raze/source/build/src/polymer.cpp
hendricks266 67438d0cd2 New userdef structure: "global_r", "global_g", "global_b"
Set the tinting RGB values of textures being rendered. Can be used in DISPLAYROOMS or before rotatesprite (similar to setaspect). Remember to reset the values afterwards.

Patch from Fox.

git-svn-id: https://svn.eduke32.com/eduke32@6591 1a8010ca-5511-0410-912e-c29ae57300e0
2018-01-26 04:35:11 +00:00

6336 lines
200 KiB
C++

// blah
#if defined USE_OPENGL && defined POLYMER
#include "compat.h"
#define POLYMER_C
#include "polymer.h"
#include "engine_priv.h"
#include "xxhash.h"
#include "texcache.h"
// CVARS
int32_t pr_lighting = 1;
int32_t pr_normalmapping = 1;
int32_t pr_specularmapping = 1;
int32_t pr_shadows = 1;
int32_t pr_shadowcount = 5;
int32_t pr_shadowdetail = 4;
int32_t pr_shadowfiltering = 1;
int32_t pr_maxlightpasses = 10;
int32_t pr_maxlightpriority = PR_MAXLIGHTPRIORITY;
int32_t pr_fov = 426; // appears to be the classic setting.
double pr_customaspect = 0.0f;
int32_t pr_billboardingmode = 1;
int32_t pr_verbosity = 1; // 0: silent, 1: errors and one-times, 2: multiple-times, 3: flood
int32_t pr_wireframe = 0;
int32_t pr_vbos = 2;
int32_t pr_buckets = 0;
int32_t pr_gpusmoothing = 1;
int32_t pr_overrideparallax = 0;
float pr_parallaxscale = 0.1f;
float pr_parallaxbias = 0.0f;
int32_t pr_overridespecular = 0;
float pr_specularpower = 15.0f;
float pr_specularfactor = 1.0f;
int32_t pr_highpalookups = 1;
int32_t pr_artmapping = 1;
int32_t pr_overridehud = 0;
float pr_hudxadd = 0.0f;
float pr_hudyadd = 0.0f;
float pr_hudzadd = 0.0f;
int32_t pr_hudangadd = 0;
int32_t pr_hudfov = 426;
float pr_overridemodelscale = 0.0f;
int32_t pr_ati_fboworkaround = 0;
int32_t pr_ati_nodepthoffset = 0;
#ifdef __APPLE__
int32_t pr_ati_textureformat_one = 0;
#endif
int32_t pr_nullrender = 0; // 1: no draw, 2: no draw or updates
int32_t r_pr_maxlightpasses = 5; // value of the cvar (not live value), used to detect changes
GLenum mapvbousage = GL_STREAM_DRAW_ARB;
GLenum modelvbousage = GL_STATIC_DRAW_ARB;
// BUILD DATA
_prsector *prsectors[MAXSECTORS];
_prwall *prwalls[MAXWALLS];
_prsprite *prsprites[MAXSPRITES];
_prmaterial mdspritematerial;
_prhighpalookup prhighpalookups[MAXBASEPALS][MAXPALOOKUPS];
// One U8 texture per tile
GLuint prartmaps[MAXTILES];
// 256 U8U8U8 values per basepal
GLuint prbasepalmaps[MAXBASEPALS];
// numshades full indirections (32*256) per lookup
GLuint prlookups[MAXPALOOKUPS];
GLuint prmapvbo;
const GLsizeiptrARB proneplanesize = sizeof(_prvert) * 4;
const GLintptrARB prwalldatasize = sizeof(_prvert)* 4 * 3; // wall, over and mask planes for every wall
GLintptrARB prwalldataoffset;
GLuint prindexringvbo;
GLuint *prindexring;
const GLsizeiptrARB prindexringsize = 65535;
GLintptrARB prindexringoffset;
const GLbitfield prindexringmapflags = GL_MAP_WRITE_BIT | GL_MAP_PERSISTENT_BIT | GL_MAP_COHERENT_BIT;
_prbucket *prbuckethead;
int32_t prcanbucket;
static const _prvert vertsprite[4] =
{
{
-0.5f, 0.0f, 0.0f,
0.0f, 1.0f,
0xff, 0xff, 0xff, 0xff,
},
{
0.5f, 0.0f, 0.0f,
1.0f, 1.0f,
0xff, 0xff, 0xff, 0xff,
},
{
0.5f, 1.0f, 0.0f,
1.0f, 0.0f,
0xff, 0xff, 0xff, 0xff,
},
{
-0.5f, 1.0f, 0.0f,
0.0f, 0.0f,
0xff, 0xff, 0xff, 0xff,
},
};
static const _prvert horizsprite[4] =
{
{
-0.5f, 0.0f, 0.5f,
0.0f, 0.0f,
0xff, 0xff, 0xff, 0xff,
},
{
0.5f, 0.0f, 0.5f,
1.0f, 0.0f,
0xff, 0xff, 0xff, 0xff,
},
{
0.5f, 0.0f, -0.5f,
1.0f, 1.0f,
0xff, 0xff, 0xff, 0xff,
},
{
-0.5f, 0.0f, -0.5f,
0.0f, 1.0f,
0xff, 0xff, 0xff, 0xff,
},
};
static const GLfloat skyboxdata[4 * 5 * 6] =
{
// -ZY
-0.5f, -0.5f, 0.5f,
0.0f, 1.0f,
-0.5f, -0.5f, -0.5f,
1.0f, 1.0f,
-0.5f, 0.5f, -0.5f,
1.0f, 0.0f,
-0.5f, 0.5f, 0.5f,
0.0f, 0.0f,
// XY
-0.5f, -0.5f, -0.5f,
0.0f, 1.0f,
0.5f, -0.5f, -0.5f,
1.0f, 1.0f,
0.5f, 0.5f, -0.5f,
1.0f, 0.0f,
-0.5f, 0.5f, -0.5f,
0.0f, 0.0f,
// ZY
0.5f, -0.5f, -0.5f,
0.0f, 1.0f,
0.5f, -0.5f, 0.5f,
1.0f, 1.0f,
0.5f, 0.5f, 0.5f,
1.0f, 0.0f,
0.5f, 0.5f, -0.5f,
0.0f, 0.0f,
// -XY
0.5f, -0.5f, 0.5f,
0.0f, 1.0f,
-0.5f, -0.5f, 0.5f,
1.0f, 1.0f,
-0.5f, 0.5f, 0.5f,
1.0f, 0.0f,
0.5f, 0.5f, 0.5f,
0.0f, 0.0f,
// XZ
-0.5f, 0.5f, -0.5f,
1.0f, 1.0f,
0.5f, 0.5f, -0.5f,
1.0f, 0.0f,
0.5f, 0.5f, 0.5f,
0.0f, 0.0f,
-0.5f, 0.5f, 0.5f,
0.0f, 1.0f,
// X-Z
-0.5f, -0.5f, 0.5f,
0.0f, 0.0f,
0.5f, -0.5f, 0.5f,
0.0f, 1.0f,
0.5f, -0.5f, -0.5f,
1.0f, 1.0f,
-0.5f, -0.5f, -0.5f,
1.0f, 0.0f,
};
GLuint skyboxdatavbo;
GLfloat artskydata[16];
// LIGHTS
static _prplanelist *plpool;
#pragma pack(push,1)
_prlight prlights[PR_MAXLIGHTS];
int32_t lightcount;
int32_t curlight;
#pragma pack(pop)
static const GLfloat shadowBias[] =
{
0.5, 0.0, 0.0, 0.0,
0.0, 0.5, 0.0, 0.0,
0.0, 0.0, 0.5, 0.0,
0.5, 0.5, 0.5, 1.0
};
// MATERIALS
static const _prprogrambit prprogrambits[PR_BIT_COUNT] = {
{
1 << PR_BIT_HEADER,
// vert_def
"#version 120\n"
"#extension GL_ARB_texture_rectangle : enable\n"
"\n",
// vert_prog
"",
// frag_def
"#version 120\n"
"#extension GL_ARB_texture_rectangle : enable\n"
"\n",
// frag_prog
"",
},
{
1 << PR_BIT_ANIM_INTERPOLATION,
// vert_def
"attribute vec4 nextFrameData;\n"
"attribute vec4 nextFrameNormal;\n"
"uniform float frameProgress;\n"
"\n",
// vert_prog
" vec4 currentFramePosition;\n"
" vec4 nextFramePosition;\n"
"\n"
" currentFramePosition = curVertex * (1.0 - frameProgress);\n"
" nextFramePosition = nextFrameData * frameProgress;\n"
" curVertex = currentFramePosition + nextFramePosition;\n"
"\n"
" currentFramePosition = vec4(curNormal, 1.0) * (1.0 - frameProgress);\n"
" nextFramePosition = nextFrameNormal * frameProgress;\n"
" curNormal = vec3(currentFramePosition + nextFramePosition);\n"
"\n",
// frag_def
"",
// frag_prog
"",
},
{
1 << PR_BIT_LIGHTING_PASS,
// vert_def
"",
// vert_prog
"",
// frag_def
"",
// frag_prog
" isLightingPass = 1;\n"
" result = vec4(0.0, 0.0, 0.0, 1.0);\n"
"\n",
},
{
1 << PR_BIT_NORMAL_MAP,
// vert_def
"attribute vec3 T;\n"
"attribute vec3 B;\n"
"attribute vec3 N;\n"
"uniform vec3 eyePosition;\n"
"varying vec3 tangentSpaceEyeVec;\n"
"\n",
// vert_prog
" TBN = mat3(T, B, N);\n"
" tangentSpaceEyeVec = eyePosition - vec3(curVertex);\n"
" tangentSpaceEyeVec = TBN * tangentSpaceEyeVec;\n"
"\n"
" isNormalMapped = 1;\n"
"\n",
// frag_def
"uniform sampler2D normalMap;\n"
"uniform vec2 normalBias;\n"
"varying vec3 tangentSpaceEyeVec;\n"
"\n",
// frag_prog
" vec4 normalStep;\n"
" float biasedHeight;\n"
"\n"
" eyeVec = normalize(tangentSpaceEyeVec);\n"
"\n"
" for (int i = 0; i < 4; i++) {\n"
" normalStep = texture2D(normalMap, commonTexCoord.st);\n"
" biasedHeight = normalStep.a * normalBias.x - normalBias.y;\n"
" commonTexCoord += (biasedHeight - commonTexCoord.z) * normalStep.z * eyeVec;\n"
" }\n"
"\n"
" normalTexel = texture2D(normalMap, commonTexCoord.st);\n"
"\n"
" isNormalMapped = 1;\n"
"\n",
},
{
1 << PR_BIT_ART_MAP,
// vert_def
"varying vec3 horizDistance;\n"
"\n",
// vert_prog
" gl_TexCoord[0] = gl_MultiTexCoord0;\n"
" horizDistance = vec3(gl_ModelViewMatrix * curVertex);\n"
"\n",
// frag_def
"uniform sampler2D artMap;\n"
"uniform sampler2D basePalMap;\n"
"uniform sampler2DRect lookupMap;\n"
"uniform float shadeOffset;\n"
"uniform float visibility;\n"
"varying vec3 horizDistance;\n"
"\n",
// frag_prog
" float shadeLookup = length(horizDistance) / 1.024 * visibility;\n"
" shadeLookup = shadeLookup + shadeOffset;\n"
"\n"
" float colorIndex = texture2D(artMap, commonTexCoord.st).r * 256.0;\n"
" float colorIndexNear = texture2DRect(lookupMap, vec2(colorIndex, floor(shadeLookup))).r;\n"
" float colorIndexFar = texture2DRect(lookupMap, vec2(colorIndex, floor(shadeLookup + 1.0))).r;\n"
" float colorIndexFullbright = texture2DRect(lookupMap, vec2(colorIndex, 0.0)).r;\n"
"\n"
" vec3 texelNear = texture2D(basePalMap, vec2(colorIndexNear, 0.5)).rgb;\n"
" vec3 texelFar = texture2D(basePalMap, vec2(colorIndexFar, 0.5)).rgb;\n"
" diffuseTexel.rgb = texture2D(basePalMap, vec2(colorIndexFullbright, 0.5)).rgb;\n"
"\n"
" if (isLightingPass == 0) {\n"
" result.rgb = mix(texelNear, texelFar, fract(shadeLookup));\n"
" result.a = 1.0;\n"
" if (colorIndex == 256.0)\n"
" result.a = 0.0;\n"
" }\n"
"\n",
},
{
1 << PR_BIT_DIFFUSE_MAP,
// vert_def
"uniform vec2 diffuseScale;\n"
"\n",
// vert_prog
" gl_TexCoord[0] = vec4(diffuseScale, 1.0, 1.0) * gl_MultiTexCoord0;\n"
"\n",
// frag_def
"uniform sampler2D diffuseMap;\n"
"\n",
// frag_prog
" diffuseTexel = texture2D(diffuseMap, commonTexCoord.st);\n"
"\n",
},
{
1 << PR_BIT_DIFFUSE_DETAIL_MAP,
// vert_def
"uniform vec2 detailScale;\n"
"varying vec2 fragDetailScale;\n"
"\n",
// vert_prog
" fragDetailScale = detailScale;\n"
" if (isNormalMapped == 0)\n"
" gl_TexCoord[1] = vec4(detailScale, 1.0, 1.0) * gl_MultiTexCoord0;\n"
"\n",
// frag_def
"uniform sampler2D detailMap;\n"
"varying vec2 fragDetailScale;\n"
"\n",
// frag_prog
" if (isNormalMapped == 0)\n"
" diffuseTexel *= texture2D(detailMap, gl_TexCoord[1].st);\n"
" else\n"
" diffuseTexel *= texture2D(detailMap, commonTexCoord.st * fragDetailScale);\n"
" diffuseTexel.rgb *= 2.0;\n"
"\n",
},
{
1 << PR_BIT_DIFFUSE_MODULATION,
// vert_def
"",
// vert_prog
" gl_FrontColor = gl_Color;\n"
"\n",
// frag_def
"",
// frag_prog
" if (isLightingPass == 0)\n"
" result *= vec4(gl_Color);\n"
"\n",
},
{
1 << PR_BIT_DIFFUSE_MAP2,
// vert_def
"",
// vert_prog
"",
// frag_def
"",
// frag_prog
" if (isLightingPass == 0)\n"
" result *= diffuseTexel;\n"
"\n",
},
{
1 << PR_BIT_HIGHPALOOKUP_MAP,
// vert_def
"",
// vert_prog
"",
// frag_def
"uniform sampler3D highPalookupMap;\n"
"\n",
// frag_prog
" float highPalScale = 0.9921875; // for 6 bits\n"
" float highPalBias = 0.00390625;\n"
"\n"
" if (isLightingPass == 0)\n"
" result.rgb = texture3D(highPalookupMap, result.rgb * highPalScale + highPalBias).rgb;\n"
" diffuseTexel.rgb = texture3D(highPalookupMap, diffuseTexel.rgb * highPalScale + highPalBias).rgb;\n"
"\n",
},
{
1 << PR_BIT_SPECULAR_MAP,
// vert_def
"",
// vert_prog
"",
// frag_def
"uniform sampler2D specMap;\n"
"\n",
// frag_prog
" specTexel = texture2D(specMap, commonTexCoord.st);\n"
"\n"
" isSpecularMapped = 1;\n"
"\n",
},
{
1 << PR_BIT_SPECULAR_MATERIAL,
// vert_def
"",
// vert_prog
"",
// frag_def
"uniform vec2 specMaterial;\n"
"\n",
// frag_prog
" specularMaterial = specMaterial;\n"
"\n",
},
{
1 << PR_BIT_MIRROR_MAP,
// vert_def
"",
// vert_prog
"",
// frag_def
"uniform sampler2DRect mirrorMap;\n"
"\n",
// frag_prog
" vec4 mirrorTexel;\n"
" vec2 mirrorCoords;\n"
"\n"
" mirrorCoords = gl_FragCoord.st;\n"
" if (isNormalMapped == 1) {\n"
" mirrorCoords += 100.0 * (normalTexel.rg - 0.5);\n"
" }\n"
" mirrorTexel = texture2DRect(mirrorMap, mirrorCoords);\n"
" result = vec4((result.rgb * (1.0 - specTexel.a)) + (mirrorTexel.rgb * specTexel.rgb * specTexel.a), result.a);\n"
"\n",
},
{
1 << PR_BIT_FOG,
// vert_def
"",
// vert_prog
"",
// frag_def
#ifdef PR_LINEAR_FOG
"uniform bool linearFog;\n"
#endif
"",
// frag_prog
" float fragDepth;\n"
" float fogFactor;\n"
"\n"
" fragDepth = gl_FragCoord.z / gl_FragCoord.w;\n"
#ifdef PR_LINEAR_FOG
" if (!linearFog) {\n"
#endif
" fragDepth *= fragDepth;\n"
" fogFactor = exp2(-gl_Fog.density * gl_Fog.density * fragDepth * 1.442695);\n"
#ifdef PR_LINEAR_FOG
" } else {\n"
" fogFactor = gl_Fog.scale * (gl_Fog.end - fragDepth);\n"
" fogFactor = clamp(fogFactor, 0.0, 1.0);"
" }\n"
#endif
" result.rgb = mix(gl_Fog.color.rgb, result.rgb, fogFactor);\n"
"\n",
},
{
1 << PR_BIT_GLOW_MAP,
// vert_def
"",
// vert_prog
"",
// frag_def
"uniform sampler2D glowMap;\n"
"\n",
// frag_prog
" vec4 glowTexel;\n"
"\n"
" glowTexel = texture2D(glowMap, commonTexCoord.st);\n"
" result = vec4((result.rgb * (1.0 - glowTexel.a)) + (glowTexel.rgb * glowTexel.a), result.a);\n"
"\n",
},
{
1 << PR_BIT_PROJECTION_MAP,
// vert_def
"uniform mat4 shadowProjMatrix;\n"
"\n",
// vert_prog
" gl_TexCoord[2] = shadowProjMatrix * curVertex;\n"
"\n",
// frag_def
"",
// frag_prog
"",
},
{
1 << PR_BIT_SHADOW_MAP,
// vert_def
"",
// vert_prog
"",
// frag_def
"uniform sampler2DShadow shadowMap;\n"
"\n",
// frag_prog
" shadowResult = shadow2DProj(shadowMap, gl_TexCoord[2]).a;\n"
"\n",
},
{
1 << PR_BIT_LIGHT_MAP,
// vert_def
"",
// vert_prog
"",
// frag_def
"uniform sampler2D lightMap;\n"
"\n",
// frag_prog
" lightTexel = texture2D(lightMap, vec2(gl_TexCoord[2].s, -gl_TexCoord[2].t) / gl_TexCoord[2].q).rgb;\n"
"\n",
},
{
1 << PR_BIT_SPOT_LIGHT,
// vert_def
"",
// vert_prog
"",
// frag_def
"uniform vec3 spotDir;\n"
"uniform vec2 spotRadius;\n"
"\n",
// frag_prog
" spotVector = spotDir;\n"
" spotCosRadius = spotRadius;\n"
" isSpotLight = 1;\n"
"\n",
},
{
1 << PR_BIT_POINT_LIGHT,
// vert_def
"varying vec3 vertexNormal;\n"
"varying vec3 eyeVector;\n"
"varying vec3 lightVector;\n"
"varying vec3 tangentSpaceLightVector;\n"
"\n",
// vert_prog
" vec3 vertexPos;\n"
"\n"
" vertexPos = vec3(gl_ModelViewMatrix * curVertex);\n"
" eyeVector = -vertexPos;\n"
" lightVector = gl_LightSource[0].ambient.rgb - vertexPos;\n"
"\n"
" if (isNormalMapped == 1) {\n"
" tangentSpaceLightVector = gl_LightSource[0].specular.rgb - vec3(curVertex);\n"
" tangentSpaceLightVector = TBN * tangentSpaceLightVector;\n"
" } else\n"
" vertexNormal = normalize(gl_NormalMatrix * curNormal);\n"
"\n",
// frag_def
"varying vec3 vertexNormal;\n"
"varying vec3 eyeVector;\n"
"varying vec3 lightVector;\n"
"varying vec3 tangentSpaceLightVector;\n"
"\n",
// frag_prog
" float pointLightDistance;\n"
" float lightAttenuation;\n"
" float spotAttenuation;\n"
" vec3 N, L, E, R, D;\n"
" vec3 lightDiffuse;\n"
" float lightSpecular;\n"
" float NdotL;\n"
" float spotCosAngle;\n"
"\n"
" L = normalize(lightVector);\n"
"\n"
" pointLightDistance = dot(lightVector,lightVector);\n"
" lightAttenuation = clamp(1.0 - pointLightDistance * gl_LightSource[0].linearAttenuation, 0.0, 1.0);\n"
" spotAttenuation = 1.0;\n"
"\n"
" if (isSpotLight == 1) {\n"
" D = normalize(spotVector);\n"
" spotCosAngle = dot(-L, D);\n"
" spotAttenuation = clamp((spotCosAngle - spotCosRadius.x) * spotCosRadius.y, 0.0, 1.0);\n"
" }\n"
"\n"
" if (isNormalMapped == 1) {\n"
" E = eyeVec;\n"
" N = normalize(2.0 * (normalTexel.rgb - 0.5));\n"
" L = normalize(tangentSpaceLightVector);\n"
" } else {\n"
" E = normalize(eyeVector);\n"
" N = normalize(vertexNormal);\n"
" }\n"
" NdotL = max(dot(N, L), 0.0);\n"
"\n"
" R = reflect(-L, N);\n"
"\n"
" lightDiffuse = gl_Color.a * shadowResult * lightTexel *\n"
" gl_LightSource[0].diffuse.rgb * lightAttenuation * spotAttenuation;\n"
" result += vec4(lightDiffuse * diffuseTexel.a * diffuseTexel.rgb * NdotL, 0.0);\n"
"\n"
" if (isSpecularMapped == 0)\n"
" specTexel.rgb = diffuseTexel.rgb * diffuseTexel.a;\n"
"\n"
" lightSpecular = pow( max(dot(R, E), 0.0), specularMaterial.x * specTexel.a) * specularMaterial.y;\n"
" result += vec4(lightDiffuse * specTexel.rgb * lightSpecular, 0.0);\n"
"\n",
},
{
1 << PR_BIT_FOOTER,
// vert_def
"void main(void)\n"
"{\n"
" vec4 curVertex = gl_Vertex;\n"
" vec3 curNormal = gl_Normal;\n"
" int isNormalMapped = 0;\n"
" mat3 TBN;\n"
"\n"
" gl_TexCoord[0] = gl_MultiTexCoord0;\n"
"\n",
// vert_prog
" gl_Position = gl_ModelViewProjectionMatrix * curVertex;\n"
"}\n",
// frag_def
"void main(void)\n"
"{\n"
" vec3 commonTexCoord = vec3(gl_TexCoord[0].st, 0.0);\n"
" vec4 result = vec4(1.0, 1.0, 1.0, 1.0);\n"
" vec4 diffuseTexel = vec4(1.0, 1.0, 1.0, 1.0);\n"
" vec4 specTexel = vec4(1.0, 1.0, 1.0, 1.0);\n"
" vec4 normalTexel;\n"
" int isLightingPass = 0;\n"
" int isNormalMapped = 0;\n"
" int isSpecularMapped = 0;\n"
" vec3 eyeVec;\n"
" int isSpotLight = 0;\n"
" vec3 spotVector;\n"
" vec2 spotCosRadius;\n"
" float shadowResult = 1.0;\n"
" vec2 specularMaterial = vec2(15.0, 1.0);\n"
" vec3 lightTexel = vec3(1.0, 1.0, 1.0);\n"
"\n",
// frag_prog
" gl_FragColor = result;\n"
"}\n",
}
};
_prprograminfo prprograms[1 << PR_BIT_COUNT];
int32_t overridematerial;
int32_t globaloldoverridematerial;
int32_t rotatespritematerialbits;
// RENDER TARGETS
_prrt *prrts;
// CONTROL
GLfloat spritemodelview[16];
GLfloat mdspritespace[4][4];
GLfloat rootmodelviewmatrix[16];
GLfloat *curmodelviewmatrix;
GLfloat rootskymodelviewmatrix[16];
GLfloat *curskymodelviewmatrix;
static int16_t sectorqueue[MAXSECTORS];
static int16_t querydelay[MAXSECTORS];
static GLuint queryid[MAXWALLS];
static int16_t drawingstate[MAXSECTORS];
int16_t *cursectormasks;
int16_t *cursectormaskcount;
float horizang;
int16_t viewangle;
int32_t depth;
_prmirror mirrors[10];
#if defined __clang__ && defined __APPLE__
// XXX: OS X 10.9 deprecated GLUtesselator.
