/* Copyright (C) 1996-1997 Id Software, Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ // gl_mesh.c: triangle model functions #include "quakedef.h" model_t *aliasmodel; aliashdr_t *paliashdr; /* Yet another hack. Some models seem to have edges shared between three triangles, this is obviously a strange thing to have, we resolve it simply by throwing away that shared egde and giving all triangles a "-1" neighbour for that edge. This will give some unneeded fins for some edges of some models but this number is generally verry low (< 3 edges per model) and only on a few models. */ int findneighbour(int index, int edgei, int numtris) { int i, j, v1, v0, found,foundj = 0; mtriangle_t *current = &triangles[index]; mtriangle_t *t; qboolean dup; v0 = current->vertindex[edgei]; v1 = current->vertindex[(edgei+1)%3]; //XYZ found = -1; dup = false; for (i=0; ivertindex[edgei] == triangles[i].vertindex[j]) && (current->vertindex[(edgei+1)%3] == triangles[i].vertindex[(j+1)%3])) || ((current->vertindex[edgei] == triangles[i].vertindex[(j+1)%3]) && (current->vertindex[(edgei+1)%3] == triangles[i].vertindex[j]))) { //no edge for this model found yet? if (found == -1) { found = i; foundj = j; } //the three edges story else dup = true; } } } //normal edge, setup neighbour pointers if (!dup) { triangles[found].neighbours[foundj] = index; return found; } //naughty egde let no-one have the neighbour //Con_Printf("%s: warning: open edge added\n",loadname); return -1; } int numNormals[MAXALIASTRIS]; int dupIndex[MAXALIASTRIS]; void TangentForTri(mtriangle_t *tri, vec3_t norm, ftrivertx_t *verts, fstvert_t *texcos, vec3_t res) { vec3_t vec1, vec2, dirv, tz; float delta1, delta2, t; vec3_t *v[3]; float st[3][2]; int j; for (j=0; j<3; j++) { v[j] = &verts[tri->vertindex[j]].v; st[j][0] = texcos[tri->vertindex[j]].s; st[j][1] = texcos[tri->vertindex[j]].t; } vec1[0] = *v[1][0] - *v[0][0]; vec1[1] = *v[1][1] - *v[0][1]; vec1[2] = *v[1][2] - *v[0][2]; delta1 = st[1][0] - st[0][0]; vec2[0] = *v[2][0] - *v[0][0]; vec2[1] = *v[2][1] - *v[0][1]; vec2[2] = *v[2][2] - *v[0][2]; delta2 = st[2][0] - st[0][0]; dirv[0] = (delta1 * vec2[0] - vec1[0] * delta2); dirv[1] = (delta1 * vec2[1] - vec1[1] * delta2); dirv[2] = (delta1 * vec2[2] - vec1[2] * delta2); VectorNormalize(dirv); VectorCopy(norm,tz); t = dirv[0]*tz[0]+dirv[1]*tz[1]+dirv[2]*tz[2]; res[0] = dirv[0]-t*tz[0]; res[1] = dirv[1]-t*tz[1]; res[2] = dirv[2]-t*tz[2]; } int NormalToLatLong( const vec3_t normal) { unsigned short r; byte *bytes = (byte *)&r; // check for singularities if ( normal[0] == 0 && normal[1] == 0 ) { if ( normal[2] > 0 ) { r = 0; bytes[0] = 0; bytes[1] = 0; // lat = 0, long = 0 } else { bytes[0] = 128; bytes[1] = 0; // lat = 0, long = 128 } } else { int a, b; a = RAD2DEG( atan2( normal[1], normal[0] ) ) * (255.0f / 360.0f ); a &= 0xff; b = RAD2DEG( acos( normal[2] ) ) * ( 255.0f / 360.0f ); b &= 0xff; bytes[0] = b; // longitude bytes[1] = a; // lattitude } return r; } /* ================ GL_MakeAliasModelDisplayLists PENTA: For shadow volume generation & bumpmapping we need extra data so we generate/save it here. This is very memory consuming at the moment (I had to increase quake's default heap size for it) but since everything still fits well withing 32MB of RAM I don't have high priority for fixing it. ================ */ void GL_MakeAliasModelDisplayLists (model_t *m, aliashdr_t *hdr) { int i, j, k, l; ftrivertx_t *verts, *v, *oldverts; mtriangle_t *tris; fstvert_t *texcoords; char cache[MAX_QPATH], fullpath[MAX_OSPATH]; FILE *f; plane_t *norms; vec3_t v1, v2, normal; vec3_t triangle[3]; vec3_t *tangents; float s,t; int *indecies; int newcount; aliasmodel = m; paliashdr = hdr; // (aliashdr_t *)Mod_Extradata (m); // // look for a cached version // /* strcpy (cache, "glquake/"); COM_StripExtension (m->name+strlen("progs/"), cache+strlen("glquake/")); strcat (cache, ".ms2"); COM_FOpenFile (cache, &f); if (f) { fread (&numcommands, 4, 1, f); fread (&numorder, 4, 1, f); fread (&commands, numcommands * sizeof(commands[0]), 1, f); fread (&vertexorder, numorder * sizeof(vertexorder[0]), 1, f); fclose (f); } else { // // build it from scratch // Con_Printf ("meshing %s...