] = p[2] - d * n[2]; } /* ** assumes "src" is normalized */ /*void PerpendicularVector( vec3_t dst, const vec3_t src ) { int pos; int i; float minelem = 1.0F; vec3_t tempvec; for ( pos = 0, i = 0; i < 3; i++ ) { if ( fabs( src[i] ) < minelem ) { pos = i; minelem = fabs( src[i] ); } } tempvec[0] = tempvec[1] = tempvec[2] = 0.0F; tempvec[pos] = 1.0F; ProjectPointOnPlane( dst, tempvec, src ); VectorNormalize( dst ); }*/ void PerpendicularVector( vec3_t dst, const vec3_t src ) //Optimized a bit :) - Eradicator { int pos; float minelem; if (src[0]) { dst[0] = 0; if (src[1]) { dst[1] = 0; if (src[2]) { dst[2] = 0; pos = 0; minelem = fabs(src[0]); if (fabs(src[1]) < minelem) { pos = 1; minelem = fabs(src[1]); } if (fabs(src[2]) < minelem) pos = 2; dst[pos] = 1; dst[0] -= src[pos] * src[0]; dst[1] -= src[pos] * src[1]; dst[2] -= src[pos] * src[2]; VectorNormalize(dst); } else dst[2] = 1; } else { dst[1] = 1; dst[2] = 0; } } else { dst[0] = 1; dst[1] = 0; dst[2] = 0; } } #ifdef _WIN32 #pragma optimize( "", off ) #endif void RotatePointAroundVector( vec3_t dst, const vec3_t dir, const vec3_t point, float degrees ) { float m[3][3]; float im[3][3]; float zrot[3][3]; float tmpmat[3][3]; float rot[3][3]; int i; vec3_t vr, vup, vf; vf[0] = dir[0]; vf[1] = dir[1]; vf[2] = dir[2]; PerpendicularVector( vr, dir ); CrossProduct( vr, vf, vup ); m[0][0] = vr[0]; m[1][0] = vr[1]; m[2][0] = vr[2]; m[0][1] = vup[0]; m[1][1] = vup[1]; m[2][1] = vup[2]; m[0][2] = vf[0]; m[1][2] = vf[1]; m[2][2] = vf[2]; memcpy( im, m, sizeof( im ) ); im[0][1] = m[1][0]; im[0][2] = m[2][0]; im[1][0] = m[0][1]; im[1][2] = m[2][1]; im[2][0] = m[0][2]; im[2][1] = m[1][2]; memset( zrot, 0, sizeof( zrot ) ); zrot[0][0] = zrot[1][1] = zrot[2][2] = 1.0F; zrot[0][0] = cos( DEG2RAD( degrees ) ); zrot[0][1] = sin( DEG2RAD( degrees ) ); zrot[1][0] = -sin( DEG2RAD( degrees ) ); zrot[1][1] = cos( DEG2RAD( degrees ) ); R_ConcatRotations( m, zrot, tmpmat ); R_ConcatRotations( tmpmat, im, rot ); for ( i = 0; i < 3; i++ ) { dst[i] = rot[i][0] * point[0] + rot[i][1] * point[1] + rot[i][2] * point[2]; } } #ifdef _WIN32 #pragma optimize( "", on ) #endif /*-----------------------------------------------------------------*/ float anglemod(float a) { #if 0 if (a >= 0) a -= 360*(int)(a/360); else a += 360*( 1 + (int)(-a/360) ); #endif a = (360.0/65536) * ((int)(a*(65536/360.0)) & 65535); return a; } /* ================== BOPS_Error Split out like this for ASM to call. ================== */ void BOPS_Error (void) { Sys_Error ("BoxOnPlaneSide: Bad signbits"); } #if !id386 /* ================== BoxOnPlaneSide Returns 1, 2, or 1 + 2 ================== */ int BoxOnPlaneSide (vec3_t emins, vec3_t emaxs, mplane_t *p) { float dist1, dist2; int sides; #if 0 // this is done by the BOX_ON_PLANE_SIDE macro before calling this // function // fast axial cases if (p->type < 3) { if (p->dist <= emins[p->type]) return 1; if (p->dist >= emaxs[p->type]) return 2; return 3; } #endif // general case switch (p->signbits) { case 0: dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2]; dist2 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2]; break; case 1: dist1 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2]; dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2]; break; case 2: dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2]; dist2 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2]; break; case 3: dist1 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2]; dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2]; break; case 4: dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2]; dist2 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2]; break; case 5: dist1 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2]; dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2]; break; case 6: dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2]; dist2 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2]; break; case 7: dist1 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2]; dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2]; break; default: dist1 = dist2 = 0; // shut up