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wdeprecated-declarations"
#endif
GLUtesselator* prtess;
#if defined __clang__ && defined __APPLE__
#pragma clang diagnostic pop
#endif
static int16_t cursky;
static char curskypal;
static int8_t curskyshade;
static float curskyangmul = 1;
_pranimatespritesinfo asi;
int32_t polymersearching;
int32_t culledface;
// EXTERNAL FUNCTIONS
int32_t polymer_init(void)
{
int32_t i, j, t = getticks();
if (pr_verbosity >= 1) OSD_Printf("Initializing Polymer subsystem...\n");
if (!glinfo.texnpot ||
!glinfo.depthtex ||
!glinfo.shadow ||
!glinfo.fbos ||
!glinfo.rect ||
!glinfo.multitex ||
!glinfo.vbos ||
!glinfo.occlusionqueries ||
!glinfo.glsl)
{
OSD_Printf("PR : Your video card driver/combo doesn't support the necessary features!\n");
OSD_Printf("PR : Disabling Polymer...\n");
return 0;
}
// clean up existing stuff since it will be initialized again if we're re-entering here
polymer_uninit();
Bmemset(&prsectors[0], 0, sizeof(prsectors[0]) * MAXSECTORS);
Bmemset(&prwalls[0], 0, sizeof(prwalls[0]) * MAXWALLS);
prtess = bgluNewTess();
if (prtess == 0)
{
OSD_Printf("PR : Tessellation object initialization failed!\n");
return 0;
}
polymer_loadboard();
polymer_initartsky();
skyboxdatavbo = 0;
i = 0;
while (i < nextmodelid)
{
if (models[i])
{
md3model_t* m;
m = (md3model_t*)models[i];
m->indices = NULL;
}
i++;
}
i = 0;
while (i < (1 << PR_BIT_COUNT))
{
prprograms[i].handle = 0;
i++;
}
overridematerial = 0xFFFFFFFF;
polymersearching = FALSE;
polymer_initrendertargets(pr_shadowcount + 1);
// Prime highpalookup maps
i = 0;
while (i < MAXBASEPALS)
{
j = 0;
while (j < MAXPALOOKUPS)
{
if (prhighpalookups[i][j].data)
{
bglGenTextures(1, &prhighpalookups[i][j].map);
bglBindTexture(GL_TEXTURE_3D, prhighpalookups[i][j].map);
bglTexImage3D(GL_TEXTURE_3D, // target
0, // mip level
GL_RGBA, // internalFormat
PR_HIGHPALOOKUP_DIM, // width
PR_HIGHPALOOKUP_DIM, // height
PR_HIGHPALOOKUP_DIM, // depth
0, // border
GL_BGRA, // upload format
GL_UNSIGNED_BYTE, // upload component type
prhighpalookups[i][j].data); // data pointer
bglTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
bglTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
bglTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_S, glinfo.clamptoedge?GL_CLAMP_TO_EDGE:GL_CLAMP);
bglTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_T, glinfo.clamptoedge?GL_CLAMP_TO_EDGE:GL_CLAMP);
bglTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_R, glinfo.clamptoedge?GL_CLAMP_TO_EDGE:GL_CLAMP);
bglBindTexture(GL_TEXTURE_3D, 0);
}
j++;
}
i++;
}
#ifndef __APPLE__
if (glinfo.debugoutput) {
// Enable everything.
bglDebugMessageControlARB(GL_DONT_CARE, GL_DONT_CARE, GL_DONT_CARE, 0, NULL, GL_TRUE);
bglDebugMessageCallbackARB((GLDEBUGPROCARB)polymer_debugoutputcallback, NULL);
bglEnable(GL_DEBUG_OUTPUT_SYNCHRONOUS_ARB);
}
#endif
if (pr_verbosity >= 1) OSD_Printf("PR : Initialization complete in %d ms.\n", getticks()-t);
return 1;
}
void polymer_uninit(void)
{
int32_t i, j;
if (prtess)
{
bgluDeleteTess(prtess);
prtess = NULL;
}
polymer_freeboard();
polymer_initrendertargets(0);
i = 0;
while (i < MAXBASEPALS)
{
j = 0;
while (j < MAXPALOOKUPS)
{
// if (prhighpalookups[i][j].data) {
// DO_FREE_AND_NULL(prhighpalookups[i][j].data);
// }
if (prhighpalookups[i][j].map) {
bglDeleteTextures(1, &prhighpalookups[i][j].map);
prhighpalookups[i][j].map = 0;
}
j++;
}
i++;
}
i = 0;
while (plpool)
{
_prplanelist* next = plpool->n;
Bfree(plpool);
plpool = next;
i++;
}
if (pr_verbosity >= 3)
OSD_Printf("PR: freed %d planelists\n", i);
}
void polymer_setaspect(int32_t ang)
{
float aspect;
float fang = (float)ang * atanf(fviewingrange*(1.f/65536.f)) * (4.f/fPI);
if (pr_customaspect != 0.0f)
aspect = pr_customaspect;
else
aspect = (float)(windowxy2.x-windowxy1.x+1) /
(float)(windowxy2.y-windowxy1.y+1);
bglMatrixMode(GL_PROJECTION);
bglLoadIdentity();
bgluPerspective(fang * (360.f/2048.f), aspect, 0.01f, 100.0f);
}
void polymer_glinit(void)
{
bglClearColor(0.0f, 0.0f, 0.0f, 1.0f);
bglClearStencil(0);
bglClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT);
bglViewport(windowxy1.x, yres-(windowxy2.y+1),windowxy2.x-windowxy1.x+1, windowxy2.y-windowxy1.y+1);
// texturing
bglEnable(GL_TEXTURE_2D);
bglEnable(GL_DEPTH_TEST);
bglDepthFunc(GL_LEQUAL);
bglDisable(GL_BLEND);
bglDisable(GL_ALPHA_TEST);
if (pr_wireframe)
bglPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
else
bglPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
polymer_setaspect(pr_fov);
bglMatrixMode(GL_MODELVIEW);
bglLoadIdentity();
bglEnableClientState(GL_VERTEX_ARRAY);
bglEnableClientState(GL_TEXTURE_COORD_ARRAY);
bglDisable(GL_FOG);
culledface = GL_BACK;
bglCullFace(GL_BACK);
bglFrontFace(GL_CCW);
bglEnable(GL_CULL_FACE);
}
void polymer_resetlights(void)
{
int32_t i;
_prsector *s;
_prwall *w;
i = 0;
while (i < numsectors)
{
s = prsectors[i];
if (!s) {
i++;
continue;
}
polymer_resetplanelights(&s->floor);
polymer_resetplanelights(&s->ceil);
i++;
}
i = 0;
while (i < numwalls)
{
w = prwalls[i];
if (!w) {
i++;
continue;
}
polymer_resetplanelights(&w->wall);
polymer_resetplanelights(&w->over);
polymer_resetplanelights(&w->mask);
i++;
}
i = 0;
while (i < PR_MAXLIGHTS)
{
prlights[i].flags.active = 0;
i++;
}
lightcount = 0;
if (!loadmaphack(NULL))
OSD_Printf("polymer_resetlights: reloaded maphack\n");
}
void polymer_loadboard(void)
{
int32_t i;
polymer_freeboard();
// in the big map buffer, sectors have floor and ceiling vertices for each wall first, then walls
prwalldataoffset = numwalls * 2 * sizeof(_prvert);
bglGenBuffersARB(1, &prmapvbo);
bglBindBufferARB(GL_ARRAY_BUFFER_ARB, prmapvbo);
bglBufferDataARB(GL_ARRAY_BUFFER_ARB, prwalldataoffset + (numwalls * prwalldatasize), NULL, mapvbousage);
bglBindBufferARB(GL_ARRAY_BUFFER_ARB, 0);
bglGenBuffersARB(1, &prindexringvbo);
bglBindBufferARB(GL_ELEMENT_ARRAY_BUFFER, prindexringvbo);
if (pr_buckets)
{
bglBufferStorage(GL_ELEMENT_ARRAY_BUFFER, prindexringsize * sizeof(GLuint), NULL, prindexringmapflags | GL_DYNAMIC_STORAGE_BIT);
prindexring = (GLuint*)bglMapBufferRange(GL_ELEMENT_ARRAY_BUFFER, 0, prindexringsize * sizeof(GLuint), prindexringmapflags);
}
bglBindBufferARB(GL_ELEMENT_ARRAY_BUFFER, 0);
i = 0;
while (i < numsectors)
{
polymer_initsector(i);
polymer_updatesector(i);
i++;
}
i = 0;
while (i < numwalls)
{
polymer_initwall(i);
polymer_updatewall(i);
i++;
}
polymer_getsky();
polymer_resetlights();
if (pr_verbosity >= 1 && numsectors) OSD_Printf("PR : Board loaded.\n");
}
// The parallaxed ART sky angle divisor corresponding to a horizfrac of 32768.
#define DEFAULT_ARTSKY_ANGDIV 4.3027f
void polymer_drawrooms(int32_t daposx, int32_t daposy, int32_t daposz, int16_t daang, int32_t dahoriz, int16_t dacursectnum)
{
int16_t cursectnum;
int32_t i, cursectflorz, cursectceilz;
float skyhoriz, ang, tiltang;
float pos[3];
pthtyp* pth;
if (getrendermode() == REND_CLASSIC) return;
begindrawing();
// TODO: support for screen resizing
// frameoffset = frameplace + windowxy1.y*bytesperline + windowxy1.x;
if (pr_verbosity >= 3) OSD_Printf("PR : Drawing rooms...\n");
// fogcalc_old needs this
gvisibility = ((float)globalvisibility)*FOGSCALE;
ang = (float)(daang) * (360.f/2048.f);
horizang = (float)(-getangle(128, dahoriz-100)) * (360.f/2048.f);
tiltang = (gtang * 90.0f);
pos[0] = (float)daposy;
pos[1] = -(float)(daposz) / 16.0f;
pos[2] = -(float)daposx;
polymer_updatelights();
// polymer_resetlights();
// if (pr_lighting)
// polymer_applylights();
depth = 0;
if (pr_shadows && lightcount && (pr_shadowcount > 0))
polymer_prepareshadows();
// hack for parallax skies
skyhoriz = horizang;
if (skyhoriz < -180.0f)
skyhoriz += 360.0f;
drawingskybox = 1;
pth = texcache_fetch(cursky, 0, 0, DAMETH_NOMASK);
drawingskybox = 0;
// if it's not a skybox, make the sky parallax
// DEFAULT_ARTSKY_ANGDIV is computed from eyeballed values
// need to recompute it if we ever change the max horiz amplitude
if (!pth || !(pth->flags & PTH_SKYBOX))
skyhoriz *= curskyangmul;
bglMatrixMode(GL_MODELVIEW);
bglLoadIdentity();
bglRotatef(tiltang, 0.0f, 0.0f, -1.0f);
bglRotatef(skyhoriz, 1.0f, 0.0f, 0.0f);
bglRotatef(ang, 0.0f, 1.0f, 0.0f);
bglScalef(1.0f / 1000.0f, 1.0f / 1000.0f, 1.0f / 1000.0f);
bglTranslatef(-pos[0], -pos[1], -pos[2]);
bglGetFloatv(GL_MODELVIEW_MATRIX, rootskymodelviewmatrix);
curskymodelviewmatrix = rootskymodelviewmatrix;
bglMatrixMode(GL_MODELVIEW);
bglLoadIdentity();
bglRotatef(tiltang, 0.0f, 0.0f, -1.0f);
bglRotatef(horizang, 1.0f, 0.0f, 0.0f);
bglRotatef(ang, 0.0f, 1.0f, 0.0f);
bglScalef(1.0f / 1000.0f, 1.0f / 1000.0f, 1.0f / 1000.0f);
bglTranslatef(-pos[0], -pos[1], -pos[2]);
bglGetFloatv(GL_MODELVIEW_MATRIX, rootmodelviewmatrix);
cursectnum = dacursectnum;
updatesectorbreadth(daposx, daposy, &cursectnum);
if (cursectnum >= 0 && cursectnum < numsectors)
dacursectnum = cursectnum;
else if (pr_verbosity>=2)
OSD_Printf("PR : got sector %d after update!\n", cursectnum);
// unflag all sectors
i = numsectors-1;
while (i >= 0)
{
prsectors[i]->flags.uptodate = 0;
prsectors[i]->wallsproffset = 0.0f;
prsectors[i]->floorsproffset = 0.0f;
i--;
}
i = numwalls-1;
while (i >= 0)
{
prwalls[i]->flags.uptodate = 0;
i--;
}
if (searchit == 2 && !polymersearching)
{
globaloldoverridematerial = overridematerial;
overridematerial = prprogrambits[PR_BIT_DIFFUSE_MODULATION].bit;
overridematerial |= prprogrambits[PR_BIT_DIFFUSE_MAP2].bit;
polymersearching = TRUE;
}
if (!searchit && polymersearching) {
overridematerial = globaloldoverridematerial;
polymersearching = FALSE;
}
if (dacursectnum > -1 && dacursectnum < numsectors)
getzsofslope(dacursectnum, daposx, daposy, &cursectceilz, &cursectflorz);
// external view (editor)
if ((dacursectnum < 0) || (dacursectnum >= numsectors) ||
(daposz > cursectflorz) ||
(daposz < cursectceilz))
{
prcanbucket = 1;
if (!editstatus && pr_verbosity>=1)
{
if ((unsigned)dacursectnum < (unsigned)numsectors)
OSD_Printf("PR : EXT sec=%d z=%d (%d, %d)\n", dacursectnum, daposz, cursectflorz, cursectceilz);
else
OSD_Printf("PR : EXT sec=%d z=%d\n", dacursectnum, daposz);
}
curmodelviewmatrix = rootmodelviewmatrix;
i = numsectors-1;
while (i >= 0)
{
polymer_updatesector(i);
polymer_drawsector(i, FALSE);
polymer_scansprites(i, tsprite, &spritesortcnt);
i--;
}
i = numwalls-1;
while (i >= 0)
{
polymer_updatewall(i);
polymer_drawwall(sectorofwall(i), i);
i--;
}
polymer_emptybuckets();
viewangle = daang;
enddrawing();
return;
}
// GO!
polymer_displayrooms(dacursectnum);
curmodelviewmatrix = rootmodelviewmatrix;
// build globals used by rotatesprite
viewangle = daang;
set_globalang(daang);
// polymost globals used by polymost_dorotatesprite
gcosang = fcosglobalang*(1./262144.f);
gsinang = fsinglobalang*(1./262144.f);
gcosang2 = gcosang*fviewingrange*(1./65536.f);
gsinang2 = gsinang*fviewingrange*(1./65536.f);
if (pr_verbosity >= 3) OSD_Printf("PR : Rooms drawn.\n");
enddrawing();
}
void polymer_drawmasks(void)
{
bglEnable(GL_ALPHA_TEST);
bglEnable(GL_BLEND);
// bglEnable(GL_POLYGON_OFFSET_FILL);
// while (--spritesortcnt)
// {
// tspriteptr[spritesortcnt] = &tsprite[spritesortcnt];
// polymer_drawsprite(spritesortcnt);
// }
bglEnable(GL_CULL_FACE);
if (cursectormaskcount) {
// We (kind of) queue sector masks near to far, so drawing them in reverse
// order is the sane approach here. Of course impossible cases will arise.
while (*cursectormaskcount) {
polymer_drawsector(cursectormasks[--(*cursectormaskcount)], TRUE);
}
// This should _always_ be called after a corresponding pr_displayrooms()
// unless we're in "external view" mode, which was checked above.
// Both the top-level game drawrooms and the recursive internal passes
// should be accounted for here. If these free cause corruption, there's
// an accounting bug somewhere.
DO_FREE_AND_NULL(cursectormaskcount);
DO_FREE_AND_NULL(cursectormasks);
}
bglDisable(GL_CULL_FACE);
// bglDisable(GL_POLYGON_OFFSET_FILL);
bglDisable(GL_BLEND);
bglDisable(GL_ALPHA_TEST);
}
void polymer_editorpick(void)
{
GLubyte picked[3];
int16_t num;
bglReadPixels(searchx, ydim - searchy, 1, 1, GL_RGB, GL_UNSIGNED_BYTE, picked);
num = B_UNBUF16(&picked[1]);
searchstat = picked[0];
switch (searchstat) {
case 0: // wall
case 5: // botomwall
case 4: // 1-way/masked wall
searchsector = sectorofwall(num);
searchbottomwall = searchwall = num;
searchisbottom = (searchstat==5);
if (searchstat == 5) {
searchstat = 0;
if (wall[num].nextwall >= 0 && (wall[num].cstat & 2)) {
searchbottomwall = wall[num].nextwall;
}
}
break;
case 1: // floor
case 2: // ceiling
searchsector = num;
// Apologies to Plagman for littering here, but this feature is quite essential
{
GLdouble model[16];
GLdouble proj[16];
GLint view[4];
GLdouble x,y,z;
GLfloat scr[3], scrv[3];
GLdouble scrx,scry,scrz;
GLfloat dadepth;
int16_t k, bestk=0;
GLfloat bestwdistsq = (GLfloat)3.4e38, wdistsq;
GLfloat w1[2], w2[2], w21[2], pw1[2], pw2[2];
GLfloat ptonline[2];
GLfloat scrvxz[2];
GLfloat scrvxznorm, scrvxzn[2], scrpxz[2];
GLfloat w1d, w2d;
walltype *wal = &wall[sector[searchsector].wallptr];
GLfloat t, svcoeff, p[2];
GLfloat *pl;
bglGetDoublev(GL_MODELVIEW_MATRIX, model);
bglGetDoublev(GL_PROJECTION_MATRIX, proj);
bglGetIntegerv(GL_VIEWPORT, view);
bglReadPixels(searchx, ydim-searchy, 1,1, GL_DEPTH_COMPONENT, GL_FLOAT, &dadepth);
bgluUnProject(searchx, ydim-searchy, dadepth, model, proj, view, &x, &y, &z);
bgluUnProject(searchx, ydim-searchy, 0.0, model, proj, view, &scrx, &scry, &scrz);
scr[0]=scrx, scr[1]=scry, scr[2]=scrz;
scrv[0] = x-scrx;
scrv[1] = y-scry;
scrv[2] = z-scrz;
scrvxz[0] = x-scrx;
scrvxz[1] = z-scrz;
if (prsectors[searchsector]==NULL)
{
//OSD_Printf("polymer_editorpick: prsectors[searchsector]==NULL !!!\n");
searchwall = sector[num].wallptr;
}
else
{
if (searchstat==1)
pl = prsectors[searchsector]->ceil.plane;
else
pl = prsectors[searchsector]->floor.plane;
if (pl == NULL)
{
searchwall = sector[num].wallptr;
return;
}
t = dot3f(pl,scrv);
svcoeff = -(dot3f(pl,scr)+pl[3])/t;
// point on plane (x and z)
p[0] = scrx + svcoeff*scrv[0];
p[1] = scrz + svcoeff*scrv[2];
for (k=0; k<sector[searchsector].wallnum; k++)
{
w1[1] = -(float)wal[k].x;
w1[0] = (float)wal[k].y;
w2[1] = -(float)wall[wal[k].point2].x;
w2[0] = (float)wall[wal[k].point2].y;
scrvxznorm = sqrt(dot2f(scrvxz,scrvxz));
scrvxzn[0] = scrvxz[1]/scrvxznorm;
scrvxzn[1] = -scrvxz[0]/scrvxznorm;
relvec2f(p,w1, pw1);
relvec2f(p,w2, pw2);
relvec2f(w2,w1, w21);
w1d = dot2f(scrvxzn,pw1);
w2d = dot2f(scrvxzn,pw2);
w2d = -w2d;
if (w1d <= 0 || w2d <= 0)
continue;
ptonline[0] = w2[0]+(w2d/(w1d+w2d))*w21[0];
ptonline[1] = w2[1]+(w2d/(w1d+w2d))*w21[1];
relvec2f(p,ptonline, scrpxz);
if (dot2f(scrvxz,scrpxz)<0)
continue;
wdistsq = dot2f(scrpxz,scrpxz);
if (wdistsq < bestwdistsq)
{
bestk = k;
bestwdistsq = wdistsq;
}
}
searchwall = sector[searchsector].wallptr + bestk;
}
}
// :P
// searchwall = sector[num].wallptr;
break;
case 3:
// sprite
searchsector = sprite[num].sectnum;
searchwall = num;
break;
}
searchit = 0;
}
void polymer_inb4rotatesprite(int16_t tilenum, char pal, int8_t shade, int32_t method)
{
_prmaterial rotatespritematerial;
polymer_getbuildmaterial(&rotatespritematerial, tilenum, pal, shade, 0, method);
rotatespritematerialbits = polymer_bindmaterial(&rotatespritematerial, NULL, 0);
}
void polymer_postrotatesprite(void)
{
polymer_unbindmaterial(rotatespritematerialbits);
}
static void polymer_setupdiffusemodulation(_prplane *plane, GLubyte modulation, GLubyte *data)
{
plane->material.diffusemodulation[0] = modulation;
plane->material.diffusemodulation[1] = ((GLubyte *) data)[0];
plane->material.diffusemodulation[2] = ((GLubyte *) data)[1];
plane->material.diffusemodulation[3] = 0xFF;
}
static void polymer_drawsearchplane(_prplane *plane, GLubyte *oldcolor, GLubyte modulation, GLubyte *data)
{
Bmemcpy(oldcolor, plane->material.diffusemodulation, sizeof(GLubyte) * 4);
polymer_setupdiffusemodulation(plane, modulation, data);
polymer_drawplane(plane);
Bmemcpy(plane->material.diffusemodulation, oldcolor, sizeof(GLubyte) * 4);
}
void polymer_drawmaskwall(int32_t damaskwallcnt)
{
usectortype *sec;
walltype *wal;
_prwall *w;
GLubyte oldcolor[4];
if (pr_verbosity >= 3) OSD_Printf("PR : Masked wall %i...\n", damaskwallcnt);
sec = (usectortype *)&sector[sectorofwall(maskwall[damaskwallcnt])];
wal = &wall[maskwall[damaskwallcnt]];
w = prwalls[maskwall[damaskwallcnt]];
bglEnable(GL_CULL_FACE);
if (searchit == 2) {
polymer_drawsearchplane(&w->mask, oldcolor, 0x04, (GLubyte *)&maskwall[damaskwallcnt]);
} else {
calc_and_apply_fog(wal->picnum, fogshade(wal->shade, wal->pal), sec->visibility, get_floor_fogpal(sec));
polymer_drawplane(&w->mask);
}
bglDisable(GL_CULL_FACE);
}
void polymer_drawsprite(int32_t snum)
{
int32_t i, j, cs;
_prsprite *s;
uspritetype *const tspr = tspriteptr[snum];
const usectortype *sec;
if (pr_verbosity >= 3) OSD_Printf("PR : Sprite %i...\n", snum);
if (bad_tspr(tspr))
return;
if ((tspr->cstat & 8192) && (depth && !mirrors[depth-1].plane))
return;
if ((tspr->cstat & 16384) && (!depth || mirrors[depth-1].plane))
return;
DO_TILE_ANIM(tspr->picnum, tspr->owner+32768);
sec = (usectortype *)&sector[tspr->sectnum];
calc_and_apply_fog(tspr->picnum, fogshade(tspr->shade, tspr->pal), sec->visibility,
get_floor_fogpal((usectortype *)&sector[tspr->sectnum]));
if (usemodels && tile2model[Ptile2tile(tspr->picnum,tspr->pal)].modelid >= 0 &&
tile2model[Ptile2tile(tspr->picnum,tspr->pal)].framenum >= 0 &&
!(spriteext[tspr->owner].flags & SPREXT_NOTMD))
{
bglEnable(GL_CULL_FACE);
SWITCH_CULL_DIRECTION;
polymer_drawmdsprite(tspr);
SWITCH_CULL_DIRECTION;
bglDisable(GL_CULL_FACE);
return;
}
cs = tspr->cstat;
// I think messing with the tspr is safe at this point?
