mirror of
https://github.com/DrBeef/Raze.git
synced 2024-11-29 15:32:38 +00:00
718112a8fe
Currently none of these is being used, but eventually they will, once more code gets ported over. So it's better to have them right away and avoid editing the project file too much, only to revert that later.
357 lines
12 KiB
Text
357 lines
12 KiB
Text
LZMA SDK 19.00
|
|
--------------
|
|
|
|
LZMA SDK provides the documentation, samples, header files,
|
|
libraries, and tools you need to develop applications that
|
|
use 7z / LZMA / LZMA2 / XZ compression.
|
|
|
|
LZMA is an improved version of famous LZ77 compression algorithm.
|
|
It was improved in way of maximum increasing of compression ratio,
|
|
keeping high decompression speed and low memory requirements for
|
|
decompressing.
|
|
|
|
LZMA2 is a LZMA based compression method. LZMA2 provides better
|
|
multithreading support for compression than LZMA and some other improvements.
|
|
|
|
7z is a file format for data compression and file archiving.
|
|
7z is a main file format for 7-Zip compression program (www.7-zip.org).
|
|
7z format supports different compression methods: LZMA, LZMA2 and others.
|
|
7z also supports AES-256 based encryption.
|
|
|
|
XZ is a file format for data compression that uses LZMA2 compression.
|
|
XZ format provides additional features: SHA/CRC check, filters for
|
|
improved compression ratio, splitting to blocks and streams,
|
|
|
|
|
|
|
|
LICENSE
|
|
-------
|
|
|
|
LZMA SDK is written and placed in the public domain by Igor Pavlov.
|
|
|
|
Some code in LZMA SDK is based on public domain code from another developers:
|
|
1) PPMd var.H (2001): Dmitry Shkarin
|
|
2) SHA-256: Wei Dai (Crypto++ library)
|
|
|
|
Anyone is free to copy, modify, publish, use, compile, sell, or distribute the
|
|
original LZMA SDK code, either in source code form or as a compiled binary, for
|
|
any purpose, commercial or non-commercial, and by any means.
|
|
|
|
LZMA SDK code is compatible with open source licenses, for example, you can
|
|
include it to GNU GPL or GNU LGPL code.
|
|
|
|
|
|
LZMA SDK Contents
|
|
-----------------
|
|
|
|
Source code:
|
|
|
|
- C / C++ / C# / Java - LZMA compression and decompression
|
|
- C / C++ - LZMA2 compression and decompression
|
|
- C / C++ - XZ compression and decompression
|
|
- C - 7z decompression
|
|
- C++ - 7z compression and decompression
|
|
- C - small SFXs for installers (7z decompression)
|
|
- C++ - SFXs and SFXs for installers (7z decompression)
|
|
|
|
Precomiled binaries:
|
|
|
|
- console programs for lzma / 7z / xz compression and decompression
|
|
- SFX modules for installers.
|
|
|
|
|
|
UNIX/Linux version
|
|
------------------
|
|
To compile C++ version of file->file LZMA encoding, go to directory
|
|
CPP/7zip/Bundles/LzmaCon
|
|
and call make to recompile it:
|
|
make -f makefile.gcc clean all
|
|
|
|
In some UNIX/Linux versions you must compile LZMA with static libraries.