compiler BOPS_Error (); break; } #if 0 int i; vec3_t corners[2]; for (i=0 ; i<3 ; i++) { if (plane->normal[i] < 0) { corners[0][i] = emins[i]; corners[1][i] = emaxs[i]; } else { corners[1][i] = emins[i]; corners[0][i] = emaxs[i]; } } dist = DotProduct (plane->normal, corners[0]) - plane->dist; dist2 = DotProduct (plane->normal, corners[1]) - plane->dist; sides = 0; if (dist1 >= 0) sides = 1; if (dist2 < 0) sides |= 2; #endif sides = 0; if (dist1 >= p->dist) sides = 1; if (dist2 < p->dist) sides |= 2; #ifdef PARANOID if (sides == 0) Sys_Error ("BoxOnPlaneSide: sides==0"); #endif return sides; } #endif void AngleVectors (vec3_t angles, vec3_t forward, vec3_t right, vec3_t up) { float angle; float sr, sp, sy, cr, cp, cy; angle = angles[YAW] * (M_PI*2 / 360); sy = sin(angle); cy = cos(angle); angle = angles[PITCH] * (M_PI*2 / 360); sp = sin(angle); cp = cos(angle); angle = angles[ROLL] * (M_PI*2 / 360); sr = sin(angle); cr = cos(angle); forward[0] = cp*cy; forward[1] = cp*sy; forward[2] = -sp; right[0] = (-1*sr*sp*cy+-1*cr*-sy); right[1] = (-1*sr*sp*sy+-1*cr*cy); right[2] = -1*sr*cp; up[0] = (cr*sp*cy+-sr*-sy); up[1] = (cr*sp*sy+-sr*cy); up[2] = cr*cp; } int VectorCompare (vec3_t v1, vec3_t v2) { int i; for (i=0 ; i<3 ; i++) if (v1[i] != v2[i]) return 0; return 1; } void VectorMA (vec3_t veca, float scale, vec3_t vecb, vec3_t vecc) { vecc[0] = veca[0] + scale*vecb[0]; vecc[1] = veca[1] + scale*vecb[1]; vecc[2] = veca[2] + scale*vecb[2]; } vec_t _DotProduct (vec3_t v1, vec3_t v2) { return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2]; } void _VectorSubtract (vec3_t veca, vec3_t vecb, vec3_t out) { out[0] = veca[0]-vecb[0]; out[1] = veca[1]-vecb[1]; out[2] = veca[2]-vecb[2]; } void _VectorAdd (vec3_t veca, vec3_t vecb, vec3_t out) { out[0] = veca[0]+vecb[0]; out[1] = veca[1]+vecb[1]; out[2] = veca[2]+vecb[2]; } void _VectorCopy (vec3_t in, vec3_t out) { out[0] = in[0]; out[1] = in[1]; out[2] = in[2]; } void CrossProduct (vec3_t v1, vec3_t v2, vec3_t cross) { cross[0] = v1[1]*v2[2] - v1[2]*v2[1]; cross[1] = v1[2]*v2[0] - v1[0]*v2[2]; cross[2] = v1[0]*v2[1] - v1[1]*v2[0]; } double sqrt(double x); vec_t Length(vec3_t v) { int i; float length; length = 0; for (i=0 ; i< 3 ; i++) length += v[i]*v[i]; length = sqrt (length); // FIXME return length; } float VectorNormalize (vec3_t v) { float length, ilength; length = v[0]*v[0] + v[1]*v[1] + v[2]*v[2]; length = sqrt (length); // FIXME if (length) { ilength = 1/length; v[0] *= ilength; v[1] *= ilength; v[2] *= ilength; } return length; } void VectorInverse (vec3_t v) { v[0] = -v[0]; v[1] = -v[1]; v[2] = -v[2]; } void VectorScale (vec3_t in, vec_t scale, vec3_t out) { out[0] = in[0]*scale; out[1] = in[1]*scale; out[2] = in[2]*scale; } int Q_log2(int val) { int answer=0; while (val>>=1) answer++; return answer; } /* ================ R_ConcatRotations ================ */ void R_ConcatRotations (float in1[3][3], float in2[3][3], float out[3][3]) { out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] + in1[0][2] * in2[2][0]; out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] + in1[0][2] * in2[2][1]; out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] + in1[0][2] * in2[2][2]; out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] + in1[1][2] * in2[2][0]; out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] + in1[1][2] * in2[2][1]; out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] + in1[1][2] * in2[2][2]; out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] + in1[2][2] * in2[2][0]; out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] + in1[2][2] * in2[2][1]; out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] + in1[2][2] * in2[2][2]; } /* ================ R_ConcatTransforms ================ */ void R_ConcatTransforms (float in1[3][4], float in2[3][4], float