// If not, change that to modify a temp position in updatesprite itself.
// I don't think this flags are meant to change on the fly so it'd possibly
// be safe to cache a plane that has them applied.
if (spriteext[tspr->owner].flags & SPREXT_AWAY1)
{
tspr->x += sintable[(tspr->ang + 512) & 2047] >> 13;
tspr->y += sintable[tspr->ang & 2047] >> 13;
}
else if (spriteext[tspr->owner].flags & SPREXT_AWAY2)
{
tspr->x -= sintable[(tspr->ang + 512) & 2047] >> 13;
tspr->y -= sintable[tspr->ang & 2047] >> 13;
}
polymer_updatesprite(snum);
Bassert(tspr->owner < MAXSPRITES);
s = prsprites[tspr->owner];
if (s == NULL)
return;
switch ((tspr->cstat>>4) & 3)
{
case 1:
prsectors[tspr->sectnum]->wallsproffset += 0.5f;
if (!depth || mirrors[depth-1].plane)
bglPolygonOffset(-1.0f, -1.0f);
break;
case 2:
prsectors[tspr->sectnum]->floorsproffset += 0.5f;
if (!depth || mirrors[depth-1].plane)
bglPolygonOffset(-1.0f, -1.0f);
break;
}
if ((cs & 48) == 0)
{
int32_t curpriority = 0;
s->plane.lightcount = 0;
while ((curpriority < pr_maxlightpriority) && (!depth || mirrors[depth-1].plane))
{
i = j = 0;
while (j < lightcount)
{
while (!prlights[i].flags.active)
i++;
if (prlights[i].priority != curpriority)
{
i++;
j++;
continue;
}
if (polymer_planeinlight(&s->plane, &prlights[i]))
s->plane.lights[s->plane.lightcount++] = i;
i++;
j++;
}
curpriority++;
}
}
if ((tspr->cstat & 64) && (tspr->cstat & SPR_ALIGN_MASK))
{
if ((tspr->cstat & SPR_ALIGN_MASK)==SPR_FLOOR && (tspr->cstat & SPR_YFLIP))
SWITCH_CULL_DIRECTION;
bglEnable(GL_CULL_FACE);
}
if ((!depth || mirrors[depth-1].plane) && !pr_ati_nodepthoffset)
bglEnable(GL_POLYGON_OFFSET_FILL);
polymer_drawplane(&s->plane);
if ((!depth || mirrors[depth-1].plane) && !pr_ati_nodepthoffset)
bglDisable(GL_POLYGON_OFFSET_FILL);
if ((tspr->cstat & 64) && (tspr->cstat & SPR_ALIGN_MASK))
{
if ((tspr->cstat & SPR_ALIGN_MASK)==SPR_FLOOR && (tspr->cstat & SPR_YFLIP))
SWITCH_CULL_DIRECTION;
bglDisable(GL_CULL_FACE);
}
}
void polymer_setanimatesprites(animatespritesptr animatesprites, int32_t x, int32_t y, int32_t a, int32_t smoothratio)
{
asi.animatesprites = animatesprites;
asi.x = x;
asi.y = y;
asi.a = a;
asi.smoothratio = smoothratio;
}
int16_t polymer_addlight(_prlight* light)
{
int32_t lighti;
if (lightcount >= PR_MAXLIGHTS || light->priority > pr_maxlightpriority || !pr_lighting)
return -1;
if ((light->sector == -1) || (light->sector >= numsectors))
return -1;
lighti = 0;
while ((lighti < PR_MAXLIGHTS) && (prlights[lighti].flags.active))
lighti++;
if (lighti == PR_MAXLIGHTS)
return -1;
#if 0
// Spot lights disabled on ATI cards because they cause crashes with
// Catalyst 12.8 drivers.
// See: http://forums.duke4.net/topic/5723-hrp-polymer-crash/
if (pr_ati_fboworkaround && light->radius)
return -1;
#endif
Bmemcpy(&prlights[lighti], light, sizeof(_prlight));
if (light->radius) {
polymer_processspotlight(&prlights[lighti]);
// get the texture handle for the lightmap
if (light->tilenum > 0) {
int16_t picnum = light->tilenum;
pthtyp* pth;
DO_TILE_ANIM(picnum, 0);
if (!waloff[picnum])
loadtile(picnum);
pth = NULL;
pth = texcache_fetch(picnum, 0, 0, DAMETH_NOMASK);
if (pth)
light->lightmap = pth->glpic;
}
}
prlights[lighti].flags.isinview = 0;
prlights[lighti].flags.active = 1;
prlights[lighti].flags.invalidate = 0;
prlights[lighti].planecount = 0;
prlights[lighti].planelist = NULL;
polymer_culllight(lighti);
lightcount++;
return lighti;
}
void polymer_deletelight(int16_t lighti)
{
if (!prlights[lighti].flags.active)
{
#ifdef DEBUGGINGAIDS
if (pr_verbosity >= 2)
OSD_Printf("PR : Called polymer_deletelight on inactive light\n");
// currently known cases: when reloading maphack lights (didn't set maphacklightcnt=0
// but did loadmaphack()->delete_maphack_lights() after polymer_resetlights())
#endif
return;
}
polymer_removelight(lighti);
prlights[lighti].flags.active = 0;
lightcount--;
}
void polymer_invalidatelights(void)
{
int32_t i = PR_MAXLIGHTS-1;
do
prlights[i].flags.invalidate = prlights[i].flags.active;
while (i--);
}
void polymer_texinvalidate(void)
{
int32_t i;
i = 0;
while (i < MAXSPRITES) {
polymer_invalidatesprite(i);
i++;
}
i = numsectors - 1;
if (!numsectors || !prsectors[i])
return;
do
prsectors[i--]->flags.invalidtex = 1;
while (i >= 0);
i = numwalls - 1;
do
prwalls[i--]->flags.invalidtex = 1;
while (i >= 0);
}
void polymer_definehighpalookup(char basepalnum, char palnum, char *data)
{
prhighpalookups[basepalnum][palnum].data = (char *)Xmalloc(PR_HIGHPALOOKUP_DATA_SIZE);
Bmemcpy(prhighpalookups[basepalnum][palnum].data, data, PR_HIGHPALOOKUP_DATA_SIZE);
}
int32_t polymer_havehighpalookup(int32_t basepalnum, int32_t palnum)
{
if ((uint32_t)basepalnum >= MAXBASEPALS || (uint32_t)palnum >= MAXPALOOKUPS)
return 0;
return (prhighpalookups[basepalnum][palnum].data != NULL);
}
// CORE
static void polymer_displayrooms(const int16_t dacursectnum)
{
usectortype *sec;
int32_t i;
int16_t bunchnum;
int16_t ns;
GLint result;
int16_t doquery;
int32_t front;
int32_t back;
GLfloat localskymodelviewmatrix[16];
GLfloat localmodelviewmatrix[16];
GLfloat localprojectionmatrix[16];
float frustum[5 * 4];
int32_t localspritesortcnt;
uspritetype localtsprite[MAXSPRITESONSCREEN];
int16_t localmaskwall[MAXWALLSB];
int16_t localmaskwallcnt;
_prmirror mirrorlist[10];
int mirrorcount;
int16_t *localsectormasks;
int16_t *localsectormaskcount;
int32_t gx, gy, gz, px, py, pz;
GLdouble plane[4];
float coeff;
curmodelviewmatrix = localmodelviewmatrix;
bglGetFloatv(GL_MODELVIEW_MATRIX, localmodelviewmatrix);
bglGetFloatv(GL_PROJECTION_MATRIX, localprojectionmatrix);
polymer_extractfrustum(localmodelviewmatrix, localprojectionmatrix, frustum);
Bmemset(querydelay, 0, sizeof(int16_t) * numsectors);
Bmemset(queryid, 0, sizeof(GLuint) * numwalls);
Bmemset(drawingstate, 0, sizeof(int16_t) * numsectors);
front = 0;
back = 1;
sectorqueue[0] = dacursectnum;
drawingstate[dacursectnum] = 1;
localspritesortcnt = localmaskwallcnt = 0;
mirrorcount = 0;
localsectormasks = (int16_t *)Xmalloc(sizeof(int16_t) * numsectors);
localsectormaskcount = (int16_t *)Xcalloc(sizeof(int16_t), 1);
cursectormasks = localsectormasks;
cursectormaskcount = localsectormaskcount;
bglDisable(GL_DEPTH_TEST);
bglColor4f(1.0f, 1.0f, 1.0f, 1.0f);
polymer_drawsky(cursky, curskypal, curskyshade);
bglEnable(GL_DEPTH_TEST);
// depth-only occlusion testing pass
// overridematerial = 0;
prcanbucket = 1;
while (front != back)
{
sec = (usectortype *)&sector[sectorqueue[front]];
polymer_pokesector(sectorqueue[front]);
polymer_drawsector(sectorqueue[front], FALSE);
polymer_scansprites(sectorqueue[front], localtsprite, &localspritesortcnt);
doquery = 0;
i = sec->wallnum-1;
do
{
// if we have a level boundary somewhere in the sector,
// consider these walls as visportals
if (wall[sec->wallptr + i].nextsector < 0 && pr_buckets == 0)
doquery = 1;
}
while (--i >= 0);
i = sec->wallnum-1;
while (i >= 0)
{
if ((wall[sec->wallptr + i].nextsector >= 0) &&
(wallvisible(globalposx, globalposy, sec->wallptr + i)) &&
(polymer_planeinfrustum(&prwalls[sec->wallptr + i]->mask, frustum)))
{
if ((prwalls[sec->wallptr + i]->mask.vertcount == 4) &&
!(prwalls[sec->wallptr + i]->underover & 4) &&
!(prwalls[sec->wallptr + i]->underover & 8))
{
// early exit for closed sectors
_prwall *w;
w = prwalls[sec->wallptr + i];
if ((w->mask.buffer[0].y >= w->mask.buffer[3].y) &&
(w->mask.buffer[1].y >= w->mask.buffer[2].y))
{
i--;
continue;
}
}
if ((wall[sec->wallptr + i].cstat & 48) == 16)
{
int pic = wall[sec->wallptr + i].overpicnum;
if (tilesiz[pic].x > 0 && tilesiz[pic].y > 0)
localmaskwall[localmaskwallcnt++] = sec->wallptr + i;
}
if (!depth && (overridematerial & prprogrambits[PR_BIT_MIRROR_MAP].bit) &&
wall[sec->wallptr + i].overpicnum == 560 &&
wall[sec->wallptr + i].cstat & 32)
{
mirrorlist[mirrorcount].plane = &prwalls[sec->wallptr + i]->mask;
mirrorlist[mirrorcount].sectnum = sectorqueue[front];
mirrorlist[mirrorcount].wallnum = sec->wallptr + i;
mirrorcount++;
}
if (!(wall[sec->wallptr + i].cstat & 32)) {
if (doquery && (!drawingstate[wall[sec->wallptr + i].nextsector]))
{
float pos[3], sqdist;
int32_t oldoverridematerial;
pos[0] = fglobalposy;
pos[1] = fglobalposz * (-1.f/16.f);
pos[2] = -fglobalposx;
sqdist = prwalls[sec->wallptr + i]->mask.plane[0] * pos[0] +
prwalls[sec->wallptr + i]->mask.plane[1] * pos[1] +
prwalls[sec->wallptr + i]->mask.plane[2] * pos[2] +
prwalls[sec->wallptr + i]->mask.plane[3];
// hack to avoid occlusion querying portals that are too close to the viewpoint
// this is needed because of the near z-clipping plane;
if (sqdist < 100)
queryid[sec->wallptr + i] = 0xFFFFFFFF;
else {
_prwall *w;
w = prwalls[sec->wallptr + i];
bglColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE);
bglDepthMask(GL_FALSE);
bglGenQueriesARB(1, &queryid[sec->wallptr + i]);
bglBeginQueryARB(GL_SAMPLES_PASSED_ARB, queryid[sec->wallptr + i]);
oldoverridematerial = overridematerial;
overridematerial = 0;
if ((w->underover & 4) && (w->underover & 1))
polymer_drawplane(&w->wall);
polymer_drawplane(&w->mask);
if ((w->underover & 8) && (w->underover & 2))
polymer_drawplane(&w->over);
overridematerial = oldoverridematerial;
bglEndQueryARB(GL_SAMPLES_PASSED_ARB);
bglDepthMask(GL_TRUE);
bglColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
}
} else
queryid[sec->wallptr + i] = 0xFFFFFFFF;
}
}
i--;
}
// Cram as much CPU or GPU work as we can between queuing the
// occlusion queries and reaping them.