|
|
To compile with static libraries, you can use
|
|
LIB = -lm -static
|
|
|
|
Also you can use p7zip (port of 7-Zip for POSIX systems like Unix or Linux):
|
|
|
|
http://p7zip.sourceforge.net/
|
|
|
|
|
|
Files
|
|
-----
|
|
|
|
DOC/7zC.txt - 7z ANSI-C Decoder description
|
|
DOC/7zFormat.txt - 7z Format description
|
|
DOC/installer.txt - information about 7-Zip for installers
|
|
DOC/lzma.txt - LZMA compression description
|
|
DOC/lzma-sdk.txt - LZMA SDK description (this file)
|
|
DOC/lzma-history.txt - history of LZMA SDK
|
|
DOC/lzma-specification.txt - Specification of LZMA
|
|
DOC/Methods.txt - Compression method IDs for .7z
|
|
|
|
bin/installer/ - example script to create installer that uses SFX module,
|
|
|
|
bin/7zdec.exe - simplified 7z archive decoder
|
|
bin/7zr.exe - 7-Zip console program (reduced version)
|
|
bin/x64/7zr.exe - 7-Zip console program (reduced version) (x64 version)
|
|
bin/lzma.exe - file->file LZMA encoder/decoder for Windows
|
|
bin/7zS2.sfx - small SFX module for installers (GUI version)
|
|
bin/7zS2con.sfx - small SFX module for installers (Console version)
|
|
bin/7zSD.sfx - SFX module for installers.
|
|
|
|
|
|
7zDec.exe
|
|
---------
|
|
7zDec.exe is simplified 7z archive decoder.
|
|
It supports only LZMA, LZMA2, and PPMd methods.
|
|
7zDec decodes whole solid block from 7z archive to RAM.
|
|
The RAM consumption can be high.
|
|
|
|
|
|
|
|
|
|
Source code structure
|
|
---------------------
|
|
|
|
|
|
Asm/ - asm files (optimized code for CRC calculation and Intel-AES encryption)
|
|
|
|
C/ - C files (compression / decompression and other)
|
|
Util/
|
|
7z - 7z decoder program (decoding 7z files)
|
|
Lzma - LZMA program (file->file LZMA encoder/decoder).
|
|
LzmaLib - LZMA library (.DLL for Windows)
|
|
SfxSetup - small SFX module for installers
|
|
|
|
CPP/ -- CPP files
|
|
|
|
Common - common files for C++ projects
|
|
Windows - common files for Windows related code
|
|
|
|
7zip - files related to 7-Zip
|
|
|
|
Archive - files related to archiving
|
|
|
|
Common - common files for archive handling
|
|
7z - 7z C++ Encoder/Decoder
|
|
|
|
Bundles - Modules that are bundles of other modules (files)
|
|
|
|
Alone7z - 7zr.exe: Standalone 7-Zip console program (reduced version)
|
|
Format7zExtractR - 7zxr.dll: Reduced version of 7z DLL: extracting from 7z/LZMA/BCJ/BCJ2.
|
|
Format7zR - 7zr.dll: Reduced version of 7z DLL: extracting/compressing to 7z/LZMA/BCJ/BCJ2
|
|
LzmaCon - lzma.exe: LZMA compression/decompression
|
|
LzmaSpec - example code for LZMA Specification
|
|
SFXCon - 7zCon.sfx: Console 7z SFX module
|
|
SFXSetup - 7zS.sfx: 7z SFX module for installers
|
|
SFXWin - 7z.sfx: GUI 7z SFX module
|
|
|
|
Common - common files for 7-Zip
|
|
|
|
Compress - files for compression/decompression
|
|
|
|
Crypto - files for encryption / decompression
|
|
|
|
UI - User Interface files
|
|
|
|
Client7z - Test application for 7za.dll, 7zr.dll, 7zxr.dll
|
|
Common - Common UI files
|
|
Console - Code for console program (7z.exe)
|
|
Explorer - Some code from 7-Zip Shell extension
|
|
FileManager - Some GUI code from 7-Zip File Manager
|
|
GUI - Some GUI code from 7-Zip
|
|
|
|
|
|
CS/ - C# files
|
|
7zip
|
|
Common - some common files for 7-Zip
|
|
Compress - files related to compression/decompression
|
|
LZ - files related to LZ (Lempel-Ziv) compression algorithm
|
|
LZMA - LZMA compression/decompression
|
|
LzmaAlone - file->file LZMA compression/decompression
|
|
RangeCoder - Range Coder (special code of compression/decompression)
|
|
|
|
Java/ - Java files
|
|
SevenZip
|
|
Compression - files related to compression/decompression
|
|
LZ - files related to LZ (Lempel-Ziv) compression algorithm
|
|
LZMA - LZMA compression/decompression
|
|
RangeCoder - Range Coder (special code of compression/decompression)
|
|
|
|
|
|
Note:
|
|
Asm / C / C++ source code of LZMA SDK is part of 7-Zip's source code.