\n",m->name); BuildTris (); // trifans or strips // // save out the cached version // sprintf (fullpath, "%s/%s", com_gamedir, cache); f = fopen (fullpath, "wb"); if (f) { fwrite (&numcommands, 4, 1, f); fwrite (&numorder, 4, 1, f); fwrite (&commands, numcommands * sizeof(commands[0]), 1, f); fwrite (&vertexorder, numorder * sizeof(vertexorder[0]), 1, f); fclose (f); } } */ // save the data out paliashdr->poseverts = paliashdr->numverts;//numorder; /* //cmds = Hunk_Alloc (numcommands * 4); //paliashdr->commands = (byte *)cmds - (byte *)paliashdr; //memcpy (cmds, commands, numcommands * 4); */ //backup verts in oldverts since we use verts as an loop pointer //& convert vertices back to floating point //Set neighbours to NULL for (i=0 ; inumtris ; i++) for (j=0 ; j<3 ; j++) { triangles[i].neighbours[j] = -1; } //PENTA: Generate edges information (for shadow volumes) //Note: We do this with the original vertices not the reordered onces since reordening them //duplicates vertices and we only compare indices for (i=0 ; inumtris ; i++) for (j=0 ; j<3 ; j++) { //none found yet if (triangles[i].neighbours[j] == -1) { triangles[i].neighbours[j] = findneighbour(i, j, paliashdr->numtris); } } //PENTA: Calculate texcoords for triangles (this duplicates some vertices that have different //texcoords for the sames verts) for (i=0; iposeverts; i++) { dupIndex[i] = 0; } newcount = paliashdr->poseverts; for (i=0; inumtris ; i++) { for (j=0; j<3; j++) { if (!triangles[i].facesfront && stverts[triangles[i].vertindex[j]].onseam) { if (dupIndex[triangles[i].vertindex[j]] != 0) { continue; } dupIndex[triangles[i].vertindex[j]] = newcount; newcount++; } } } for (i=0; inumposes * newcount * sizeof(ftrivertx_t) ); paliashdr->posedata = (byte *)verts - (byte *)paliashdr; for (i=0; inumtris ; i++) { for (j=0; j<3; j++) { s = stverts[triangles[i].vertindex[j]].s; t = stverts[triangles[i].vertindex[j]].t; if (!triangles[i].facesfront && stverts[triangles[i].vertindex[j]].onseam) { int newindex; if (dupIndex[triangles[i].vertindex[j]] != 0) { triangles[i].vertindex[j] = dupIndex[triangles[i].vertindex[j]]; continue; } newindex = paliashdr->poseverts; if (paliashdr->poseverts >= MAXALIASVERTS) { Con_Printf("To many verts"); } //Duplicate it in all poses for (k=0; knumposes; k++) { verts[k*newcount+newindex].v[0] = poseverts[k][triangles[i].vertindex[j]].v[0] * paliashdr->scale[0] + paliashdr->scale_origin[0]; verts[k*newcount+newindex].v[1] = poseverts[k][triangles[i].vertindex[j]].v[1] * paliashdr->scale[1] + paliashdr->scale_origin[1]; verts[k*newcount+newindex].v[2] = poseverts[k][triangles[i].vertindex[j]].v[2] * paliashdr->scale[2] + paliashdr->scale_origin[2]; verts[k*newcount+newindex].lightnormalindex = NormalToLatLong(r_avertexnormals[poseverts[k][triangles[i].vertindex[j]].lightnormalindex]); //XYZ } //Create a new stvert s += pheader->skinwidth / 2;//yet another crappy way to save some space stverts[newindex].s = (int)s; stverts[newindex].t = (int)t; //Adapt index pointer dupIndex[triangles[i].vertindex[j]] = newindex; triangles[i].vertindex[j] = newindex; //Next free paliashdr->poseverts++; } else { //Move it in all poses int newindex = triangles[i].vertindex[j]; for (k=0; knumposes; k++) { verts[k*newcount+newindex].v[0] = poseverts[k][newindex].v[0] * paliashdr->scale[0] + paliashdr->scale_origin[0]; verts[k*newcount+newindex].v[1] = poseverts[k][newindex].v[1] * paliashdr->scale[1] + paliashdr->scale_origin[1]; verts[k*newcount+newindex].v[2] = poseverts[k][newindex].v[2] * paliashdr->scale[2] + paliashdr->scale_origin[2]; //verts[k*newcount+newindex].lightnormalindex = poseverts[k][newindex].lightnormalindex; verts[k*newcount+newindex].lightnormalindex = NormalToLatLong(r_avertexnormals[poseverts[k][triangles[i].vertindex[j]].lightnormalindex]); //XYZ } } } } if (paliashdr->poseverts != newcount) { Con_Printf("Not equal %i %i\n",paliashdr->poseverts,newcount); } //oldverts = verts = Hunk_Alloc (paliashdr->numposes * paliashdr->poseverts * sizeof(ftrivertx_t) ); //paliashdr->posedata = (byte *)verts - (byte *)paliashdr; //for (i=0 ; inumposes ; i++) // for (j=0 ; jposeverts ; j++) { // vert = verts++; // vert->v[0] = poseverts[i][/*vertexorder[j]*/j].v[0] * paliashdr->scale[0] + paliashdr->scale_origin[0]; // vert->v[1] = poseverts[i][/*vertexorder[j]*/j].v[1] * paliashdr->scale[1] + paliashdr->scale_origin[1]; // vert->v[2] = poseverts[i][/*vertexorder[j]*/j].v[2] * paliashdr->scale[2] + paliashdr->scale_origin[2]; // vert->lightnormalindex = poseverts[i][vertexorder[j]].lightnormalindex; // } //verts = oldverts; //PENTA: Calculate texcoords for triangles (bump mapping) texcoords = Hunk_Alloc (paliashdr->poseverts * sizeof(fstvert_t)); paliashdr->texcoords = (byte *)texcoords - (byte *)paliashdr; for (i=0; iposeverts ; i++) { s = stverts[i].s; t = stverts[i].t; //if (!triangles[i].facesfront && stverts[triangles[i].vertindex[j]].onseam) // s += pheader->skinwidth / 2;//yet another crappy way to save some space s = (s-0.5) / pheader->skinwidth; t = (t-0.5) / pheader->skinheight; texcoords[i].s = s; texcoords[i].t = t; } //PENTA: Save triangles (for shadow volumes) tris = Hunk_Alloc (paliashdr->numtris * sizeof(mtriangle_t)); paliashdr->triangles = (byte *)tris - (byte *)paliashdr; Q_memcpy(tris, &triangles, paliashdr->numtris * sizeof(mtriangle_t)); //PENTA: Calculate plane eq's for triangles (shadow volumes) norms = Hunk_Alloc (paliashdr->numtris * paliashdr->numposes * sizeof(plane_t)); paliashdr->planes = (byte *)norms - (byte *)paliashdr; for (i=0; inumposes; i++) { for (j=0; jnumtris ; j++) { //make 3 vec3_t's of this triangle's vertices for (k=0; k<3; k++) { v = &verts[i*paliashdr->poseverts + tris[j].vertindex[k]]; for (l=0; l<3; l++) triangle[k][l] = v->v[l]; } //calculate their normal VectorSubtract(triangle[0], triangle[1], v1); VectorSubtract(triangle[2], triangle[1], v2); CrossProduct(v2,v1, normal); VectorScale(normal, 1/Length(normal), norms[i*paliashdr->numtris+j].normal); //distance of plane eq norms[i*paliashdr->numtris+j].dist = DotProduct(triangle[0],norms[i*paliashdr->numtris+j].normal); } } //PENTA: Create index lists indecies = Hunk_Alloc (paliashdr->numtris * sizeof(int) * 3); paliashdr->indecies = (byte *)indecies - (byte *)paliashdr; for (i=0 ; inumtris ; i++) { for (j=0 ; j<3 ; j++) { //Throw vertex index into our index array (*indecies) = triangles[i].vertindex[j]; indecies++; } } //PENTA: Calculate tangents for vertices (bump mapping) tangents = Hunk_Alloc (paliashdr->poseverts * paliashdr->numposes * sizeof(vec3_t)); paliashdr->tangents = (byte *)tangents - (byte *)paliashdr; paliashdr->binormals = 0; //for all frames for (i=0; inumposes; i++) { //set temp to zero for (j=0; jposeverts; j++) { tangents[i*paliashdr->poseverts+j][0] = 0; tangents[i*paliashdr->poseverts+j][1] = 0; tangents[i*paliashdr->poseverts+j][2] = 0; numNormals[j] = 0; } //for all tris for (j=0; jnumtris; j++) { vec3_t tangent; TangentForTri(&tris[j],norms[i*paliashdr->numtris+j].normal, &verts[i*paliashdr->poseverts],texcoords,tangent); //for all vertices in the tri for (k=0; k<3; k++) { l = tris[j].vertindex[k]; VectorAdd(tangents[i*paliashdr->poseverts+l],tangent, tangents[i*paliashdr->poseverts+l]); numNormals[l]++; } } //calculate average for (j=0; jposeverts; j++) { if (!numNormals[j]) continue; tangents[i*paliashdr->poseverts+j][0] = tangents[i*paliashdr->poseverts+j][0]/numNormals[j]; tangents[i*paliashdr->poseverts+j][1] = tangents[i*paliashdr->poseverts+j][1]/numNormals[j]; tangents[i*paliashdr->poseverts+j][2] = tangents[i*paliashdr->poseverts+j][2]/numNormals[j]; VectorNormalize(tangents[i*paliashdr->poseverts+j]); } } }