i = sec->wallnum-1;
do
{
if (wallvisible(globalposx, globalposy, sec->wallptr + i))
polymer_drawwall(sectorqueue[front], sec->wallptr + i);
}
while (--i >= 0);
#ifdef YAX_ENABLE
// queue ROR neighbors
if ((bunchnum = yax_getbunch(sectorqueue[front], YAX_FLOOR)) >= 0) {
for (SECTORS_OF_BUNCH(bunchnum, YAX_CEILING, ns)) {
if (ns >= 0 && !drawingstate[ns] &&
polymer_planeinfrustum(&prsectors[ns]->ceil, frustum)) {
sectorqueue[back++] = ns;
drawingstate[ns] = 1;
}
}
}
if ((bunchnum = yax_getbunch(sectorqueue[front], YAX_CEILING)) >= 0) {
for (SECTORS_OF_BUNCH(bunchnum, YAX_FLOOR, ns)) {
if (ns >= 0 && !drawingstate[ns] &&
polymer_planeinfrustum(&prsectors[ns]->floor, frustum)) {
sectorqueue[back++] = ns;
drawingstate[ns] = 1;
}
}
}
#endif
i = sec->wallnum-1;
do
{
if ((queryid[sec->wallptr + i]) &&
(!drawingstate[wall[sec->wallptr + i].nextsector]))
{
// REAP
result = 0;
if (doquery && (queryid[sec->wallptr + i] != 0xFFFFFFFF))
{
bglGetQueryObjectivARB(queryid[sec->wallptr + i],
GL_QUERY_RESULT_ARB,
&result);
bglDeleteQueriesARB(1, &queryid[sec->wallptr + i]);
} else if (queryid[sec->wallptr + i] == 0xFFFFFFFF)
result = 1;
queryid[sec->wallptr + i] = 0;
if (result || !doquery)
{
sectorqueue[back++] = wall[sec->wallptr + i].nextsector;
drawingstate[wall[sec->wallptr + i].nextsector] = 1;
}
} else if (queryid[sec->wallptr + i] &&
queryid[sec->wallptr + i] != 0xFFFFFFFF)
{
bglDeleteQueriesARB(1, &queryid[sec->wallptr + i]);
queryid[sec->wallptr + i] = 0;
}
}
while (--i >= 0);
front++;
}
polymer_emptybuckets();
// do the actual shaded drawing
// overridematerial = 0xFFFFFFFF;
// go through the sector queue again
// front = 0;
// while (front < back)
// {
// sec = &sector[sectorqueue[front]];
//
// polymer_drawsector(sectorqueue[front]);
//
// i = 0;
// while (i < sec->wallnum)
// {
// polymer_drawwall(sectorqueue[front], sec->wallptr + i);
//
// i++;
// }
//
// front++;
// }
i = mirrorcount-1;
while (i >= 0)
{
bglBindFramebufferEXT(GL_FRAMEBUFFER_EXT, prrts[0].fbo);
bglPushAttrib(GL_VIEWPORT_BIT);
bglViewport(windowxy1.x, yres-(windowxy2.y+1),windowxy2.x-windowxy1.x+1, windowxy2.y-windowxy1.y+1);
bglClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
Bmemcpy(localskymodelviewmatrix, curskymodelviewmatrix, sizeof(GLfloat) * 16);
curskymodelviewmatrix = localskymodelviewmatrix;
bglMatrixMode(GL_MODELVIEW);
bglPushMatrix();
plane[0] = mirrorlist[i].plane->plane[0];
plane[1] = mirrorlist[i].plane->plane[1];
plane[2] = mirrorlist[i].plane->plane[2];
plane[3] = mirrorlist[i].plane->plane[3];
bglClipPlane(GL_CLIP_PLANE0, plane);
polymer_inb4mirror(mirrorlist[i].plane->buffer, mirrorlist[i].plane->plane);
SWITCH_CULL_DIRECTION;
//bglEnable(GL_CLIP_PLANE0);
if (mirrorlist[i].wallnum >= 0)
preparemirror(globalposx, globalposy, globalang,
mirrorlist[i].wallnum, &gx, &gy, &viewangle);
gx = globalposx;
gy = globalposy;
gz = globalposz;
// map the player pos from build to polymer
px = globalposy;
py = -globalposz / 16;
pz = -globalposx;
// calculate new player position on the other side of the mirror
// this way the basic build visibility shit can be used (wallvisible)
coeff = mirrorlist[i].plane->plane[0] * px +
mirrorlist[i].plane->plane[1] * py +
mirrorlist[i].plane->plane[2] * pz +
mirrorlist[i].plane->plane[3];
coeff /= (float)(mirrorlist[i].plane->plane[0] * mirrorlist[i].plane->plane[0] +
mirrorlist[i].plane->plane[1] * mirrorlist[i].plane->plane[1] +
mirrorlist[i].plane->plane[2] * mirrorlist[i].plane->plane[2]);
px = (int32_t)(-coeff*mirrorlist[i].plane->plane[0]*2 + px);
py = (int32_t)(-coeff*mirrorlist[i].plane->plane[1]*2 + py);
pz = (int32_t)(-coeff*mirrorlist[i].plane->plane[2]*2 + pz);
// map back from polymer to build
set_globalpos(-pz, px, -py * 16);
mirrors[depth++] = mirrorlist[i];
polymer_displayrooms(mirrorlist[i].sectnum);
depth--;
cursectormasks = localsectormasks;
cursectormaskcount = localsectormaskcount;
set_globalpos(gx, gy, gz);
bglDisable(GL_CLIP_PLANE0);
SWITCH_CULL_DIRECTION;
bglMatrixMode(GL_MODELVIEW);
bglPopMatrix();
bglPopAttrib();
bglBindFramebufferEXT(GL_FRAMEBUFFER_EXT, 0);
mirrorlist[i].plane->material.mirrormap = prrts[0].color;
polymer_drawplane(mirrorlist[i].plane);
mirrorlist[i].plane->material.mirrormap = 0;
i--;
}
spritesortcnt = localspritesortcnt;
Bmemcpy(tsprite, localtsprite, sizeof(spritetype) * spritesortcnt);
maskwallcnt = localmaskwallcnt;
Bmemcpy(maskwall, localmaskwall, sizeof(int16_t) * maskwallcnt);
if (depth)
{
set_globalang(viewangle);
if (mirrors[depth - 1].plane)
display_mirror = 1;
polymer_animatesprites();
if (mirrors[depth - 1].plane)
display_mirror = 0;
bglDisable(GL_CULL_FACE);
drawmasks();
bglEnable(GL_CULL_FACE);
}
return;
}
static void polymer_emptybuckets(void)
{
_prbucket *bucket = prbuckethead;
if (pr_buckets == 0)
return;
bglBindBufferARB(GL_ARRAY_BUFFER_ARB, prmapvbo);
bglVertexPointer(3, GL_FLOAT, sizeof(_prvert), NULL);
bglTexCoordPointer(2, GL_FLOAT, sizeof(_prvert), (GLvoid *)(3 * sizeof(GLfloat)));
bglBindBufferARB(GL_ELEMENT_ARRAY_BUFFER, prindexringvbo);
uint32_t indexcount = 0;
while (bucket != NULL)
{
indexcount += bucket->count;
bucket = bucket->next;
}
// ensure space in index ring, wrap otherwise
if (indexcount + prindexringoffset >= (unsigned)prindexringsize)
{
bglUnmapBufferARB(GL_ELEMENT_ARRAY_BUFFER);
prindexring = (GLuint *)bglMapBufferRange(GL_ELEMENT_ARRAY_BUFFER, 0, prindexringsize * sizeof(GLuint), GL_MAP_INVALIDATE_BUFFER_BIT | prindexringmapflags);
prindexringoffset = 0;
}
// put indices in the ring, all at once
bucket = prbuckethead;
while (bucket != NULL)
{
if (bucket->count == 0)
{
bucket = bucket->next;
continue;
}
memcpy(&prindexring[prindexringoffset], bucket->indices, bucket->count * sizeof(GLuint));
bucket->indiceoffset = (GLuint*)(prindexringoffset * sizeof(GLuint));
prindexringoffset += bucket->count;
bucket = bucket->next;
}
bucket = prbuckethead;
while (bucket != NULL)
{
if (bucket->count == 0)
{
bucket = bucket->next;
continue;
}
int32_t materialbits = polymer_bindmaterial(&bucket->material, NULL, 0);
bglDrawElements(GL_TRIANGLES, bucket->count, GL_UNSIGNED_INT, bucket->indiceoffset);
polymer_unbindmaterial(materialbits);
bucket->count = 0;
bucket = bucket->next;
}
bglBindBufferARB(GL_ELEMENT_ARRAY_BUFFER, 0);
bglBindBufferARB(GL_ARRAY_BUFFER_ARB, 0);
prcanbucket = 0;
}
static hashtable_t h_buckets = { 2048, NULL };
static _prbucket* polymer_findbucket(int16_t tilenum, char pal)
{
char propstr[16];
Bsprintf(propstr, "%d_%d", tilenum, pal);
_prbucket *bucketptr = prbuckethead ? (_prbucket *)hash_find(&h_buckets, propstr) : NULL;
// find bucket
// no buckets or no bucket found, create one
if (bucketptr == NULL || (intptr_t)bucketptr == -1)
{
bucketptr = (_prbucket *)Xmalloc(sizeof (_prbucket));
if (h_buckets.items == NULL)
hash_init(&h_buckets);
// insert, since most likely to use same pattern next frame
// will need to reorder by MRU first every once in a while
// or move to hashing lookup
bucketptr->next = prbuckethead;
prbuckethead = bucketptr;
bucketptr->tilenum = tilenum;
bucketptr->pal = pal;
bucketptr->invalidmaterial = 1;
bucketptr->count = 0;
bucketptr->buffersize = 1024;
bucketptr->indices = (GLuint *)Xmalloc(bucketptr->buffersize * sizeof(GLuint));
hash_add(&h_buckets, propstr, (intptr_t)bucketptr, 1);
}
return bucketptr;
}
static void polymer_bucketplane(_prplane* plane)
{
_prbucket *bucketptr = plane->bucket;
uint32_t neededindicecount;
int32_t i;
// we don't keep buffers for quads
neededindicecount = (plane->indicescount == 0) ? 6 : plane->indicescount;
// ensure size
while (bucketptr->count + neededindicecount >= bucketptr->buffersize)
{
bucketptr->buffersize *= 2;
bucketptr->indices = (GLuint *)Xrealloc(bucketptr->indices, bucketptr->buffersize * sizeof(GLuint));
}
// queue indices
i = 0;
if (plane->indicescount > 0)
{
while (i < plane->indicescount)
{
bucketptr->indices[bucketptr->count] = plane->indices[i] + plane->mapvbo_vertoffset;
bucketptr->count++;
i++;
}
}
else
{
static const uint32_t quadindices[6] = { 0, 1, 2, 0, 2, 3 };
while (i < 6)
{
bucketptr->indices[bucketptr->count] = quadindices[i] + plane->mapvbo_vertoffset;
bucketptr->count++;
i++;
}
}
}
static void polymer_drawplane(_prplane* plane)
{
int32_t materialbits;
if (pr_nullrender >= 1) return;
// debug code for drawing plane inverse TBN
// bglDisable(GL_TEXTURE_2D);
// bglBegin(GL_LINES);
// bglColor4f(1.0, 0.0, 0.0, 1.0);
// bglVertex3f(plane->buffer[0],
// plane->buffer[1],
// plane->buffer[2]);
// bglVertex3f(plane->buffer[0] + plane->t[0] * 50,
// plane->buffer[1] + plane->t[1] * 50,
// plane->buffer[2] + plane->t[2] * 50);
// bglColor4f(0.0, 1.0, 0.0, 1.0);
// bglVertex3f(plane->buffer[0],
// plane->buffer[1],
// plane->buffer[2]);
// bglVertex3f(plane->buffer[0] + plane->b[0] * 50,
// plane->buffer[1] + plane->b[1] * 50,
// plane->buffer[2] + plane->b[2] * 50);
// bglColor4f(0.0, 0.0, 1.0, 1.0);
// bglVertex3f(plane->buffer[0],
// plane->buffer[1],
// plane->buffer[2]);
// bglVertex3f(plane->buffer[0] + plane->n[0] * 50,
// plane->buffer[1] + plane->n[1] * 50,
// plane->buffer[2] + plane->n[2] * 50);
// bglEnd();
// bglEnable(GL_TEXTURE_2D);
// debug code for drawing plane normals
// bglDisable(GL_TEXTURE_2D);
// bglBegin(GL_LINES);
// bglColor4f(1.0, 1.0, 1.0, 1.0);
// bglVertex3f(plane->buffer[0],
// plane->buffer[1],
// plane->buffer[2]);
// bglVertex3f(plane->buffer[0] + plane->plane[0] * 50,
// plane->buffer[1] + plane->plane[1] * 50,
// plane->buffer[2] + plane->plane[2] * 50);
// bglEnd();
// bglEnable(GL_TEXTURE_2D);
if (pr_buckets && pr_vbos > 0 && prcanbucket && plane->bucket)
{
polymer_bucketplane(plane);
return;
}
bglNormal3f((float)(plane->plane[0]), (float)(plane->plane[1]), (float)(plane->plane[2]));
GLuint planevbo;
GLintptrARB geomfbooffset;
if (plane->mapvbo_vertoffset != (uint32_t)-1)
{
planevbo = prmapvbo;
geomfbooffset = plane->mapvbo_vertoffset * sizeof(_prvert);
}
else
{
planevbo = plane->vbo;
geomfbooffset = 0;
}
if (planevbo && (pr_vbos > 0))
{
bglBindBufferARB(GL_ARRAY_BUFFER_ARB, planevbo);
bglVertexPointer(3, GL_FLOAT, sizeof(_prvert), (GLvoid *)(geomfbooffset));
bglTexCoordPointer(2, GL_FLOAT, sizeof(_prvert), (GLvoid *)(geomfbooffset + (3 * sizeof(GLfloat))));
if (plane->indices)
bglBindBufferARB(GL_ELEMENT_ARRAY_BUFFER_ARB, plane->ivbo);
} else {
bglVertexPointer(3, GL_FLOAT, sizeof(_prvert), &plane->buffer->x);
bglTexCoordPointer(2, GL_FLOAT, sizeof(_prvert), &plane->buffer->u);
}
curlight = 0;
do {
materialbits = polymer_bindmaterial(&plane->material, plane->lights, plane->lightcount);
if (materialbits & prprogrambits[PR_BIT_NORMAL_MAP].bit)
{
bglVertexAttrib3fvARB(prprograms[materialbits].attrib_T, &plane->tbn[0][0]);
bglVertexAttrib3fvARB(prprograms[materialbits].attrib_B, &plane->tbn[1][0]);
bglVertexAttrib3fvARB(prprograms[materialbits].attrib_N, &plane->tbn[2][0]);
}
if (plane->indices)
{
if (planevbo && (pr_vbos > 0))
bglDrawElements(GL_TRIANGLES, plane->indicescount, GL_UNSIGNED_SHORT, NULL);
else
bglDrawElements(GL_TRIANGLES, plane->indicescount, GL_UNSIGNED_SHORT, plane->indices);
} else
bglDrawArrays(GL_QUADS, 0, 4);
polymer_unbindmaterial(materialbits);
if (plane->lightcount && (!depth || mirrors[depth-1].plane))
prlights[plane->lights[curlight]].flags.isinview = 1;
curlight++;
} while ((curlight < plane->lightcount) && (curlight < pr_maxlightpasses) && (!depth || mirrors[depth-1].plane));
if (planevbo && (pr_vbos > 0))
{
bglBindBufferARB(GL_ARRAY_BUFFER_ARB, 0);
if (plane->indices)
bglBindBufferARB(GL_ELEMENT_ARRAY_BUFFER_ARB, 0);
}
}
static inline void polymer_inb4mirror(_prvert* buffer, GLfloat* plane)
{
float pv;
float reflectionmatrix[16];
pv = buffer->x * plane[0] +
buffer->y * plane[1] +
buffer->z * plane[2];
reflectionmatrix[0] = 1 - (2 * plane[0] * plane[0]);
reflectionmatrix[1] = -2 * plane[0] * plane[1];
reflectionmatrix[2] = -2 * plane[0] * plane[2];
reflectionmatrix[3] = 0;
reflectionmatrix[4] = -2 * plane[0] * plane[1];
reflectionmatrix[5] = 1 - (2 * plane[1] * plane[1]);
reflectionmatrix[6] = -2 * plane[1] * plane[2];
reflectionmatrix[7] = 0;
reflectionmatrix[8] = -2 * plane[0] * plane[2];
reflectionmatrix[9] = -2 * plane[1] * plane[2];
reflectionmatrix[10] = 1 - (2 * plane[2] * plane[2]);
reflectionmatrix[11] = 0;
reflectionmatrix[12] = 2 * pv * plane[0];
reflectionmatrix[13] = 2 * pv * plane[1];
reflectionmatrix[14] = 2 * pv * plane[2];
reflectionmatrix[15] = 1;
bglMultMatrixf(reflectionmatrix);
bglPushMatrix();
bglLoadMatrixf(curskymodelviewmatrix);
bglMultMatrixf(reflectionmatrix);
bglGetFloatv(GL_MODELVIEW_MATRIX, curskymodelviewmatrix);
bglPopMatrix();
}
static void polymer_animatesprites(void)
{
if (asi.animatesprites)
asi.animatesprites(globalposx, globalposy, viewangle, asi.smoothratio);
}
static void polymer_freeboard(void)
{
int32_t i;
i = 0;
while (i < MAXSECTORS)
{
if (prsectors[i])
{
Bfree(prsectors[i]->verts);
Bfree(prsectors[i]->floor.buffer);
Bfree(prsectors[i]->ceil.buffer);
Bfree(prsectors[i]->floor.indices);
Bfree(prsectors[i]->ceil.indices);
if (prsectors[i]->ceil.vbo) bglDeleteBuffersARB(1, &prsectors[i]->ceil.vbo);
if (prsectors[i]->ceil.ivbo) bglDeleteBuffersARB(1, &prsectors[i]->ceil.ivbo);
if (prsectors[i]->floor.vbo) bglDeleteBuffersARB(1, &prsectors[i]->floor.vbo);
if (prsectors[i]->floor.ivbo) bglDeleteBuffersARB(1, &prsectors[i]->floor.ivbo);
DO_FREE_AND_NULL(prsectors[i]);
}
i++;
}
i = 0;
while (i < MAXWALLS)
{
if (prwalls[i])
{
Bfree(prwalls[i]->bigportal);
Bfree(prwalls[i]->mask.buffer);
Bfree(prwalls[i]->over.buffer);
// Bfree(prwalls[i]->cap);
Bfree(prwalls[i]->wall.buffer);
if (prwalls[i]->wall.vbo) bglDeleteBuffersARB(1, &prwalls[i]->wall.vbo);
if (prwalls[i]->over.vbo) bglDeleteBuffersARB(1, &prwalls[i]->over.vbo);
if (prwalls[i]->mask.vbo) bglDeleteBuffersARB(1, &prwalls[i]->mask.vbo);
if (prwalls[i]->stuffvbo) bglDeleteBuffersARB(1, &prwalls[i]->stuffvbo);
DO_FREE_AND_NULL(prwalls[i]);
}
i++;
}
i = 0;
while (i < MAXSPRITES)
{
if (prsprites[i])
{
Bfree(prsprites[i]->plane.buffer);
if (prsprites[i]->plane.vbo) bglDeleteBuffersARB(1, &prsprites[i]->plane.vbo);
DO_FREE_AND_NULL(prsprites[i]);
}
i++;
}
i = 0;
while (i < MAXTILES)
{
polymer_invalidateartmap(i);
i++;
}
i = 0;
while (i < MAXBASEPALS)
{
if (prbasepalmaps[i])
{
bglDeleteTextures(1, &prbasepalmaps[i]);
prbasepalmaps[i] = 0;
}
i++;
}
i = 0;
while (i < MAXPALOOKUPS)
{
if (prlookups[i])
{
bglDeleteTextures(1, &prlookups[i]);
prlookups[i] = 0;
}
i++;
}
}
// SECTORS
static int32_t polymer_initsector(int16_t sectnum)
{
usectortype *sec;
_prsector* s;
if (pr_verbosity >= 2) OSD_Printf("PR : Initializing sector %i...\n", sectnum);
sec = (usectortype *)&sector[sectnum];
s = (_prsector *)Xcalloc(1, sizeof(_prsector));
s->verts = (GLdouble *)Xcalloc(sec->wallnum, sizeof(GLdouble) * 3);
s->floor.buffer = (_prvert *)Xcalloc(sec->wallnum, sizeof(_prvert));
s->floor.vertcount = sec->wallnum;
s->ceil.buffer = (_prvert *)Xcalloc(sec->wallnum, sizeof(_prvert));
s->ceil.vertcount = sec->wallnum;
bglGenBuffersARB(1, &s->floor.vbo);
bglGenBuffersARB(1, &s->ceil.vbo);
bglGenBuffersARB(1, &s->floor.ivbo);
bglGenBuffersARB(1, &s->ceil.ivbo);
bglBindBufferARB(GL_ARRAY_BUFFER_ARB, s->floor.vbo);
bglBufferDataARB(GL_ARRAY_BUFFER_ARB, sec->wallnum * sizeof(GLfloat) * 5, NULL, mapvbousage);
bglBindBufferARB(GL_ARRAY_BUFFER_ARB, s->ceil.vbo);
bglBufferDataARB(GL_ARRAY_BUFFER_ARB, sec->wallnum * sizeof(GLfloat) * 5, NULL, mapvbousage);
bglBindBufferARB(GL_ARRAY_BUFFER_ARB, 0);
s->flags.empty = 1; // let updatesector know that everything needs to go
prsectors[sectnum] = s;
if (pr_verbosity >= 2) OSD_Printf("PR : Initialized sector %i.\n", sectnum);
return 1;
}
static int32_t polymer_updatesector(int16_t sectnum)
{
_prsector* s;
usectortype *sec;
walltype *wal;
int32_t i, j;
int32_t ceilz, florz;
int32_t tex, tey, heidiff;
float secangcos, secangsin, scalecoef, xpancoef, ypancoef;
int32_t ang, needfloor, wallinvalidate;
int16_t curstat, curpicnum, floorpicnum, ceilingpicnum;
char curxpanning, curypanning;
_prvert* curbuffer;
if (pr_nullrender >= 3) return 0;
s = prsectors[sectnum];
sec = (usectortype *)&sector[sectnum];
secangcos = secangsin = 2;
if (s == NULL)
{
if (pr_verbosity >= 1) OSD_Printf("PR : Can't update uninitialized sector %i.\n", sectnum);
return -1;
}
needfloor = wallinvalidate = 0;
// geometry
wal = &wall[sec->wallptr];
i = 0;
while (i < sec->wallnum)
{
if ((-wal->x != s->verts[(i*3)+2]))
{
s->verts[(i*3)+2] = s->floor.buffer[i].z = s->ceil.buffer[i].z = -(float)wal->x;
needfloor = wallinvalidate = 1;
}
if ((wal->y != s->verts[i*3]))
{
s->verts[i*3] = s->floor.buffer[i].x = s->ceil.buffer[i].x = (float)wal->y;
needfloor = wallinvalidate = 1;
}
i++;
wal = &wall[sec->wallptr + i];
}
if ((s->flags.empty) ||
needfloor ||
(sec->floorz != s->floorz) ||
(sec->ceilingz != s->ceilingz) ||
(sec->floorheinum != s->floorheinum) ||
(sec->ceilingheinum != s->ceilingheinum))
{
wallinvalidate = 1;
wal = &wall[sec->wallptr];
i = 0;
while (i < sec->wallnum)
{
getzsofslope(sectnum, wal->x, wal->y, &ceilz, &florz);
s->floor.buffer[i].y = -(float)(florz) / 16.0f;
s->ceil.buffer[i].y = -(float)(ceilz) / 16.0f;
i++;
wal = &wall[sec->wallptr + i];
}
s->floorz = sec->floorz;
s->ceilingz = sec->ceilingz;
s->floorheinum = sec->floorheinum;
s->ceilingheinum = sec->ceilingheinum;
}
else if (sec->visibility != s->visibility)
wallinvalidate = 1;
floorpicnum = sec->floorpicnum;
DO_TILE_ANIM(floorpicnum, sectnum);
ceilingpicnum = sec->ceilingpicnum;
DO_TILE_ANIM(ceilingpicnum, sectnum);
if ((!s->flags.empty) && (!needfloor) &&
(floorpicnum == s->floorpicnum_anim) &&
(ceilingpicnum == s->ceilingpicnum_anim) &&
#ifndef UNTRACKED_STRUCTS
(s->trackedrev == sectorchanged[sectnum]))
#else
!Bmemcmp(&s->ceilingstat, &sec->ceilingstat, offsetof(sectortype, visibility) - offsetof(sectortype, ceilingstat)))
#endif
goto attributes;
wal = &wall[sec->wallptr];
i = 0;
while (i < sec->wallnum)
{
j = 2;
curstat = sec->floorstat;
curbuffer = s->floor.buffer;
curpicnum = floorpicnum;
curxpanning = sec->floorxpanning;
curypanning = sec->floorypanning;
while (j)
{
if (j == 1)
{
curstat = sec->ceilingstat;
curbuffer = s->ceil.buffer;
curpicnum = ceilingpicnum;
curxpanning = sec->ceilingxpanning;
curypanning = sec->ceilingypanning;
}
if (!waloff[curpicnum])
loadtile(curpicnum);
if (((sec->floorstat & 64) || (sec->ceilingstat & 64)) &&
((secangcos == 2) && (secangsin == 2)))
{
ang = (getangle(wall[wal->point2].x - wal->x, wall[wal->point2].y - wal->y) + 512) & 2047;
secangcos = (float)(sintable[(ang+512)&2047]) / 16383.0f;
secangsin = (float)(sintable[ang&2047]) / 16383.0f;
}
// relative texturing
if (curstat & 64)
{
xpancoef = (float)(wal->x - wall[sec->wallptr].x);
ypancoef = (float)(wall[sec->wallptr].y - wal->y);
tex = (int32_t)(xpancoef * secangsin + ypancoef * secangcos);
tey = (int32_t)(xpancoef * secangcos - ypancoef * secangsin);
} else {
tex = wal->x;
tey = -wal->y;
}
if ((curstat & (2+64)) == (2+64))
{
heidiff = (int32_t)(curbuffer[i].y - curbuffer[0].y);
// don't forget the sign, tey could be negative with concave sectors
if (tey >= 0)
tey = (int32_t)sqrt((double)((tey * tey) + (heidiff * heidiff)));
else
tey = -(int32_t)sqrt((double)((tey * tey) + (heidiff * heidiff)));
}
if (curstat & 4)
swaplong(&tex, &tey);
if (curstat & 16) tex = -tex;
if (curstat & 32) tey = -tey;
scalecoef = (curstat & 8) ? 8.0f : 16.0f;
if (curxpanning)
{
xpancoef = (float)(pow2long[picsiz[curpicnum] & 15]);
xpancoef *= (float)(curxpanning) / (256.0f * (float)(tilesiz[curpicnum].x));
}
else
xpancoef = 0;
if (curypanning)
{
ypancoef = (float)(pow2long[picsiz[curpicnum] >> 4]);
ypancoef *= (float)(curypanning) / (256.0f * (float)(tilesiz[curpicnum].y));
}
else
ypancoef = 0;
curbuffer[i].u = ((float)(tex) / (scalecoef * tilesiz[curpicnum].x)) + xpancoef;
curbuffer[i].v = ((float)(tey) / (scalecoef * tilesiz[curpicnum].y)) + ypancoef;
j--;
}
i++;
wal = &wall[sec->wallptr + i];
}
s->floorxpanning = sec->floorxpanning;
s->ceilingxpanning = sec->ceilingxpanning;
s->floorypanning = sec->floorypanning;
s->ceilingypanning = sec->ceilingypanning;
#ifndef UNTRACKED_STRUCTS
s->trackedrev = sectorchanged[sectnum];
#endif
i = -1;
attributes:
if ((pr_vbos > 0) && ((i == -1) || (wallinvalidate)))
{
if (pr_vbos > 0)
{
if (pr_nullrender < 2)
{
/*bglBindBufferARB(GL_ARRAY_BUFFER_ARB, s->floor.vbo);
bglBufferSubDataARB(GL_ARRAY_BUFFER_ARB, 0, sec->wallnum * sizeof(GLfloat)* 5, s->floor.buffer);
bglBindBufferARB(GL_ARRAY_BUFFER_ARB, s->ceil.vbo);
bglBufferSubDataARB(GL_ARRAY_BUFFER_ARB, 0, sec->wallnum * sizeof(GLfloat)* 5, s->ceil.buffer);
*/
s->floor.mapvbo_vertoffset = sec->wallptr * 2;
s->ceil.mapvbo_vertoffset = s->floor.mapvbo_vertoffset + sec->wallnum;
GLintptrARB sector_offset = s->floor.mapvbo_vertoffset * sizeof(_prvert);
GLsizeiptrARB cur_sector_size = sec->wallnum * sizeof(_prvert);
bglBindBufferARB(GL_ARRAY_BUFFER_ARB, prmapvbo);
// floor
bglBufferSubDataARB(GL_ARRAY_BUFFER_ARB, sector_offset, cur_sector_size, s->floor.buffer);
// ceiling
bglBufferSubDataARB(GL_ARRAY_BUFFER_ARB, sector_offset + cur_sector_size, cur_sector_size, s->ceil.buffer);
bglBindBufferARB(GL_ARRAY_BUFFER_ARB, 0);
}
}
else
{
s->floor.mapvbo_vertoffset = -1;
s->ceil.mapvbo_vertoffset = -1;
}
}
if ((!s->flags.empty) && (!s->flags.invalidtex) &&
(floorpicnum == s->floorpicnum_anim) &&
(ceilingpicnum == s->ceilingpicnum_anim) &&
!Bmemcmp(&s->ceilingstat, &sec->ceilingstat, offsetof(sectortype, visibility) - offsetof(sectortype, ceilingstat)))
goto finish;
s->floor.bucket = polymer_getbuildmaterial(&s->floor.material, floorpicnum, sec->floorpal, sec->floorshade, sec->visibility, (sec->floorstat & 384) ? DAMETH_MASK : DAMETH_NOMASK);
if (sec->floorstat & 256) {
if (sec->floorstat & 128) {
s->floor.material.diffusemodulation[3] = 0x55;
} else {
s->floor.material.diffusemodulation[3] = 0xAA;
}
}
s->ceil.bucket = polymer_getbuildmaterial(&s->ceil.material, ceilingpicnum, sec->ceilingpal, sec->ceilingshade, sec->visibility, (sec->ceilingstat & 384) ? DAMETH_MASK : DAMETH_NOMASK);
if (sec->ceilingstat & 256) {
if (sec->ceilingstat & 128) {
s->ceil.material.diffusemodulation[3] = 0x55;
} else {
s->ceil.material.diffusemodulation[3] = 0xAA;
}
}
s->flags.invalidtex = 0;
// copy ceilingstat through visibility members
Bmemcpy(&s->ceilingstat, &sec->ceilingstat, offsetof(sectortype, visibility) - offsetof(sectortype, ceilingstat));
s->floorpicnum_anim = floorpicnum;
s->ceilingpicnum_anim = ceilingpicnum;
finish:
if (needfloor)
{
polymer_buildfloor(sectnum);
if ((pr_vbos > 0))
{
if (pr_nullrender < 2)
{
if (s->oldindicescount < s->indicescount)
{
bglBindBufferARB(GL_ELEMENT_ARRAY_BUFFER_ARB, s->floor.ivbo);
bglBufferDataARB(GL_ELEMENT_ARRAY_BUFFER_ARB, s->indicescount * sizeof(GLushort), NULL, mapvbousage);
bglBindBufferARB(GL_ELEMENT_ARRAY_BUFFER_ARB, s->ceil.ivbo);
bglBufferDataARB(GL_ELEMENT_ARRAY_BUFFER_ARB, s->indicescount * sizeof(GLushort), NULL, mapvbousage);
s->oldindicescount = s->indicescount;
}
bglBindBufferARB(GL_ELEMENT_ARRAY_BUFFER_ARB, s->floor.ivbo);
bglBufferSubDataARB(GL_ELEMENT_ARRAY_BUFFER_ARB, 0, s->indicescount * sizeof(GLushort), s->floor.indices);
bglBindBufferARB(GL_ELEMENT_ARRAY_BUFFER_ARB, s->ceil.ivbo);
bglBufferSubDataARB(GL_ELEMENT_ARRAY_BUFFER_ARB, 0, s->indicescount * sizeof(GLushort), s->ceil.indices);
bglBindBufferARB(GL_ELEMENT_ARRAY_BUFFER_ARB, 0);
}
}
}
if (wallinvalidate)
{
s->invalidid++;
polymer_invalidatesectorlights(sectnum);
polymer_computeplane(&s->floor);
polymer_computeplane(&s->ceil);
}
s->flags.empty = 0;
s->flags.uptodate = 1;
if (pr_verbosity >= 3) OSD_Printf("PR : Updated sector %i.\n", sectnum);
return 0;
}
void PR_CALLBACK polymer_tesserror(GLenum error)
{
/* This callback is called by the tesselator whenever it raises an error.