|
|
7-Zip's source code can be downloaded from 7-Zip's SourceForge page:
|
|
|
|
http://sourceforge.net/projects/sevenzip/
|
|
|
|
|
|
|
|
LZMA features
|
|
-------------
|
|
- Variable dictionary size (up to 1 GB)
|
|
- Estimated compressing speed: about 2 MB/s on 2 GHz CPU
|
|
- Estimated decompressing speed:
|
|
- 20-30 MB/s on modern 2 GHz cpu
|
|
- 1-2 MB/s on 200 MHz simple RISC cpu: (ARM, MIPS, PowerPC)
|
|
- Small memory requirements for decompressing (16 KB + DictionarySize)
|
|
- Small code size for decompressing: 5-8 KB
|
|
|
|
LZMA decoder uses only integer operations and can be
|
|
implemented in any modern 32-bit CPU (or on 16-bit CPU with some conditions).
|
|
|
|
Some critical operations that affect the speed of LZMA decompression:
|
|
1) 32*16 bit integer multiply
|
|
2) Mispredicted branches (penalty mostly depends from pipeline length)
|
|
3) 32-bit shift and arithmetic operations
|
|
|
|
The speed of LZMA decompressing mostly depends from CPU speed.
|
|
Memory speed has no big meaning. But if your CPU has small data cache,
|
|
overall weight of memory speed will slightly increase.
|
|
|
|
|
|
How To Use
|
|
----------
|
|
|
|
Using LZMA encoder/decoder executable
|
|
--------------------------------------
|
|
|
|
Usage: LZMA <e|d> inputFile outputFile [<switches>...]
|
|
|
|
e: encode file
|
|
|
|
d: decode file
|
|
|
|
b: Benchmark. There are two tests: compressing and decompressing
|
|
with LZMA method. Benchmark shows rating in MIPS (million
|
|
instructions per second). Rating value is calculated from
|
|
measured speed and it is normalized with Intel's Core 2 results.
|
|
Also Benchmark checks possible hardware errors (RAM
|
|
errors in most cases). Benchmark uses these settings:
|
|
(-a1, -d21, -fb32, -mfbt4). You can change only -d parameter.
|
|
Also you can change the number of iterations. Example for 30 iterations:
|
|
LZMA b 30
|
|
Default number of iterations is 10.
|
|
|
|
<Switches>
|
|
|
|
|
|
-a{N}: set compression mode 0 = fast, 1 = normal
|
|
default: 1 (normal)
|
|
|
|
d{N}: Sets Dictionary size - [0, 30], default: 23 (8MB)
|
|
The maximum value for dictionary size is 1 GB = 2^30 bytes.
|
|
Dictionary size is calculated as DictionarySize = 2^N bytes.
|
|
For decompressing file compressed by LZMA method with dictionary
|
|
size D = 2^N you need about D bytes of memory (RAM).
|
|
|
|
-fb{N}: set number of fast bytes - [5, 273], default: 128
|
|
Usually big number gives a little bit better compression ratio
|
|
and slower compression process.
|
|
|
|
-lc{N}: set number of literal context bits - [0, 8], default: 3
|
|
Sometimes lc=4 gives gain for big files.
|
|
|
|
-lp{N}: set number of literal pos bits - [0, 4], default: 0
|
|
lp switch is intended for periodical data when period is
|
|
equal 2^N. For example, for 32-bit (4 bytes)
|
|
periodical data you can use lp=2. Often it's better to set lc0,
|
|
if you change lp switch.