out[3][4]) { out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] + in1[0][2] * in2[2][0]; out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] + in1[0][2] * in2[2][1]; out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] + in1[0][2] * in2[2][2]; out[0][3] = in1[0][0] * in2[0][3] + in1[0][1] * in2[1][3] + in1[0][2] * in2[2][3] + in1[0][3]; out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] + in1[1][2] * in2[2][0]; out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] + in1[1][2] * in2[2][1]; out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] + in1[1][2] * in2[2][2]; out[1][3] = in1[1][0] * in2[0][3] + in1[1][1] * in2[1][3] + in1[1][2] * in2[2][3] + in1[1][3]; out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] + in1[2][2] * in2[2][0]; out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] + in1[2][2] * in2[2][1]; out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] + in1[2][2] * in2[2][2]; out[2][3] = in1[2][0] * in2[0][3] + in1[2][1] * in2[1][3] + in1[2][2] * in2[2][3] + in1[2][3]; } /* =================== FloorDivMod Returns mathematically correct (floor-based) quotient and remainder for numer and denom, both of which should contain no fractional part. The quotient must fit in 32 bits. ==================== */ void FloorDivMod (double numer, double denom, int *quotient, int *rem) { int q, r; double x; #ifndef PARANOID if (denom <= 0.0) Sys_Error ("FloorDivMod: bad denominator %d\n", denom); // if ((floor(numer) != numer) || (floor(denom) != denom)) // Sys_Error ("FloorDivMod: non-integer numer or denom %f %f\n", // numer, denom); #endif if (numer >= 0.0) { x = floor(numer / denom); q = (int)x; r = (int)floor(numer - (x * denom)); } else { // // perform operations with positive values, and fix mod to make floor-based // x = floor(-numer / denom); q = -(int)x; r = (int)floor(-numer - (x * denom)); if (r != 0) { q--; r = (int)denom - r; } } *quotient = q; *rem = r; } /* =================== GreatestCommonDivisor ==================== */ int GreatestCommonDivisor (int i1, int i2) { if (i1 > i2) { if (i2 == 0) return (i1); return GreatestCommonDivisor (i2, i1 % i2); } else { if (i1 == 0) return (i2); return GreatestCommonDivisor (i1, i2 % i1); } } #if !id386 // TODO: move to nonintel.c /* =================== Invert24To16 Inverts an 8.24 value to a 16.16 value ==================== */ fixed16_t Invert24To16(fixed16_t val) { if (val < 256) return (0xFFFFFFFF); return (fixed16_t) (((double)0x10000 * (double)0x1000000 / (double)val) + 0.5); } #endif void Mat_Mul_1x4_4x4(matrix_1x4 a, matrix_4x4 b, matrix_1x4 result) { // this function multiplies a 1x4 by a 4x4 and stores the result in a 1x4 int index_j, // column index index_k; // row index float sum; // temp used to hold sum of products // loop thru columns of b for (index_j=0; index_j<4; index_j++) { // multiply ith row of a by jth column of b and store the sum // of products in the position i,j of result sum=0; for (index_k=0; index_k<4; index_k++) sum+=a[index_k]*b[index_k][index_j]; // store result result[index_j] = sum; } // end for index_j } // end Mat_Mul_1x4_4x4 /* PENTA: Easy & fast matrix inversions with some quirks (just what Carmack likes ;) ) Thnx to http://www.cs.unc.edu/~gotz/code/affinverse.html Find the inverse of a matrix that is made up of only scales, rotations, and translations. */ void MatrixAffineInverse( matrix_4x4 m, matrix_4x4 result ) { float Tx, Ty, Tz; // The rotational part of the matrix is simply the transpose of the // original matrix. result[0][0] = m[0][0]; result[1][0] = m[0][1]; result[2][0] = m[0][2]; result[0][1] = m[1][0]; result[1][1] = m[1][1]; result[2][1] = m[1][2]; result[0][2] = m[2][0]; result[1][2] = m[2][1]; result[2][2] = m[2][2]; // The right column vector of the matrix should always be [ 0 0 0 1 ] // In most cases. . . you don't need this column at all because it'll // never be used in the program, but since this code is used with GL // and it does consider this column, it is here. result[0][3] = result[1][3] = result[2][3] = 0; result[3][3] = 1; // The translation components of the original matrix. Tx = m[3][0]; Ty = m[3][1]; Tz = m[3][2]; // Rresult = -(Tm * Rm) to get the translation part of the inverse result[3][0] = -( m[0][0] * Tx + m[0][1] * Ty + m[0][2] * Tz ); result[3][1] = -( m[1][0] * Tx + m[1][1] * Ty + m[1][2] * Tz ); result[3][2] = -( m[2][0] * Tx + m[2][1] * Ty + m[2][2] * Tz ); }