GLU_TESS_ERROR6 is the "no error"/"null" error spam in e1l1 and others. */
if (pr_verbosity >= 1 && error != GLU_TESS_ERROR6) OSD_Printf("PR : Tesselation error number %i reported : %s.\n", error, bgluErrorString(errno));
}
void PR_CALLBACK polymer_tessedgeflag(GLenum error)
{
// Passing an edgeflag callback forces the tesselator to output a triangle list
UNREFERENCED_PARAMETER(error);
return;
}
void PR_CALLBACK polymer_tessvertex(void* vertex, void* sector)
{
_prsector* s;
s = (_prsector*)sector;
if (s->curindice >= s->indicescount)
{
if (pr_verbosity >= 2) OSD_Printf("PR : Indice overflow, extending the indices list... !\n");
s->indicescount++;
s->floor.indices = (GLushort *)Xrealloc(s->floor.indices, s->indicescount * sizeof(GLushort));
s->ceil.indices = (GLushort *)Xrealloc(s->ceil.indices, s->indicescount * sizeof(GLushort));
}
s->ceil.indices[s->curindice] = (intptr_t)vertex;
s->curindice++;
}
static int32_t polymer_buildfloor(int16_t sectnum)
{
// This function tesselates the floor/ceiling of a sector and stores the triangles in a display list.
_prsector* s;
usectortype *sec;
intptr_t i;
if (pr_verbosity >= 2) OSD_Printf("PR : Tesselating floor of sector %i...\n", sectnum);
s = prsectors[sectnum];
sec = (usectortype *)&sector[sectnum];
if (s == NULL)
return -1;
if (s->floor.indices == NULL)
{
s->indicescount = (max(3, sec->wallnum) - 2) * 3;
s->floor.indices = (GLushort *)Xcalloc(s->indicescount, sizeof(GLushort));
s->ceil.indices = (GLushort *)Xcalloc(s->indicescount, sizeof(GLushort));
}
s->curindice = 0;
bgluTessCallback(prtess, GLU_TESS_VERTEX_DATA, (void (PR_CALLBACK *)(void))polymer_tessvertex);
bgluTessCallback(prtess, GLU_TESS_EDGE_FLAG, (void (PR_CALLBACK *)(void))polymer_tessedgeflag);
bgluTessCallback(prtess, GLU_TESS_ERROR, (void (PR_CALLBACK *)(void))polymer_tesserror);
bgluTessProperty(prtess, GLU_TESS_WINDING_RULE, GLU_TESS_WINDING_POSITIVE);
bgluTessBeginPolygon(prtess, s);
bgluTessBeginContour(prtess);
i = 0;
while (i < sec->wallnum)
{
bgluTessVertex(prtess, s->verts + (3 * i), (void *)i);
if ((i != (sec->wallnum - 1)) && ((sec->wallptr + i) > wall[sec->wallptr + i].point2))
{
bgluTessEndContour(prtess);
bgluTessBeginContour(prtess);
}
i++;
}
bgluTessEndContour(prtess);
bgluTessEndPolygon(prtess);
i = 0;
while (i < s->indicescount)
{
s->floor.indices[s->indicescount - i - 1] = s->ceil.indices[i];
i++;
}
s->floor.indicescount = s->ceil.indicescount = s->indicescount;
if (pr_verbosity >= 2) OSD_Printf("PR : Tesselated floor of sector %i.\n", sectnum);
return 1;
}
static void polymer_drawsector(int16_t sectnum, int32_t domasks)
{
usectortype *sec;
_prsector* s;
GLubyte oldcolor[4];
int32_t draw;
int32_t queuedmask;
if (pr_verbosity >= 3) OSD_Printf("PR : Drawing sector %i...\n", sectnum);
sec = (usectortype *)&sector[sectnum];
s = prsectors[sectnum];
queuedmask = FALSE;
// If you're thinking of 'optimizing' the following logic, you'd better
// provide compelling evidence that the generated code is more efficient
// than what GCC can come up with on its own.
draw = TRUE;
// Draw masks regardless; avoid all non-masks TROR links
if (sec->floorstat & 384) {
draw = domasks;
} else if (yax_getbunch(sectnum, YAX_FLOOR) >= 0) {
draw = FALSE;
}
// Parallaxed
if (sec->floorstat & 1) {
draw = FALSE;
}
if (draw || (searchit == 2)) {
if (searchit == 2) {
polymer_drawsearchplane(&s->floor, oldcolor, 0x02, (GLubyte *) &sectnum);
}
else {
calc_and_apply_fog(sec->floorpicnum, fogshade(sec->floorshade, sec->floorpal),
sec->visibility, get_floor_fogpal(sec));
polymer_drawplane(&s->floor);
}
} else if (!domasks && cursectormaskcount && sec->floorstat & 384) {
// If we just skipped a mask, queue it for later
cursectormasks[(*cursectormaskcount)++] = sectnum;
// Don't queue it twice if the ceiling is also a mask, though.
queuedmask = TRUE;
}
draw = TRUE;
// Draw masks regardless; avoid all non-masks TROR links
if (sec->ceilingstat & 384) {
draw = domasks;
} else if (yax_getbunch(sectnum, YAX_CEILING) >= 0) {
draw = FALSE;
}
// Parallaxed
if (sec->ceilingstat & 1) {
draw = FALSE;
}
if (draw || (searchit == 2)) {
if (searchit == 2) {
polymer_drawsearchplane(&s->ceil, oldcolor, 0x01, (GLubyte *) &sectnum);
}
else {
calc_and_apply_fog(sec->ceilingpicnum, fogshade(sec->ceilingshade, sec->ceilingpal),
sec->visibility, get_ceiling_fogpal(sec));
polymer_drawplane(&s->ceil);
}
} else if (!domasks && !queuedmask && cursectormaskcount &&
(sec->ceilingstat & 384)) {
// If we just skipped a mask, queue it for later
cursectormasks[(*cursectormaskcount)++] = sectnum;
}
if (pr_verbosity >= 3) OSD_Printf("PR : Finished drawing sector %i...\n", sectnum);
}
// WALLS
static int32_t polymer_initwall(int16_t wallnum)
{
_prwall *w;
if (pr_verbosity >= 2) OSD_Printf("PR : Initializing wall %i...\n", wallnum);
w = (_prwall *)Xcalloc(1, sizeof(_prwall));
if (w->mask.buffer == NULL) {
w->mask.buffer = (_prvert *)Xmalloc(4 * sizeof(_prvert));
w->mask.vertcount = 4;
}
if (w->bigportal == NULL)
w->bigportal = (GLfloat *)Xmalloc(4 * sizeof(GLfloat) * 5);
//if (w->cap == NULL)
// w->cap = (GLfloat *)Xmalloc(4 * sizeof(GLfloat) * 3);
bglGenBuffersARB(1, &w->wall.vbo);
bglGenBuffersARB(1, &w->over.vbo);
bglGenBuffersARB(1, &w->mask.vbo);
bglGenBuffersARB(1, &w->stuffvbo);
bglBindBufferARB(GL_ARRAY_BUFFER_ARB, w->wall.vbo);
bglBufferDataARB(GL_ARRAY_BUFFER_ARB, 4 * sizeof(GLfloat) * 5, NULL, mapvbousage);
bglBindBufferARB(GL_ARRAY_BUFFER_ARB, w->over.vbo);
bglBufferDataARB(GL_ARRAY_BUFFER_ARB, 4 * sizeof(GLfloat) * 5, NULL, mapvbousage);
bglBindBufferARB(GL_ARRAY_BUFFER_ARB, w->mask.vbo);
bglBufferDataARB(GL_ARRAY_BUFFER_ARB, 4 * sizeof(GLfloat) * 5, NULL, mapvbousage);
bglBindBufferARB(GL_ARRAY_BUFFER_ARB, w->stuffvbo);
bglBufferDataARB(GL_ARRAY_BUFFER_ARB, 8 * sizeof(GLfloat) * 5, NULL, mapvbousage);
bglBindBufferARB(GL_ARRAY_BUFFER_ARB, 0);
w->flags.empty = 1;
prwalls[wallnum] = w;
if (pr_verbosity >= 2) OSD_Printf("PR : Initialized wall %i.\n", wallnum);
return 1;
}
// TODO: r_npotwallmode. Needs polymost_is_npotmode() handling among others.
#define DAMETH_WALL 0
static float calc_ypancoef(char curypanning, int16_t curpicnum, int32_t dopancor)
{
#ifdef NEW_MAP_FORMAT
if (g_loadedMapVersion >= 10)
return curypanning / 256.0f;
#endif
{
float ypancoef = (float)(pow2long[picsiz[curpicnum] >> 4]);
if (ypancoef < tilesiz[curpicnum].y)
ypancoef *= 2;
if (dopancor)
{
int32_t yoffs = Blrintf((ypancoef - tilesiz[curpicnum].y) * (255.0f / ypancoef));
if (curypanning > 256 - yoffs)
curypanning -= yoffs;
}
ypancoef *= (float)curypanning / (256.0f * (float)tilesiz[curpicnum].y);
return ypancoef;
}
}
#define NBYTES_WALL_CSTAT_THROUGH_YPANNING \
(offsetof(walltype, ypanning)+sizeof(wall[0].ypanning) - offsetof(walltype, cstat))
static void polymer_updatewall(int16_t wallnum)
{
int16_t nwallnum, nnwallnum, curpicnum, wallpicnum, walloverpicnum, nwallpicnum;
char curxpanning, curypanning, underwall, overwall, curpal;
int8_t curshade;
walltype *wal;
sectortype *sec, *nsec;
_prwall *w;
_prsector *s, *ns;
int32_t xref, yref;
float ypancoef, dist;
int32_t i;
uint32_t invalid;
int32_t sectofwall = sectorofwall(wallnum);
if (pr_nullrender >= 3) return;
// yes, this function is messy and unefficient
// it also works, bitches
sec = &sector[sectofwall];
if (sectofwall < 0 || sectofwall >= numsectors ||
wallnum < 0 || wallnum > numwalls ||
sec->wallptr > wallnum || wallnum >= (sec->wallptr + sec->wallnum))
return; // yay, corrupt map
wal = &wall[wallnum];
nwallnum = wal->nextwall;
w = prwalls[wallnum];
s = prsectors[sectofwall];
invalid = s->invalidid;
if (nwallnum >= 0 && nwallnum < numwalls && wal->nextsector >= 0 && wal->nextsector < numsectors)
{
ns = prsectors[wal->nextsector];
invalid += ns->invalidid;
nsec = &sector[wal->nextsector];
}
else
{
ns = NULL;
nsec = NULL;
}
if (w->wall.buffer == NULL) {
w->wall.buffer = (_prvert *)Xcalloc(4, sizeof(_prvert)); // XXX
w->wall.vertcount = 4;
}
wallpicnum = wal->picnum;
DO_TILE_ANIM(wallpicnum, wallnum+16384);
walloverpicnum = wal->overpicnum;
if (walloverpicnum>=0)
DO_TILE_ANIM(walloverpicnum, wallnum+16384);
if (nwallnum >= 0 && nwallnum < numwalls)
{
nwallpicnum = wall[nwallnum].picnum;
DO_TILE_ANIM(nwallpicnum, wallnum+16384);
}
else
nwallpicnum = 0;
if ((!w->flags.empty) && (!w->flags.invalidtex) &&
(w->invalidid == invalid) &&
(wallpicnum == w->picnum_anim) &&
(walloverpicnum == w->overpicnum_anim) &&
#ifndef UNTRACKED_STRUCTS
(w->trackedrev == wallchanged[wallnum]) &&
#else
!Bmemcmp(&wal->cstat, &w->cstat, NBYTES_WALL_CSTAT_THROUGH_YPANNING) &&
#endif
((nwallnum < 0 || nwallnum > numwalls) ||
((nwallpicnum == w->nwallpicnum) &&
(wall[nwallnum].xpanning == w->nwallxpanning) &&
(wall[nwallnum].ypanning == w->nwallypanning) &&
(wall[nwallnum].cstat == w->nwallcstat) &&
(wall[nwallnum].shade == w->nwallshade))))
{
w->flags.uptodate = 1;
return; // screw you guys I'm going home
}
else
{
w->invalidid = invalid;
Bmemcpy(&w->cstat, &wal->cstat, NBYTES_WALL_CSTAT_THROUGH_YPANNING);
w->picnum_anim = wallpicnum;
w->overpicnum_anim = walloverpicnum;
#ifndef UNTRACKED_STRUCTS
w->trackedrev = wallchanged[wallnum];
#endif
if (nwallnum >= 0 && nwallnum < numwalls)
{
w->nwallpicnum = nwallpicnum;
w->nwallxpanning = wall[nwallnum].xpanning;
w->nwallypanning = wall[nwallnum].ypanning;
w->nwallcstat = wall[nwallnum].cstat;
w->nwallshade = wall[nwallnum].shade;
}
}
w->underover = underwall = overwall = 0;
if (wal->cstat & 8)
xref = 1;
else
xref = 0;
if ((unsigned)wal->nextsector >= (unsigned)numsectors || !ns)
{
Bmemcpy(w->wall.buffer, &s->floor.buffer[wallnum - sec->wallptr], sizeof(GLfloat) * 3);
Bmemcpy(&w->wall.buffer[1], &s->floor.buffer[wal->point2 - sec->wallptr], sizeof(GLfloat) * 3);
Bmemcpy(&w->wall.buffer[2], &s->ceil.buffer[wal->point2 - sec->wallptr], sizeof(GLfloat) * 3);
Bmemcpy(&w->wall.buffer[3], &s->ceil.buffer[wallnum - sec->wallptr], sizeof(GLfloat) * 3);
if (wal->nextsector < 0)
curpicnum = wallpicnum;
else
curpicnum = walloverpicnum;
w->wall.bucket = polymer_getbuildmaterial(&w->wall.material, curpicnum, wal->pal, wal->shade, sec->visibility, DAMETH_WALL);
if (wal->cstat & 4)
yref = sec->floorz;
else
yref = sec->ceilingz;
if ((wal->cstat & 32) && (wal->nextsector >= 0))
{
if ((!(wal->cstat & 2) && (wal->cstat & 4)) || ((wal->cstat & 2) && (wall[nwallnum].cstat & 4)))
yref = sec->ceilingz;
else
yref = nsec->floorz;
}
if (wal->ypanning)
// white (but not 1-way)
ypancoef = calc_ypancoef(wal->ypanning, curpicnum, !(wal->cstat & 4));
else
ypancoef = 0;
i = 0;
while (i < 4)
{
if ((i == 0) || (i == 3))
dist = (float)xref;
else
dist = (float)(xref == 0);
w->wall.buffer[i].u = ((dist * 8.0f * wal->xrepeat) + wal->xpanning) / (float)(tilesiz[curpicnum].x);
w->wall.buffer[i].v = (-(float)(yref + (w->wall.buffer[i].y * 16)) / ((tilesiz[curpicnum].y * 2048.0f) / (float)(wal->yrepeat))) + ypancoef;
if (wal->cstat & 256) w->wall.buffer[i].v = -w->wall.buffer[i].v;
i++;
}
w->underover |= 1;
}
else
{
nnwallnum = wall[nwallnum].point2;
if ((s->floor.buffer[wallnum - sec->wallptr].y < ns->floor.buffer[nnwallnum - nsec->wallptr].y) ||
(s->floor.buffer[wal->point2 - sec->wallptr].y < ns->floor.buffer[nwallnum - nsec->wallptr].y))
underwall = 1;
if ((underwall) || (wal->cstat & 16) || (wal->cstat & 32))
{
int32_t refwall;
if (s->floor.buffer[wallnum - sec->wallptr].y < ns->floor.buffer[nnwallnum - nsec->wallptr].y)
Bmemcpy(w->wall.buffer, &s->floor.buffer[wallnum - sec->wallptr], sizeof(GLfloat) * 3);
else
Bmemcpy(w->wall.buffer, &ns->floor.buffer[nnwallnum - nsec->wallptr], sizeof(GLfloat) * 3);
Bmemcpy(&w->wall.buffer[1], &s->floor.buffer[wal->point2 - sec->wallptr], sizeof(GLfloat) * 3);
Bmemcpy(&w->wall.buffer[2], &ns->floor.buffer[nwallnum - nsec->wallptr], sizeof(GLfloat) * 3);
Bmemcpy(&w->wall.buffer[3], &ns->floor.buffer[nnwallnum - nsec->wallptr], sizeof(GLfloat) * 3);
if (wal->cstat & 2)
refwall = nwallnum;
else
refwall = wallnum;
curpicnum = (wal->cstat & 2) ? nwallpicnum : wallpicnum;
curpal = wall[refwall].pal;
curshade = wall[refwall].shade;
curxpanning = wall[refwall].xpanning;
curypanning = wall[refwall].ypanning;
w->wall.bucket = polymer_getbuildmaterial(&w->wall.material, curpicnum, curpal, curshade, sec->visibility, DAMETH_WALL);
if (!(wall[refwall].cstat&4))
yref = nsec->floorz;
else
yref = sec->ceilingz;
if (curypanning)
// under
ypancoef = calc_ypancoef(curypanning, curpicnum, !(wall[refwall].cstat & 4));
else
ypancoef = 0;
i = 0;
while (i < 4)
{
if ((i == 0) || (i == 3))
dist = (float)xref;
else
dist = (float)(xref == 0);
w->wall.buffer[i].u = ((dist * 8.0f * wal->xrepeat) + curxpanning) / (float)(tilesiz[curpicnum].x);
w->wall.buffer[i].v = (-(float)(yref + (w->wall.buffer[i].y * 16)) / ((tilesiz[curpicnum].y * 2048.0f) / (float)(wal->yrepeat))) + ypancoef;
if ((!(wal->cstat & 2) && (wal->cstat & 256)) ||
((wal->cstat & 2) && (wall[nwallnum].cstat & 256)))
w->wall.buffer[i].v = -w->wall.buffer[i].v;
i++;
}
if (underwall)
w->underover |= 1;
Bmemcpy(w->mask.buffer, &w->wall.buffer[3], sizeof(GLfloat) * 5);
Bmemcpy(&w->mask.buffer[1], &w->wall.buffer[2], sizeof(GLfloat) * 5);
}
else
{
Bmemcpy(w->mask.buffer, &s->floor.buffer[wallnum - sec->wallptr], sizeof(GLfloat) * 5);
Bmemcpy(&w->mask.buffer[1], &s->floor.buffer[wal->point2 - sec->wallptr], sizeof(GLfloat) * 5);
}
if ((s->ceil.buffer[wallnum - sec->wallptr].y > ns->ceil.buffer[nnwallnum - nsec->wallptr].y) ||
(s->ceil.buffer[wal->point2 - sec->wallptr].y > ns->ceil.buffer[nwallnum - nsec->wallptr].y))
overwall = 1;
if ((overwall) || (wal->cstat & 48))
{
if (w->over.buffer == NULL) {
w->over.buffer = (_prvert *)Xmalloc(4 * sizeof(_prvert));
w->over.vertcount = 4;
}
Bmemcpy(w->over.buffer, &ns->ceil.buffer[nnwallnum - nsec->wallptr], sizeof(GLfloat) * 3);
Bmemcpy(&w->over.buffer[1], &ns->ceil.buffer[nwallnum - nsec->wallptr], sizeof(GLfloat) * 3);
if (s->ceil.buffer[wal->point2 - sec->wallptr].y > ns->ceil.buffer[nwallnum - nsec->wallptr].y)
Bmemcpy(&w->over.buffer[2], &s->ceil.buffer[wal->point2 - sec->wallptr], sizeof(GLfloat) * 3);
else
Bmemcpy(&w->over.buffer[2], &ns->ceil.buffer[nwallnum - nsec->wallptr], sizeof(GLfloat) * 3);
Bmemcpy(&w->over.buffer[3], &s->ceil.buffer[wallnum - sec->wallptr], sizeof(GLfloat) * 3);
if ((wal->cstat & 16) || (wal->overpicnum == 0))
curpicnum = wallpicnum;
else
curpicnum = wallpicnum;
w->over.bucket = polymer_getbuildmaterial(&w->over.material, curpicnum, wal->pal, wal->shade, sec->visibility, DAMETH_WALL);
if (wal->cstat & 48)
{
// mask
w->mask.bucket = polymer_getbuildmaterial(&w->mask.material, walloverpicnum, wal->pal, wal->shade, sec->visibility, DAMETH_WALL | ((wal->cstat & 48) == 48 ? DAMETH_NOMASK : DAMETH_MASK));
if (wal->cstat & 128)
{
if (wal->cstat & 512)
w->mask.material.diffusemodulation[3] = 0x55;