|
|
|
|
-pb{N}: set number of pos bits - [0, 4], default: 2
|
|
pb switch is intended for periodical data
|
|
when period is equal 2^N.
|
|
|
|
-mf{MF_ID}: set Match Finder. Default: bt4.
|
|
Algorithms from hc* group doesn't provide good compression
|
|
ratio, but they often works pretty fast in combination with
|
|
fast mode (-a0).
|
|
|
|
Memory requirements depend from dictionary size
|
|
(parameter "d" in table below).
|
|
|
|
MF_ID Memory Description
|
|
|
|
bt2 d * 9.5 + 4MB Binary Tree with 2 bytes hashing.
|
|
bt3 d * 11.5 + 4MB Binary Tree with 3 bytes hashing.
|
|
bt4 d * 11.5 + 4MB Binary Tree with 4 bytes hashing.
|
|
hc4 d * 7.5 + 4MB Hash Chain with 4 bytes hashing.
|
|
|
|
-eos: write End Of Stream marker. By default LZMA doesn't write
|
|
eos marker, since LZMA decoder knows uncompressed size
|
|
stored in .lzma file header.
|
|
|
|
-si: Read data from stdin (it will write End Of Stream marker).
|
|
-so: Write data to stdout
|
|
|
|
|
|
Examples:
|
|
|
|
1) LZMA e file.bin file.lzma -d16 -lc0
|
|
|
|
compresses file.bin to file.lzma with 64 KB dictionary (2^16=64K)
|
|
and 0 literal context bits. -lc0 allows to reduce memory requirements
|
|
for decompression.
|
|
|
|
|
|
2) LZMA e file.bin file.lzma -lc0 -lp2
|
|
|
|
compresses file.bin to file.lzma with settings suitable
|
|
for 32-bit periodical data (for example, ARM or MIPS code).
|
|
|
|
3) LZMA d file.lzma file.bin
|
|
|
|
decompresses file.lzma to file.bin.
|
|
|
|
|
|
Compression ratio hints
|
|
-----------------------
|
|
|
|
Recommendations
|
|
---------------
|
|
|
|
To increase the compression ratio for LZMA compressing it's desirable
|
|
to have aligned data (if it's possible) and also it's desirable to locate
|
|
data in such order, where code is grouped in one place and data is
|
|
grouped in other place (it's better than such mixing: code, data, code,
|
|
data, ...).
|
|
|
|
|
|
Filters
|
|
-------
|
|
You can increase the compression ratio for some data types, using
|
|
special filters before compressing. For example, it's possible to
|
|
increase the compression ratio on 5-10% for code for those CPU ISAs:
|
|
x86, IA-64, ARM, ARM-Thumb, PowerPC, SPARC.
|
|
|
|
You can find C source code of such filters in C/Bra*.* files
|
|
|
|
You can check the compression ratio gain of these filters with such
|
|
7-Zip commands (example for ARM code):
|
|
No filter:
|
|
7z a a1.7z a.bin -m0=lzma
|
|
|
|
With filter for little-endian ARM code:
|
|
7z a a2.7z a.bin -m0=arm -m1=lzma
|
|
|
|
It works in such manner:
|
|
Compressing = Filter_encoding + LZMA_encoding
|
|
Decompressing = LZMA_decoding + Filter_decoding
|
|
|
|
Compressing and decompressing speed of such filters is very high,
|
|
so it will not increase decompressing time too much.
|
|
Moreover, it reduces decompression time for LZMA_decoding,
|
|
since compression ratio with filtering is higher.
|
|
|
|
These filters convert CALL (calling procedure) instructions
|
|
from relative offsets to absolute addresses, so such data becomes more
|
|
compressible.
|
|
|
|
For some ISAs (for example, for MIPS) it's impossible to get gain from such filter.
|
|
|
|
|
|
|
|
---
|
|
|
|
http://www.7-zip.org
|
|
http://www.7-zip.org/sdk.html
|
|
http://www.7-zip.org/support.html
|