else
w->mask.material.diffusemodulation[3] = 0xAA;
}
}
if (wal->cstat & 4)
yref = sec->ceilingz;
else
yref = nsec->ceilingz;
if (wal->ypanning)
// over
ypancoef = calc_ypancoef(wal->ypanning, curpicnum, wal->cstat & 4);
else
ypancoef = 0;
i = 0;
while (i < 4)
{
if ((i == 0) || (i == 3))
dist = (float)xref;
else
dist = (float)(xref == 0);
w->over.buffer[i].u = ((dist * 8.0f * wal->xrepeat) + wal->xpanning) / (float)(tilesiz[curpicnum].x);
w->over.buffer[i].v = (-(float)(yref + (w->over.buffer[i].y * 16)) / ((tilesiz[curpicnum].y * 2048.0f) / (float)(wal->yrepeat))) + ypancoef;
if (wal->cstat & 256) w->over.buffer[i].v = -w->over.buffer[i].v;
i++;
}
if (overwall)
w->underover |= 2;
Bmemcpy(&w->mask.buffer[2], &w->over.buffer[1], sizeof(GLfloat) * 5);
Bmemcpy(&w->mask.buffer[3], &w->over.buffer[0], sizeof(GLfloat) * 5);
if ((wal->cstat & 16) || (wal->cstat & 32))
{
const int botSwap = (wal->cstat & 4);
if (wal->cstat & 32)
{
// 1-sided wall
if (nsec)
yref = botSwap ? sec->ceilingz : nsec->ceilingz;
else
yref = botSwap ? sec->floorz : sec->ceilingz;
}
else
{
// masked wall
if (botSwap)
yref = min(sec->floorz, nsec->floorz);
else
yref = max(sec->ceilingz, nsec->ceilingz);
}
curpicnum = walloverpicnum;
if (wal->ypanning)
// mask / 1-way
ypancoef = calc_ypancoef(wal->ypanning, curpicnum, 0);
else
ypancoef = 0;
i = 0;
while (i < 4)
{
if ((i == 0) || (i == 3))
dist = (float)xref;
else
dist = (float)(xref == 0);
w->mask.buffer[i].u = ((dist * 8.0f * wal->xrepeat) + wal->xpanning) / (float)(tilesiz[curpicnum].x);
w->mask.buffer[i].v = (-(float)(yref + (w->mask.buffer[i].y * 16)) / ((tilesiz[curpicnum].y * 2048.0f) / (float)(wal->yrepeat))) + ypancoef;
if (wal->cstat & 256) w->mask.buffer[i].v = -w->mask.buffer[i].v;
i++;
}
}
}
else
{
Bmemcpy(&w->mask.buffer[2], &s->ceil.buffer[wal->point2 - sec->wallptr], sizeof(GLfloat) * 5);
Bmemcpy(&w->mask.buffer[3], &s->ceil.buffer[wallnum - sec->wallptr], sizeof(GLfloat) * 5);
}
}
// make sure shade color handling is correct below XXX
if (wal->nextsector < 0)
Bmemcpy(w->mask.buffer, w->wall.buffer, sizeof(_prvert) * 4);
Bmemcpy(w->bigportal, &s->floor.buffer[wallnum - sec->wallptr], sizeof(GLfloat) * 3);
Bmemcpy(&w->bigportal[5], &s->floor.buffer[wal->point2 - sec->wallptr], sizeof(GLfloat) * 3);
Bmemcpy(&w->bigportal[10], &s->ceil.buffer[wal->point2 - sec->wallptr], sizeof(GLfloat) * 3);
Bmemcpy(&w->bigportal[15], &s->ceil.buffer[wallnum - sec->wallptr], sizeof(GLfloat) * 3);
//Bmemcpy(&w->cap[0], &s->ceil.buffer[wallnum - sec->wallptr], sizeof(GLfloat) * 3);
//Bmemcpy(&w->cap[3], &s->ceil.buffer[wal->point2 - sec->wallptr], sizeof(GLfloat) * 3);
//Bmemcpy(&w->cap[6], &s->ceil.buffer[wal->point2 - sec->wallptr], sizeof(GLfloat) * 3);
//Bmemcpy(&w->cap[9], &s->ceil.buffer[wallnum - sec->wallptr], sizeof(GLfloat) * 3);
//w->cap[7] += 1048576; // this number is the result of 1048574 + 2
//w->cap[10] += 1048576; // this one is arbitrary
if (w->underover & 1)
polymer_computeplane(&w->wall);
if (w->underover & 2)
polymer_computeplane(&w->over);
polymer_computeplane(&w->mask);
if ((pr_vbos > 0))
{
if (pr_nullrender < 2)
{
const GLintptrARB thiswalloffset = prwalldataoffset + (prwalldatasize * wallnum);
const GLintptrARB thisoveroffset = thiswalloffset + proneplanesize;
const GLintptrARB thismaskoffset = thisoveroffset + proneplanesize;
bglBindBufferARB(GL_ARRAY_BUFFER_ARB, prmapvbo);
bglBufferSubDataARB(GL_ARRAY_BUFFER_ARB, thiswalloffset, proneplanesize, w->wall.buffer);
bglBindBufferARB(GL_ARRAY_BUFFER_ARB, prmapvbo);
if (w->over.buffer)
bglBufferSubDataARB(GL_ARRAY_BUFFER_ARB, thisoveroffset, proneplanesize, w->over.buffer);
bglBindBufferARB(GL_ARRAY_BUFFER_ARB, prmapvbo);
bglBufferSubDataARB(GL_ARRAY_BUFFER_ARB, thismaskoffset, proneplanesize, w->mask.buffer);
bglBindBufferARB(GL_ARRAY_BUFFER_ARB, w->stuffvbo);
bglBufferSubDataARB(GL_ARRAY_BUFFER_ARB, 0, 4 * sizeof(GLfloat)* 5, w->bigportal);
//bglBufferSubDataARB(GL_ARRAY_BUFFER_ARB, 4 * sizeof(GLfloat)* 5, 4 * sizeof(GLfloat)* 3, w->cap);
bglBindBufferARB(GL_ARRAY_BUFFER_ARB, 0);
w->wall.mapvbo_vertoffset = thiswalloffset / sizeof(_prvert);
w->over.mapvbo_vertoffset = thisoveroffset / sizeof(_prvert);
w->mask.mapvbo_vertoffset = thismaskoffset / sizeof(_prvert);
}
}
else
{
w->wall.mapvbo_vertoffset = -1;
w->over.mapvbo_vertoffset = -1;
w->mask.mapvbo_vertoffset = -1;
}
w->flags.empty = 0;
w->flags.uptodate = 1;
w->flags.invalidtex = 0;
if (pr_verbosity >= 3) OSD_Printf("PR : Updated wall %i.\n", wallnum);
}
static void polymer_drawwall(int16_t sectnum, int16_t wallnum)
{
usectortype *sec;
walltype *wal;
_prwall *w;
GLubyte oldcolor[4];
int32_t parallaxedfloor = 0, parallaxedceiling = 0;
if (pr_verbosity >= 3) OSD_Printf("PR : Drawing wall %i...\n", wallnum);
sec = (usectortype *)&sector[sectnum];
wal = &wall[wallnum];
w = prwalls[wallnum];
if ((sec->floorstat & 1) && (wal->nextsector >= 0) &&
(sector[wal->nextsector].floorstat & 1))
parallaxedfloor = 1;
if ((sec->ceilingstat & 1) && (wal->nextsector >= 0) &&
(sector[wal->nextsector].ceilingstat & 1))
parallaxedceiling = 1;
calc_and_apply_fog(wal->picnum, fogshade(wal->shade, wal->pal), sec->visibility, get_floor_fogpal(sec));
if ((w->underover & 1) && (!parallaxedfloor || (searchit == 2)))
{
if (searchit == 2) {
polymer_drawsearchplane(&w->wall, oldcolor, 0x05, (GLubyte *) &wallnum);
}
else
polymer_drawplane(&w->wall);
}
if ((w->underover & 2) && (!parallaxedceiling || (searchit == 2)))
{
if (searchit == 2) {
polymer_drawsearchplane(&w->over, oldcolor, 0x00, (GLubyte *) &wallnum);
}
else
polymer_drawplane(&w->over);
}
if ((wall[wallnum].cstat & 32) && (wall[wallnum].nextsector >= 0))
{
if (searchit == 2) {
polymer_drawsearchplane(&w->mask, oldcolor, 0x04, (GLubyte *) &wallnum);
}
else
polymer_drawplane(&w->mask);
}
//if (!searchit && (sector[sectnum].ceilingstat & 1) &&
// ((wall[wallnum].nextsector < 0) ||
// !(sector[wall[wallnum].nextsector].ceilingstat & 1)))
//{
// bglColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE);
// if (pr_vbos)
// {
// bglBindBufferARB(GL_ARRAY_BUFFER_ARB, w->stuffvbo);
// bglVertexPointer(3, GL_FLOAT, 0, (const GLvoid*)(4 * sizeof(GLfloat) * 5));
// }
// else
// bglVertexPointer(3, GL_FLOAT, 0, w->cap);
// bglDrawArrays(GL_QUADS, 0, 4);
// if (pr_vbos)
// bglBindBufferARB(GL_ARRAY_BUFFER_ARB, 0);
// bglColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
//}
if (pr_verbosity >= 3) OSD_Printf("PR : Finished drawing wall %i...\n", wallnum);
}
// HSR
static void polymer_computeplane(_prplane* p)
{
GLfloat vec1[5], vec2[5], norm, r;// BxN[3], NxT[3], TxB[3];
int32_t i;
_prvert* buffer;
GLfloat* plane;
if (p->indices && (p->indicescount < 3))
return; // corrupt sector (E3L4, I'm looking at you)
buffer = p->buffer;
plane = p->plane;
i = 0;
do
{
vec1[0] = buffer[(INDICE(1))].x - buffer[(INDICE(0))].x; //x1
vec1[1] = buffer[(INDICE(1))].y - buffer[(INDICE(0))].y; //y1
vec1[2] = buffer[(INDICE(1))].z - buffer[(INDICE(0))].z; //z1
vec1[3] = buffer[(INDICE(1))].u - buffer[(INDICE(0))].u; //s1
vec1[4] = buffer[(INDICE(1))].v - buffer[(INDICE(0))].v; //t1
vec2[0] = buffer[(INDICE(2))].x - buffer[(INDICE(1))].x; //x2
vec2[1] = buffer[(INDICE(2))].y - buffer[(INDICE(1))].y; //y2
vec2[2] = buffer[(INDICE(2))].z - buffer[(INDICE(1))].z; //z2
vec2[3] = buffer[(INDICE(2))].u - buffer[(INDICE(1))].u; //s2
vec2[4] = buffer[(INDICE(2))].v - buffer[(INDICE(1))].v; //t2
polymer_crossproduct(vec2, vec1, plane);
norm = plane[0] * plane[0] + plane[1] * plane[1] + plane[2] * plane[2];
// hack to work around a precision issue with slopes
if (norm >= 15000)
{
float tangent[3][3];
double det;
// normalize the normal/plane equation and calculate its plane norm
norm = -sqrt(norm);
norm = 1.0 / norm;
plane[0] *= norm;
plane[1] *= norm;
plane[2] *= norm;
plane[3] = -(plane[0] * buffer->x + plane[1] * buffer->y + plane[2] * buffer->z);
// calculate T and B
r = 1.0 / (vec1[3] * vec2[4] - vec2[3] * vec1[4]);
// tangent
tangent[0][0] = (vec2[4] * vec1[0] - vec1[4] * vec2[0]) * r;
tangent[0][1] = (vec2[4] * vec1[1] - vec1[4] * vec2[1]) * r;
tangent[0][2] = (vec2[4] * vec1[2] - vec1[4] * vec2[2]) * r;
polymer_normalize(&tangent[0][0]);
// bitangent
tangent[1][0] = (vec1[3] * vec2[0] - vec2[3] * vec1[0]) * r;
tangent[1][1] = (vec1[3] * vec2[1] - vec2[3] * vec1[1]) * r;
tangent[1][2] = (vec1[3] * vec2[2] - vec2[3] * vec1[2]) * r;
polymer_normalize(&tangent[1][0]);
// normal
tangent[2][0] = plane[0];
tangent[2][1] = plane[1];
tangent[2][2] = plane[2];
INVERT_3X3(p->tbn, det, tangent);
break;
}
i+= (p->indices) ? 3 : 1;
}
while ((p->indices && i < p->indicescount) ||
(!p->indices && i < p->vertcount));
}
static inline void polymer_crossproduct(GLfloat* in_a, GLfloat* in_b, GLfloat* out)
{
out[0] = in_a[1] * in_b[2] - in_a[2] * in_b[1];
out[1] = in_a[2] * in_b[0] - in_a[0] * in_b[2];
out[2] = in_a[0] * in_b[1] - in_a[1] * in_b[0];
}
static inline void polymer_transformpoint(const float* inpos, float* pos, float* matrix)
{
pos[0] = inpos[0] * matrix[0] +
inpos[1] * matrix[4] +
inpos[2] * matrix[8] +
+ matrix[12];
pos[1] = inpos[0] * matrix[1] +
inpos[1] * matrix[5] +
inpos[2] * matrix[9] +
+ matrix[13];
pos[2] = inpos[0] * matrix[2] +
inpos[1] * matrix[6] +
inpos[2] * matrix[10] +
+ matrix[14];
}
static inline void polymer_normalize(float* vec)
{
double norm;
norm = vec[0] * vec[0] + vec[1] * vec[1] + vec[2] * vec[2];
norm = sqrt(norm);
norm = 1.0 / norm;
vec[0] *= norm;
vec[1] *= norm;
vec[2] *= norm;
}
static inline void polymer_pokesector(int16_t sectnum)
{
sectortype *sec = &sector[sectnum];
_prsector *s = prsectors[sectnum];
walltype *wal = &wall[sec->wallptr];
int32_t i = 0;
if (!s->flags.uptodate)
polymer_updatesector(sectnum);
do
{
if ((wal->nextsector >= 0) && (!prsectors[wal->nextsector]->flags.uptodate))
polymer_updatesector(wal->nextsector);
if (!prwalls[sec->wallptr + i]->flags.uptodate)
polymer_updatewall(sec->wallptr + i);
i++;
wal = &wall[sec->wallptr + i];
}
while (i < sec->wallnum);
}
static void polymer_extractfrustum(GLfloat* modelview, GLfloat* projection, float* frustum)
{
GLfloat matrix[16];
int32_t i;
bglMatrixMode(GL_TEXTURE);
bglLoadMatrixf(projection);
bglMultMatrixf(modelview);
bglGetFloatv(GL_TEXTURE_MATRIX, matrix);
bglLoadIdentity();
bglMatrixMode(GL_MODELVIEW);
i = 0;
do
{
uint32_t ii = i<<2, iii = (i<<2) + 3;
frustum[i] = matrix[iii] + matrix[ii]; // left
frustum[i + 4] = matrix[iii] - matrix[ii]; // right
frustum[i + 8] = matrix[iii] - matrix[ii + 1]; // top
frustum[i + 12] = matrix[iii] + matrix[ii + 1]; // bottom
frustum[i + 16] = matrix[iii] - matrix[ii + 2]; // far
}
while (++i < 4);
if (pr_verbosity >= 3) OSD_Printf("PR : Frustum extracted.\n");
}
static inline int32_t polymer_planeinfrustum(_prplane *plane, float* frustum)
{
int32_t i, j, k = -1;
i = 4;
do
{
int32_t ii = i * 4;
j = k = plane->vertcount - 1;
do
{
k -= ((frustum[ii + 0] * plane->buffer[j].x +
frustum[ii + 1] * plane->buffer[j].y +
frustum[ii + 2] * plane->buffer[j].z +
frustum[ii + 3]) < 0.f);
}
while (j--);
if (k == -1)
return 0; // OUT !
}
while (i--);
return 1;
}
static inline void polymer_scansprites(int16_t sectnum, uspritetype* localtsprite, int32_t* localspritesortcnt)
{
int32_t i;
spritetype *spr;
for (i = headspritesect[sectnum];i >=0;i = nextspritesect[i])
{
spr = &sprite[i];
if ((((spr->cstat&0x8000) == 0) || (showinvisibility)) &&
(spr->xrepeat > 0) && (spr->yrepeat > 0) &&
(*localspritesortcnt < maxspritesonscreen))
{
// this function's localtsprite is either the tsprite global or
// polymer_drawroom's locattsprite, so no aliasing
Bmemcpy(&localtsprite[*localspritesortcnt], spr, sizeof(spritetype));
localtsprite[*localspritesortcnt].extra = 0;
localtsprite[(*localspritesortcnt)++].owner = i;
}
}
}
void polymer_updatesprite(int32_t snum)
{
int32_t xsize, ysize, i, j;
int32_t tilexoff, tileyoff, xoff, yoff, centeryoff=0;
uspritetype *tspr = tspriteptr[snum];
float xratio, yratio, ang;
float spos[3];
const _prvert *inbuffer;
uint8_t flipu, flipv;
_prsprite *s;
const uint32_t cs = tspr->cstat;
const uint32_t alignmask = (cs & SPR_ALIGN_MASK);
const uint8_t flooraligned = (alignmask==SPR_FLOOR);
if (pr_nullrender >= 3) return;
if (pr_verbosity >= 3) OSD_Printf("PR : Updating sprite %i...\n", snum);
int32_t const curpicnum = tspr->picnum;
if (tspr->owner < 0 || curpicnum < 0) return;
s = prsprites[tspr->owner];
if (s == NULL)
{
s = prsprites[tspr->owner] = (_prsprite *)Xcalloc(sizeof(_prsprite), 1);
s->plane.buffer = (_prvert *)Xcalloc(4, sizeof(_prvert)); // XXX
s->plane.vertcount = 4;
s->plane.mapvbo_vertoffset = -1;
s->hash = 0xDEADBEEF;
}
if ((tspr->cstat & 48) && (pr_vbos > 0) && !s->plane.vbo)
{
if (pr_nullrender < 2)
{
bglGenBuffersARB(1, &s->plane.vbo);
bglBindBufferARB(GL_ARRAY_BUFFER_ARB, s->plane.vbo);
bglBufferDataARB(GL_ARRAY_BUFFER_ARB, 4 * sizeof(_prvert), NULL, mapvbousage);
}
}
if (tspr->cstat & 48 && searchit != 2)
{
uint32_t const changed = XXH32((uint8_t *) tspr, offsetof(spritetype, owner), 0xDEADBEEF);
if (changed == s->hash)
return;
s->hash = changed;
}
polymer_getbuildmaterial(&s->plane.material, curpicnum, tspr->pal, tspr->shade,
sector[tspr->sectnum].visibility, DAMETH_MASK | DAMETH_CLAMPED);
if (tspr->cstat & 2)
{
if (tspr->cstat & 512)
s->plane.material.diffusemodulation[3] = 0x55;
else
s->plane.material.diffusemodulation[3] = 0xAA;
}
float f = s->plane.material.diffusemodulation[3] * (1.0f - spriteext[tspr->owner].alpha);
s->plane.material.diffusemodulation[3] = (GLubyte)f;
if (searchit == 2)
{
polymer_setupdiffusemodulation(&s->plane, 0x03, (GLubyte *) &tspr->owner);
s->hash = 0xDEADBEEF;
}
if (((tspr->cstat>>4) & 3) == 0)
xratio = (float)(tspr->xrepeat) * 0.20f; // 32 / 160
else
xratio = (float)(tspr->xrepeat) * 0.25f;
yratio = (float)(tspr->yrepeat) * 0.25f;
xsize = tilesiz[curpicnum].x;
ysize = tilesiz[curpicnum].y;
if (usehightile && h_xsize[curpicnum])
{
xsize = h_xsize[curpicnum];
ysize = h_ysize[curpicnum];
}
xsize = (int32_t)(xsize * xratio);
ysize = (int32_t)(ysize * yratio);
tilexoff = (int32_t)tspr->xoffset;
tileyoff = (int32_t)tspr->yoffset;
tilexoff += (usehightile && h_xsize[curpicnum]) ? h_xoffs[curpicnum] : picanm[curpicnum].xofs;
tileyoff += (usehightile && h_xsize[curpicnum]) ? h_yoffs[curpicnum] : picanm[curpicnum].yofs;
xoff = (int32_t)(tilexoff * xratio);
yoff = (int32_t)(tileyoff * yratio);
if ((tspr->cstat & 128) && !flooraligned)
{
if (alignmask == 0)
yoff -= ysize / 2;
else
centeryoff = ysize / 2;
}
spos[0] = (float)tspr->y;
spos[1] = -(float)(tspr->z) / 16.0f;
spos[2] = -(float)tspr->x;
bglMatrixMode(GL_MODELVIEW);
bglPushMatrix();
bglLoadIdentity();
inbuffer = vertsprite;
{
const uint8_t xflip = !!(cs & SPR_XFLIP);
const uint8_t yflip = !!(cs & SPR_YFLIP);
// Initially set flipu and flipv.
flipu = (xflip ^ flooraligned);
flipv = (yflip && !flooraligned);
if (pr_billboardingmode && alignmask==0)
{
// do surgery on the face tspr to make it look like a wall sprite
tspr->cstat |= 16;
tspr->ang = (viewangle + 1024) & 2047;
}
if (flipu)
xoff = -xoff;
if (yflip && alignmask!=0)
yoff = -yoff;
}
switch (tspr->cstat & SPR_ALIGN_MASK)
{
case 0:
ang = (float)((viewangle) & 2047) * (360.f/2048.f);
bglTranslatef(spos[0], spos[1], spos[2]);
bglRotatef(-ang, 0.0f, 1.0f, 0.0f);
bglRotatef(-horizang, 1.0f, 0.0f, 0.0f);
bglTranslatef((float)(-xoff), (float)(yoff), 0.0f);
bglScalef((float)(xsize), (float)(ysize), 1.0f);
break;
case SPR_WALL:
ang = (float)((tspr->ang + 1024) & 2047) * (360.f/2048.f);
bglTranslatef(spos[0], spos[1], spos[2]);
bglRotatef(-ang, 0.0f, 1.0f, 0.0f);
bglTranslatef((float)(-xoff), (float)(yoff-centeryoff), 0.0f);
bglScalef((float)(xsize), (float)(ysize), 1.0f);
break;
case SPR_FLOOR:
ang = (float)((tspr->ang + 1024) & 2047) * (360.f/2048.f);
bglTranslatef(spos[0], spos[1], spos[2]);
bglRotatef(-ang, 0.0f, 1.0f, 0.0f);
bglTranslatef((float)(-xoff), 1.0f, (float)(yoff));
bglScalef((float)(xsize), 1.0f, (float)(ysize));
inbuffer = horizsprite;
break;
}
bglGetFloatv(GL_MODELVIEW_MATRIX, spritemodelview);
bglPopMatrix();
Bmemcpy(s->plane.buffer, inbuffer, sizeof(_prvert) * 4);
if (flipu || flipv)
{
i = 0;
do
{
if (flipu)
s->plane.buffer[i].u =
(s->plane.buffer[i].u - 1.0f) * -1.0f;
if (flipv)
s->plane.buffer[i].v =
(s->plane.buffer[i].v - 1.0f) * -1.0f;
}
while (++i < 4);
}
i = 0;
do
polymer_transformpoint(&inbuffer[i].x, &s->plane.buffer[i].x, spritemodelview);
while (++i < 4);
polymer_computeplane(&s->plane);
if (pr_nullrender < 2)
{
if (alignmask && (pr_vbos > 0))
{
bglBindBufferARB(GL_ARRAY_BUFFER_ARB, s->plane.vbo);
bglBufferSubDataARB(GL_ARRAY_BUFFER_ARB, 0, 4 * sizeof(_prvert), s->plane.buffer);
bglBindBufferARB(GL_ARRAY_BUFFER_ARB, 0);
}
else if (s->plane.vbo) // clean up the vbo if a wall/floor sprite becomes a face sprite
{
bglDeleteBuffersARB(1, &s->plane.vbo);
s->plane.vbo = 0;
}
}
if (alignmask)
{
int32_t curpriority = 0;
polymer_resetplanelights(&s->plane);
while (curpriority < pr_maxlightpriority)
{
i = j = 0;
while (j < lightcount)
{
while (!prlights[i].flags.active)
i++;
if (prlights[i].priority != curpriority)
{
i++;
j++;
continue;
}
if (polymer_planeinlight(&s->plane, &prlights[i]))
polymer_addplanelight(&s->plane, i);
i++;
j++;
}
curpriority++;
}
}
}
// SKIES
static void polymer_getsky(void)
{
int32_t i;
i = 0;
while (i < numsectors)
{
if (sector[i].ceilingstat & 1)
{
int32_t horizfrac;
cursky = sector[i].ceilingpicnum;
curskypal = sector[i].ceilingpal;
curskyshade = sector[i].ceilingshade;
getpsky(cursky, &horizfrac, NULL, NULL, NULL);
switch (horizfrac)
{
case 0:
// psky always at same level wrt screen
curskyangmul = 0.f;
break;
case 65536:
// psky horiz follows camera horiz
curskyangmul = 1.f;
break;
default:
// sky has hard-coded parallax
curskyangmul = 1/DEFAULT_ARTSKY_ANGDIV;
break;
}
return;
}
i++;
}
}
void polymer_drawsky(int16_t tilenum, char palnum, int8_t shade)
{
float pos[3];
pthtyp* pth;
pos[0] = fglobalposy;
pos[1] = fglobalposz * (-1.f/16.f);
pos[2] = -fglobalposx;
bglPushMatrix();
bglLoadIdentity();
bglLoadMatrixf(curskymodelviewmatrix);
bglTranslatef(pos[0], pos[1], pos[2]);
bglScalef(1000.0f, 1000.0f, 1000.0f);
drawingskybox = 1;
pth = texcache_fetch(tilenum, 0, 0, DAMETH_NOMASK);
drawingskybox = 0;
if (pth && (pth->flags & PTH_SKYBOX))
polymer_drawskybox(tilenum, palnum, shade);
else
polymer_drawartsky(tilenum, palnum, shade);
bglPopMatrix();
}
static void polymer_initartsky(void)
{
GLfloat halfsqrt2 = 0.70710678f;
artskydata[0] = -1.0f; artskydata[1] = 0.0f; // 0
artskydata[2] = -halfsqrt2; artskydata[3] = halfsqrt2; // 1
artskydata[4] = 0.0f; artskydata[5] = 1.0f; // 2
artskydata[6] = halfsqrt2; artskydata[7] = halfsqrt2; // 3
artskydata[8] = 1.0f; artskydata[9] = 0.0f; // 4
artskydata[10] = halfsqrt2; artskydata[11] = -halfsqrt2; // 5
artskydata[12] = 0.0f; artskydata[13] = -1.0f; // 6
artskydata[14] = -halfsqrt2; artskydata[15] = -halfsqrt2; // 7
}
static void polymer_drawartsky(int16_t tilenum, char palnum, int8_t shade)
{
pthtyp* pth;
GLuint glpics[PSKYOFF_MAX+1];
GLfloat glcolors[PSKYOFF_MAX+1][3];
int32_t i, j;
GLfloat height = 2.45f / 2.0f;
int32_t dapskybits;
const int8_t *dapskyoff = getpsky(tilenum, NULL, &dapskybits, NULL, NULL);
const int32_t numskytilesm1 = (1<<dapskybits)-1;
i = 0;
while (i <= PSKYOFF_MAX)
{
int16_t picnum = tilenum + i;
// Prevent oob by bad user input:
if (picnum >= MAXTILES)
picnum = MAXTILES-1;
DO_TILE_ANIM(picnum, 0);
if (!waloff[picnum])
loadtile(picnum);
pth = texcache_fetch(picnum, palnum, 0, DAMETH_NOMASK);
glpics[i] = pth ? pth->glpic : 0;
glcolors[i][0] = glcolors[i][1] = glcolors[i][2] = getshadefactor(shade);
if (pth)
{
// tinting
polytintflags_t const tintflags = hictinting[palnum].f;
if (!(tintflags & HICTINT_PRECOMPUTED))
{
if (pth->flags & PTH_HIGHTILE)
{
if (pth->palnum != palnum || (pth->effects & HICTINT_IN_MEMORY) || (tintflags & HICTINT_APPLYOVERALTPAL))
hictinting_apply(glcolors[i], palnum);
}
else if (tintflags & (HICTINT_USEONART|HICTINT_ALWAYSUSEART))
hictinting_apply(glcolors[i], palnum);
}
// global tinting
if ((pth->flags & PTH_HIGHTILE) && have_basepal_tint())
hictinting_apply(glcolors[i], MAXPALOOKUPS-1);
globaltinting_apply(glcolors[i]);
}
i++;
}
i = 0;
j = 8; // In Polymer, an ART sky has always 8 sides...
while (i < j)
{
GLint oldswrap;
// ... but in case a multi-psky specifies less than 8, repeat cyclically:
const int8_t tileofs = dapskyoff[i&numskytilesm1];
bglColor4f(glcolors[tileofs][0], glcolors[tileofs][1], glcolors[tileofs][2], 1.0f);
bglBindTexture(GL_TEXTURE_2D, glpics[tileofs]);
bglGetTexParameteriv(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, &oldswrap);
bglTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, glinfo.clamptoedge?GL_CLAMP_TO_EDGE:GL_CLAMP);
polymer_drawartskyquad(i, (i + 1) & (j - 1), height);
bglTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, oldswrap);
i++;
}
}
static void polymer_drawartskyquad(int32_t p1, int32_t p2, GLfloat height)
{
bglBegin(GL_QUADS);
bglTexCoord2f(0.0f, 0.0f);
//OSD_Printf("PR: drawing %f %f %f\n", skybox[(p1 * 2) + 1], height, skybox[p1 * 2]);
bglVertex3f(artskydata[(p1 * 2) + 1], height, artskydata[p1 * 2]);
bglTexCoord2f(0.0f, 1.0f);
//OSD_Printf("PR: drawing %f %f %f\n", skybox[(p1 * 2) + 1], -height, skybox[p1 * 2]);
bglVertex3f(artskydata[(p1 * 2) + 1], -height, artskydata[p1 * 2]);
bglTexCoord2f(1.0f, 1.0f);
//OSD_Printf("PR: drawing %f %f %f\n", skybox[(p2 * 2) + 1], -height, skybox[p2 * 2]);
bglVertex3f(artskydata[(p2 * 2) + 1], -height, artskydata[p2 * 2]);
bglTexCoord2f(1.0f, 0.0f);
//OSD_Printf("PR: drawing %f %f %f\n", skybox[(p2 * 2) + 1], height, skybox[p2 * 2]);
bglVertex3f(artskydata[(p2 * 2) + 1], height, artskydata[p2 * 2]);
bglEnd();
}
static void polymer_drawskybox(int16_t tilenum, char palnum, int8_t shade)
{
pthtyp* pth;
int32_t i;
GLfloat color[3];
if ((pr_vbos > 0) && (skyboxdatavbo == 0))
{
bglGenBuffersARB(1, &skyboxdatavbo);
bglBindBufferARB(GL_ARRAY_BUFFER_ARB, skyboxdatavbo);
bglBufferDataARB(GL_ARRAY_BUFFER_ARB, 4 * sizeof(GLfloat) * 5 * 6, skyboxdata, modelvbousage);
bglBindBufferARB(GL_ARRAY_BUFFER_ARB, 0);
}
if (pr_vbos > 0)
bglBindBufferARB(GL_ARRAY_BUFFER_ARB, skyboxdatavbo);
DO_TILE_ANIM(tilenum, 0);
i = 0;
while (i < 6)
{
drawingskybox = i + 1;
pth = texcache_fetch(tilenum, palnum, 0, DAMETH_CLAMPED);
color[0] = color[1] = color[2] = getshadefactor(shade);
if (pth)
{
// tinting
polytintflags_t const tintflags = hictinting[palnum].f;
if (!(tintflags & HICTINT_PRECOMPUTED))
{
if (pth->flags & PTH_HIGHTILE)
{
if (pth->palnum != palnum || (pth->effects & HICTINT_IN_MEMORY) || (tintflags & HICTINT_APPLYOVERALTPAL))
hictinting_apply(color, palnum);
}
else if (tintflags & (HICTINT_USEONART|HICTINT_ALWAYSUSEART))
hictinting_apply(color, palnum);
}
// global tinting
if ((pth->flags & PTH_HIGHTILE) && have_basepal_tint())
hictinting_apply(color, MAXPALOOKUPS-1);
globaltinting_apply(color);
}
bglColor4f(color[0], color[1], color[2], 1.0);
bglBindTexture(GL_TEXTURE_2D, pth ? pth->glpic : 0);
if (pr_vbos > 0)
{
bglVertexPointer(3, GL_FLOAT, 5 * sizeof(GLfloat), (GLfloat*)(4 * 5 * i * sizeof(GLfloat)));
bglTexCoordPointer(2, GL_FLOAT, 5 * sizeof(GLfloat), (GLfloat*)(((4 * 5 * i) + 3) * sizeof(GLfloat)));
} else {
bglVertexPointer(3, GL_FLOAT, 5 * sizeof(GLfloat), &skyboxdata[4 * 5 * i]);
bglTexCoordPointer(2, GL_FLOAT, 5 * sizeof(GLfloat), &skyboxdata[3 + (4 * 5 * i)]);
}
bglDrawArrays(GL_QUADS, 0, 4);
i++;
}
drawingskybox = 0;
if (pr_vbos > 0)
bglBindBufferARB(GL_ARRAY_BUFFER_ARB, 0);
return;
}
// MDSPRITES
static void polymer_drawmdsprite(uspritetype *tspr)
{
md3model_t* m;
mdskinmap_t* sk;
float *v0, *v1;
md3surf_t *s;
char targetpal, usinghighpal, foundpalskin;
float spos2[3], spos[3], tspos[3], lpos[3], tlpos[3], vec[3], mat[4][4];
float ang;
float scale;
double det;
int32_t surfi, i, j;
GLubyte* color;
int32_t materialbits;
float sradius, lradius;
int16_t modellights[PR_MAXLIGHTS];
char modellightcount;
uint8_t curpriority;
uint8_t lpal = (tspr->owner >= MAXSPRITES) ? tspr->pal : sprite[tspr->owner].pal;
m = (md3model_t*)models[tile2model[Ptile2tile(tspr->picnum,lpal)].modelid];
updateanimation((md2model_t *)m,tspr,lpal);
if ((pr_vbos > 1) && (m->indices == NULL))
polymer_loadmodelvbos(m);
// Hackish, but that means it's a model drawn by rotatesprite.
if (tspriteptr[maxspritesonscreen] == tspr) {
float x, y, z;
spos[0] = fglobalposy;
spos[1] = fglobalposz * (-1.f/16.f);
spos[2] = -fglobalposx;
// The coordinates are actually floats disguised as int in this case
memcpy(&x, &tspr->x, sizeof(float));
memcpy(&y, &tspr->y, sizeof(float));
memcpy(&z, &tspr->z, sizeof(float));
spos2[0] = y - globalposy;
spos2[1] = (z - fglobalposz) * (-1.f/16.f);
spos2[2] = fglobalposx - x;
} else {
spos[0] = (float)tspr->y;
spos[1] = -(float)(tspr->z) / 16.0f;
spos[2] = -(float)tspr->x;
spos2[0] = spos2[1] = spos2[2] = 0.0f;
}
ang = (float)((tspr->ang+spriteext[tspr->owner].angoff) & 2047) * (360.f/2048.f);
ang -= 90.0f;
if (((tspr->cstat>>4) & 3) == 2)
ang -= 90.0f;
bglMatrixMode(GL_MODELVIEW);
bglPushMatrix();
bglLoadIdentity();
scale = (1.0/4.0);
scale *= m->scale;
if (pr_overridemodelscale) {
scale *= pr_overridemodelscale;
} else {
scale *= m->bscale;
}
if (tspriteptr[maxspritesonscreen] == tspr) {
float playerang, radplayerang, cosminusradplayerang, sinminusradplayerang, hudzoom;
playerang = (globalang & 2047) * (360.f/2048.f) - 90.0f;
radplayerang = (globalang & 2047) * (2.0f * fPI / 2048.0f);
cosminusradplayerang = cos(-radplayerang);
sinminusradplayerang = sin(-radplayerang);
hudzoom = 65536.0 / spriteext[tspr->owner].offset.z;
bglTranslatef(spos[0], spos[1], spos[2]);
bglRotatef(horizang, -cosminusradplayerang, 0.0f, sinminusradplayerang);
bglRotatef(spriteext[tspr->owner].roll * (360.f/2048.f), sinminusradplayerang, 0.0f, cosminusradplayerang);
bglRotatef(-playerang, 0.0f, 1.0f, 0.0f);
bglScalef(hudzoom, 1.0f, 1.0f);
bglRotatef(playerang, 0.0f, 1.0f, 0.0f);
bglTranslatef(spos2[0], spos2[1], spos2[2]);
bglRotatef(-ang, 0.0f, 1.0f, 0.0f);
} else {
bglTranslatef(spos[0], spos[1], spos[2]);
bglRotatef(-ang, 0.0f, 1.0f, 0.0f);
}
if (((tspr->cstat>>4) & 3) == 2)
{
bglTranslatef(0.0f, 0.0, -(float)(tilesiz[tspr->picnum].y * tspr->yrepeat) / 8.0f);
bglRotatef(90.0f, 0.0f, 0.0f, 1.0f);
}
else
bglRotatef(-90.0f, 1.0f, 0.0f, 0.0f);
if ((tspr->cstat & 128) && (((tspr->cstat>>4) & 3) != 2))
bglTranslatef(0.0f, 0.0, -(float)(tilesiz[tspr->picnum].y * tspr->yrepeat) / 8.0f);
// yoffset differs from zadd in that it does not follow cstat&8 y-flipping
bglTranslatef(0.0f, 0.0, m->yoffset * 64 * scale * tspr->yrepeat);
if (tspr->cstat & 8)
{
bglTranslatef(0.0f, 0.0, (float)(tilesiz[tspr->picnum].y * tspr->yrepeat) / 4.0f);
bglScalef(1.0f, 1.0f, -1.0f);
}
if (tspr->cstat & 4)
bglScalef(1.0f, -1.0f, 1.0f);
if (!(tspr->cstat & 4) != !(tspr->cstat & 8)) {
// Only inverting one coordinate will reverse the winding order of
// faces, so we need to account for that when culling.
SWITCH_CULL_DIRECTION;
}
bglScalef(scale * tspr->xrepeat, scale * tspr->xrepeat, scale * tspr->yrepeat);
bglTranslatef(0.0f, 0.0, m->zadd * 64);
// scripted model rotation
if (tspr->owner < MAXSPRITES &&
(spriteext[tspr->owner].pitch || spriteext[tspr->owner].roll))
{
float pitchang, rollang, offsets[3];
pitchang = (float)(spriteext[tspr->owner].pitch) * (360.f/2048.f);
rollang = (float)(spriteext[tspr->owner].roll) * (360.f/2048.f);
offsets[0] = -spriteext[tspr->owner].offset.x / (scale * tspr->xrepeat);
offsets[1] = -spriteext[tspr->owner].offset.y / (scale * tspr->xrepeat);
offsets[2] = (float)(spriteext[tspr->owner].offset.z) / 16.0f / (scale * tspr->yrepeat);
bglTranslatef(-offsets[0], -offsets[1], -offsets[2]);
bglRotatef(pitchang, 0.0f, 1.0f, 0.0f);
bglRotatef(rollang, -1.0f, 0.0f, 0.0f);
bglTranslatef(offsets[0], offsets[1], offsets[2]);
}
bglGetFloatv(GL_MODELVIEW_MATRIX, spritemodelview);
bglPopMatrix();
bglPushMatrix();
bglMultMatrixf(spritemodelview);
// invert this matrix to get the polymer -> mdsprite space
memcpy(mat, spritemodelview, sizeof(float) * 16);
INVERT_4X4(mdspritespace, det, mat);
// debug code for drawing the model bounding sphere
// bglDisable(GL_TEXTURE_2D);
// bglBegin(GL_LINES);
// bglColor4f(1.0, 0.0, 0.0, 1.0);
// bglVertex3f(m->head.frames[m->cframe].cen.x,
// m->head.frames[m->cframe].cen.y,
// m->head.frames[m->cframe].cen.z);
// bglVertex3f(m->head.frames[m->cframe].cen.x + m->head.frames[m->cframe].r,
// m->head.frames[m->cframe].cen.y,
// m->head.frames[m->cframe].cen.z);
// bglColor4f(0.0, 1.0, 0.0, 1.0);
// bglVertex3f(m->head.frames[m->cframe].cen.x,
// m->head.frames[m->cframe].cen.y,
// m->head.frames[m->cframe].cen.z);
// bglVertex3f(m->head.frames[m->cframe].cen.x,
// m->head.frames[m->cframe].cen.y + m->head.frames[m->cframe].r,
// m->head.frames[m->cframe].cen.z);
// bglColor4f(0.0, 0.0, 1.0, 1.0);
// bglVertex3f(m->head.frames[m->cframe].cen.x,
// m->head.frames[m->cframe].cen.y,
// m->head.frames[m->cframe].cen.z);
// bglVertex3f(m->head.frames[m->cframe].cen.x,
// m->head.frames[m->cframe].cen.y,
// m->head.frames[m->cframe].cen.z + m->head.frames[m->cframe].r);
// bglEnd();
// bglEnable(GL_TEXTURE_2D);
polymer_getscratchmaterial(&mdspritematerial);
color = mdspritematerial.diffusemodulation;
color[0] = color[1] = color[2] =
(GLubyte)(((float)(numshades-min(max((tspr->shade * shadescale)+m->shadeoff,0),numshades)))/((float)numshades) * 0xFF);
usinghighpal = (pr_highpalookups &&
prhighpalookups[curbasepal][tspr->pal].map);
// tinting
polytintflags_t const tintflags = hictinting[tspr->pal].f;
if (!usinghighpal && !(tintflags & HICTINT_PRECOMPUTED))
{
if (!(m->flags&1))
hictinting_apply_ub(color, tspr->pal);
else globalnoeffect=1; //mdloadskin reads this
}
// global tinting
if (!usinghighpal && have_basepal_tint())
hictinting_apply_ub(color, MAXPALOOKUPS-1);
globaltinting_apply_ub(color);
if (tspr->cstat & 2)
{
if (!(tspr->cstat&512))
color[3] = 0xAA;
else
color[3] = 0x55;
} else
color[3] = 0xFF;
{
double f = color[3] * (1.0f - spriteext[tspr->owner].alpha);
color[3] = (GLubyte)f;
}
if (searchit == 2)
{
color[0] = 0x03;
color[1] = ((GLubyte *)(&tspr->owner))[0];
color[2] = ((GLubyte *)(&tspr->owner))[1];
color[3] = 0xFF;
}
if (pr_gpusmoothing)
mdspritematerial.frameprogress = m->interpol;
mdspritematerial.mdspritespace = GL_TRUE;
modellightcount = 0;
curpriority = 0;
// light culling
if (lightcount && (!depth || mirrors[depth-1].plane))
{
sradius = (m->head.frames[m->cframe].r * (1 - m->interpol)) +
(m->head.frames[m->nframe].r * m->interpol);
sradius *= max(scale * tspr->xrepeat, scale * tspr->yrepeat);
sradius /= 1000.0f;
spos[0] = (m->head.frames[m->cframe].cen.x * (1 - m->interpol)) +
(m->head.frames[m->nframe].cen.x * m->interpol);
spos[1] = (m->head.frames[m->cframe].cen.y * (1 - m->interpol)) +
(m->head.frames[m->nframe].cen.y * m->interpol);
spos[2] = (m->head.frames[m->cframe].cen.z * (1 - m->interpol)) +
(m->head.frames[m->nframe].cen.z * m->interpol);
polymer_transformpoint(spos, tspos, spritemodelview);
polymer_transformpoint(tspos, spos, rootmodelviewmatrix);
while (curpriority < pr_maxlightpriority)
{
i = j = 0;
while (j < lightcount)
{
while (!prlights[i].flags.active)
i++;
if (prlights[i].priority != curpriority)
{
i++;
j++;
continue;
}
lradius = prlights[i].range / 1000.0f;
lpos[0] = (float)prlights[i].y;
lpos[1] = -(float)prlights[i].z / 16.0f;
lpos[2] = -(float)prlights[i].x;
polymer_transformpoint(lpos, tlpos, rootmodelviewmatrix);
vec[0] = tlpos[0] - spos[0];
vec[0] *= vec[0];
vec[1] = tlpos[1] - spos[1];
vec[1] *= vec[1];
vec[2] = tlpos[2] - spos[2];
vec[2] *= vec[2];
if ((vec[0] + vec[1] + vec[2]) <= ((sradius+lradius) * (sradius+lradius)))
modellights[modellightcount++] = i;
i++;
j++;
}
curpriority++;
}
}
for (surfi=0;surfi<m->head.numsurfs;surfi++)
{
s = &m->head.surfs[surfi];
v0 = &s->geometry[m->cframe*s->numverts*15];
v1 = &s->geometry[m->nframe*s->numverts*15];
// debug code for drawing model normals
// bglDisable(GL_TEXTURE_2D);
// bglBegin(GL_LINES);
// bglColor4f(1.0, 1.0, 1.0, 1.0);
//
// int i = 0;
// while (i < s->numverts)
// {
// bglVertex3f(v0[(i * 6) + 0],
// v0[(i * 6) + 1],
// v0[(i * 6) + 2]);
// bglVertex3f(v0[(i * 6) + 0] + v0[(i * 6) + 3] * 100,
// v0[(i * 6) + 1] + v0[(i * 6) + 4] * 100,
// v0[(i * 6) + 2] + v0[(i * 6) + 5] * 100);
// i++;
// }
// bglEnd();
// bglEnable(GL_TEXTURE_2D);
targetpal = tspr->pal;
foundpalskin = 0;
for (sk = m->skinmap; sk; sk = sk->next)
if ((int32_t)sk->palette == tspr->pal &&
sk->skinnum == tile2model[Ptile2tile(tspr->picnum,lpal)].skinnum &&
sk->surfnum == surfi)
{
if (sk->specpower != 1.0)
mdspritematerial.specmaterial[0] = sk->specpower;
mdspritematerial.specmaterial[1] = sk->specfactor;
foundpalskin = 1;
}
// If we have a global palette tint, the palskin won't do us any good
if (curbasepal)
foundpalskin = 0;
if (!foundpalskin && usinghighpal) {
// We don't have a specific skin defined for this palette
// Use the base skin instead and plug in our highpalookup map
targetpal = 0;
mdspritematerial.highpalookupmap = prhighpalookups[curbasepal][tspr->pal].map;
}
mdspritematerial.diffusemap =
mdloadskin((md2model_t *)m,tile2model[Ptile2tile(tspr->picnum,lpal)].skinnum,targetpal,surfi);
if (!mdspritematerial.diffusemap)
continue;
if (!(tspr->extra&TSPR_EXTRA_MDHACK))
{
mdspritematerial.detailmap =
mdloadskin((md2model_t *)m,tile2model[Ptile2tile(tspr->picnum,lpal)].skinnum,DETAILPAL,surfi);
for (sk = m->skinmap; sk; sk = sk->next)
if ((int32_t)sk->palette == DETAILPAL &&
sk->skinnum == tile2model[Ptile2tile(tspr->picnum,lpal)].skinnum &&
sk->surfnum == surfi)
mdspritematerial.detailscale[0] = mdspritematerial.detailscale[1] = sk->param;
mdspritematerial.specmap =
mdloadskin((md2model_t *)m,tile2model[Ptile2tile(tspr->picnum,lpal)].skinnum,SPECULARPAL,surfi);
mdspritematerial.normalmap =
mdloadskin((md2model_t *)m,tile2model[Ptile2tile(tspr->picnum,lpal)].skinnum,NORMALPAL,surfi);
for (sk = m->skinmap; sk; sk = sk->next)
if ((int32_t)sk->palette == NORMALPAL &&
sk->skinnum == tile2model[Ptile2tile(tspr->picnum,lpal)].skinnum &&
sk->surfnum == surfi) {
mdspritematerial.normalbias[0] = sk->specpower;
mdspritematerial.normalbias[1] = sk->specfactor;
}
mdspritematerial.glowmap =
mdloadskin((md2model_t *)m,tile2model[Ptile2tile(tspr->picnum,lpal)].skinnum,GLOWPAL,surfi);
}
bglEnableClientState(GL_NORMAL_ARRAY);
if (pr_vbos > 1)
{
bglBindBufferARB(GL_ARRAY_BUFFER_ARB, m->texcoords[surfi]);
bglTexCoordPointer(2, GL_FLOAT, 0, 0);
bglBindBufferARB(GL_ARRAY_BUFFER_ARB, m->geometry[surfi]);
bglVertexPointer(3, GL_FLOAT, sizeof(float) * 15, (GLfloat*)(m->cframe * s->numverts * sizeof(float) * 15));
bglNormalPointer(GL_FLOAT, sizeof(float) * 15, (GLfloat*)(m->cframe * s->numverts * sizeof(float) * 15) + 3);
mdspritematerial.tbn = (GLfloat*)(m->cframe * s->numverts * sizeof(float) * 15) + 6;
if (pr_gpusmoothing) {
mdspritematerial.nextframedata = (GLfloat*)(m->nframe * s->numverts * sizeof(float) * 15);
}
bglBindBufferARB(GL_ELEMENT_ARRAY_BUFFER_ARB, m->indices[surfi]);
curlight = 0;
do {
materialbits = polymer_bindmaterial(&mdspritematerial, modellights, modellightcount);
bglDrawElements(GL_TRIANGLES, s->numtris * 3, GL_UNSIGNED_INT, 0);
polymer_unbindmaterial(materialbits);
} while ((++curlight < modellightcount) && (curlight < pr_maxlightpasses));
bglBindBufferARB(GL_ELEMENT_ARRAY_BUFFER_ARB, 0);
bglBindBufferARB(GL_ARRAY_BUFFER_ARB, 0);
}
else
{
bglVertexPointer(3, GL_FLOAT, sizeof(float) * 15, v0);
bglNormalPointer(GL_FLOAT, sizeof(float) * 15, v0 + 3);
bglTexCoordPointer(2, GL_FLOAT, 0, s->uv);
mdspritematerial.tbn = v0 + 6;
if (pr_gpusmoothing) {
mdspritematerial.nextframedata = (GLfloat*)(v1);
}
curlight = 0;
do {
materialbits = polymer_bindmaterial(&mdspritematerial, modellights, modellightcount);
bglDrawElements(GL_TRIANGLES, s->numtris * 3, GL_UNSIGNED_INT, s->tris);
polymer_unbindmaterial(materialbits);
} while ((++curlight < modellightcount) && (curlight < pr_maxlightpasses));
}
bglDisableClientState(GL_NORMAL_ARRAY);
}
bglPopMatrix();
if (!(tspr->cstat & 4) != !(tspr->cstat & 8)) {
SWITCH_CULL_DIRECTION;
}
globalnoeffect = 0;
}
static void polymer_loadmodelvbos(md3model_t* m)
{
int32_t i;
md3surf_t *s;
m->indices = (GLuint *)Xmalloc(m->head.numsurfs * sizeof(GLuint));
m->texcoords = (GLuint *)Xmalloc(m->head.numsurfs * sizeof(GLuint));
m->geometry = (GLuint *)Xmalloc(m->head.numsurfs * sizeof(GLuint));
bglGenBuffersARB(m->head.numsurfs, m->indices);
bglGenBuffersARB(m->head.numsurfs, m->texcoords);
bglGenBuffersARB(m->head.numsurfs, m->geometry);
i = 0;
while (i < m->head.numsurfs)
{
s = &m->head.surfs[i];
bglBindBufferARB(GL_ELEMENT_ARRAY_BUFFER_ARB, m->indices[i]);
bglBufferDataARB(GL_ELEMENT_ARRAY_BUFFER_ARB, s->numtris * sizeof(md3tri_t), s->tris, modelvbousage);
bglBindBufferARB(GL_ELEMENT_ARRAY_BUFFER_ARB, 0);
bglBindBufferARB(GL_ARRAY_BUFFER_ARB, m->texcoords[i]);
bglBufferDataARB(GL_ARRAY_BUFFER_ARB, s->numverts * sizeof(md3uv_t), s->uv, modelvbousage);
bglBindBufferARB(GL_ARRAY_BUFFER_ARB, m->geometry[i]);
bglBufferDataARB(GL_ARRAY_BUFFER_ARB, s->numframes * s->numverts * sizeof(float) * (15), s->geometry, modelvbousage);
bglBindBufferARB(GL_ARRAY_BUFFER_ARB, 0);
i++;
}
}
// MATERIALS
static void polymer_getscratchmaterial(_prmaterial* material)
{
// this function returns a material that won't validate any bits
// make sure to keep it up to date with the validation logic in bindmaterial
// PR_BIT_ANIM_INTERPOLATION
material->frameprogress = 0.0f;
material->nextframedata = (float*)-1;
// PR_BIT_NORMAL_MAP
material->normalmap = 0;
material->normalbias[0] = material->normalbias[1] = 0.0f;
material->tbn = NULL;
// PR_BIT_ART_MAP
material->artmap = 0;
material->basepalmap = 0;
material->lookupmap = 0;
// PR_BIT_DIFFUSE_MAP
material->diffusemap = 0;
material->diffusescale[0] = material->diffusescale[1] = 1.0f;
// PR_BIT_HIGHPALOOKUP_MAP
material->highpalookupmap = 0;
// PR_BIT_DIFFUSE_DETAIL_MAP
material->detailmap = 0;
material->detailscale[0] = material->detailscale[1] = 1.0f;
// PR_BIT_DIFFUSE_MODULATION
material->diffusemodulation[0] =
material->diffusemodulation[1] =
material->diffusemodulation[2] =
material->diffusemodulation[3] = 0xFF;
// PR_BIT_SPECULAR_MAP
material->specmap = 0;
// PR_BIT_SPECULAR_MATERIAL
material->specmaterial[0] = 15.0f;
material->specmaterial[1] = 1.0f;
// PR_BIT_MIRROR_MAP
material->mirrormap = 0;
// PR_BIT_GLOW_MAP
material->glowmap = 0;
// PR_BIT_PROJECTION_MAP
material->mdspritespace = GL_FALSE;
}
static void polymer_setupartmap(int16_t tilenum, char pal)
{
if (!prartmaps[tilenum]) {
char *tilebuffer = (char *) waloff[tilenum];
char *tempbuffer = (char *) Xmalloc(tilesiz[tilenum].x * tilesiz[tilenum].y);
int i, j, k;
i = k = 0;
while (i < tilesiz[tilenum].y) {
j = 0;
while (j < tilesiz[tilenum].x) {
tempbuffer[k] = tilebuffer[(j * tilesiz[tilenum].y) + i];
k++;
j++;
}
i++;
}
bglGenTextures(1, &prartmaps[tilenum]);
bglBindTexture(GL_TEXTURE_2D, prartmaps[tilenum]);
bglTexImage2D(GL_TEXTURE_2D,
0,
GL_R8,
tilesiz[tilenum].x,
tilesiz[tilenum].y,
0,
GL_RED,
GL_UNSIGNED_BYTE,
tempbuffer);
bglTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
bglTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
bglTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
bglTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
bglBindTexture(GL_TEXTURE_2D, 0);
Bfree(tempbuffer);
}
if (!prbasepalmaps[curbasepal]) {
bglGenTextures(1, &prbasepalmaps[curbasepal]);
bglBindTexture(GL_TEXTURE_2D, prbasepalmaps[curbasepal]);
bglTexImage2D(GL_TEXTURE_2D,
0,
GL_RGB,
256,
1,
0,
GL_RGB,
GL_UNSIGNED_BYTE,
basepaltable[curbasepal]);
bglTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
bglTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
bglTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, glinfo.clamptoedge ? GL_CLAMP_TO_EDGE : GL_CLAMP);
bglTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, glinfo.clamptoedge ? GL_CLAMP_TO_EDGE : GL_CLAMP);
bglBindTexture(GL_TEXTURE_2D, 0);
}
if (!prlookups[pal]) {
bglGenTextures(1, &prlookups[pal]);
bglBindTexture(GL_TEXTURE_RECTANGLE, prlookups[pal]);
bglTexImage2D(GL_TEXTURE_RECTANGLE,
0,
GL_R8,
256,
numshades,
0,
GL_RED,
GL_UNSIGNED_BYTE,
palookup[pal]);
bglTexParameteri(GL_TEXTURE_RECTANGLE, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
bglTexParameteri(GL_TEXTURE_RECTANGLE, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
bglTexParameteri(GL_TEXTURE_RECTANGLE, GL_TEXTURE_WRAP_S, glinfo.clamptoedge ? GL_CLAMP_TO_EDGE : GL_CLAMP);
bglTexParameteri(GL_TEXTURE_RECTANGLE, GL_TEXTURE_WRAP_T, glinfo.clamptoedge ? GL_CLAMP_TO_EDGE : GL_CLAMP);
bglBindTexture(GL_TEXTURE_RECTANGLE, 0);
}
}
static _prbucket* polymer_getbuildmaterial(_prmaterial* material, int16_t tilenum, char pal, int8_t shade, int8_t vis, int32_t cmeth)
{
// find corresponding bucket; XXX key that with pr_buckets later, need to be tied to restartvid
_prbucket *bucketptr = polymer_findbucket(tilenum, pal);
polymer_getscratchmaterial(material);
if (!waloff[tilenum])
loadtile(tilenum);
// PR_BIT_DIFFUSE_MAP
pthtyp *pth = texcache_fetch(tilenum, pal, 0, cmeth);
if (pth)
{
material->diffusemap = pth->glpic;
if (pth->hicr)
{
material->diffusescale[0] = pth->hicr->scale.x;
material->diffusescale[1] = pth->hicr->scale.y;
}
}
int32_t usinghighpal = 0;
// Lazily fill in all the textures we need, move this to precaching later
if (pr_artmapping && !(globalflags & GLOBAL_NO_GL_TILESHADES) && polymer_eligible_for_artmap(tilenum, pth))
{
polytintflags_t const tintflags = hictinting[pal].f;
if (tintflags & (HICTINT_USEONART|HICTINT_ALWAYSUSEART))
{
if (!(tintflags & HICTINT_APPLYOVERPALSWAP))
pal = 0;
}
if (!prartmaps[tilenum] || !prbasepalmaps[curbasepal] || !prlookups[pal])
polymer_setupartmap(tilenum, pal);
material->artmap = prartmaps[tilenum];
material->basepalmap = prbasepalmaps[curbasepal];
material->lookupmap = prlookups[pal];
if (!material->basepalmap || !material->lookupmap) {
material->artmap = 0;
}
material->shadeoffset = shade;
material->visibility = (uint8_t)(vis+16);
globaltinting_apply_ub(material->diffusemodulation);
// all the stuff below is mutually exclusive with artmapping
goto done;
}
// PR_BIT_HIGHPALOOKUP_MAP
if (pr_highpalookups && prhighpalookups[curbasepal][pal].map &&
hicfindsubst(tilenum, 0) &&
(curbasepal || (hicfindsubst(tilenum, pal)->palnum != pal)))
{
material->highpalookupmap = prhighpalookups[curbasepal][pal].map;
pal = 0;
usinghighpal = 1;
}
if (pth)
{
if (pth->hicr)
{
// PR_BIT_SPECULAR_MATERIAL
if (pth->hicr->specpower != 1.0f)
material->specmaterial[0] = pth->hicr->specpower;
material->specmaterial[1] = pth->hicr->specfactor;
}
// PR_BIT_DIFFUSE_MODULATION
material->diffusemodulation[0] =
material->diffusemodulation[1] =
material->diffusemodulation[2] =
(GLubyte)(getshadefactor(shade) * 0xFF);
// tinting
polytintflags_t const tintflags = hictinting[pal].f;
if (!(tintflags & HICTINT_PRECOMPUTED))
{
if (pth->flags & PTH_HIGHTILE)
{
if (pth->palnum != pal || (pth->effects & HICTINT_IN_MEMORY) || (tintflags & HICTINT_APPLYOVERALTPAL))
hictinting_apply_ub(material->diffusemodulation, pal);
}
else if (tintflags & (HICTINT_USEONART|HICTINT_ALWAYSUSEART))
hictinting_apply_ub(material->diffusemodulation, pal);
}
// global tinting
if ((pth->flags & PTH_HIGHTILE) && !usinghighpal && have_basepal_tint())
hictinting_apply_ub(material->diffusemodulation, MAXPALOOKUPS-1);
globaltinting_apply_ub(material->diffusemodulation);
// PR_BIT_GLOW_MAP
if (r_fullbrights && pth->flags & PTH_HASFULLBRIGHT)
material->glowmap = pth->ofb->glpic;
}
// PR_BIT_DIFFUSE_DETAIL_MAP
if (hicfindsubst(tilenum, DETAILPAL, 1) && (pth = texcache_fetch(tilenum, DETAILPAL, 0, DAMETH_NOMASK)) &&
pth->hicr && (pth->hicr->palnum == DETAILPAL))
{
material->detailmap = pth->glpic;
material->detailscale[0] = pth->hicr->scale.x;
material->detailscale[1] = pth->hicr->scale.y;
}
// PR_BIT_GLOW_MAP
if (hicfindsubst(tilenum, GLOWPAL, 1) && (pth = texcache_fetch(tilenum, GLOWPAL, 0, DAMETH_MASK)) &&
pth->hicr && (pth->hicr->palnum == GLOWPAL))
material->glowmap = pth->glpic;
// PR_BIT_SPECULAR_MAP
if (hicfindsubst(tilenum, SPECULARPAL, 1) && (pth = texcache_fetch(tilenum, SPECULARPAL, 0, DAMETH_NOMASK)) &&
pth->hicr && (pth->hicr->palnum == SPECULARPAL))
material->specmap = pth->glpic;
// PR_BIT_NORMAL_MAP
if (hicfindsubst(tilenum, NORMALPAL, 1) && (pth = texcache_fetch(tilenum, NORMALPAL, 0, DAMETH_NOMASK)) &&
pth->hicr && (pth->hicr->palnum == NORMALPAL))
{
material->normalmap = pth->glpic;
material->normalbias[0] = pth->hicr->specpower;
material->normalbias[1] = pth->hicr->specfactor;
}
done:
if (bucketptr->invalidmaterial != 0)
{
bucketptr->material = *material;
bucketptr->invalidmaterial = 0;
}
return bucketptr;
}
static int32_t polymer_bindmaterial(const _prmaterial *material, int16_t* lights, int matlightcount)
{
int32_t programbits;
int32_t texunit;
programbits = 0;
// --------- bit validation
// PR_BIT_ANIM_INTERPOLATION
if (material->nextframedata != ((float*)-1))
programbits |= prprogrambits[PR_BIT_ANIM_INTERPOLATION].bit;
// PR_BIT_LIGHTING_PASS
if (curlight && matlightcount)
programbits |= prprogrambits[PR_BIT_LIGHTING_PASS].bit;
// PR_BIT_NORMAL_MAP
if (pr_normalmapping && material->normalmap)
programbits |= prprogrambits[PR_BIT_NORMAL_MAP].bit;
// PR_BIT_ART_MAP
if (pr_artmapping && material->artmap &&
!(globalflags & GLOBAL_NO_GL_TILESHADES) &&
(overridematerial & prprogrambits[PR_BIT_ART_MAP].bit)) {
programbits |= prprogrambits[PR_BIT_ART_MAP].bit;
} else
// PR_BIT_DIFFUSE_MAP
if (material->diffusemap) {
programbits |= prprogrambits[PR_BIT_DIFFUSE_MAP].bit;
programbits |= prprogrambits[PR_BIT_DIFFUSE_MAP2].bit;
}
// PR_BIT_HIGHPALOOKUP_MAP
if (material->highpalookupmap)
programbits |= prprogrambits[PR_BIT_HIGHPALOOKUP_MAP].bit;
// PR_BIT_DIFFUSE_DETAIL_MAP
if (r_detailmapping && material->detailmap)
programbits |= prprogrambits[PR_BIT_DIFFUSE_DETAIL_MAP].bit;
// PR_BIT_DIFFUSE_MODULATION
programbits |= prprogrambits[PR_BIT_DIFFUSE_MODULATION].bit;
// PR_BIT_SPECULAR_MAP
if (pr_specularmapping && material->specmap)
programbits |= prprogrambits[PR_BIT_SPECULAR_MAP].bit;
// PR_BIT_SPECULAR_MATERIAL
if ((material->specmaterial[0] != 15.0) || (material->specmaterial[1] != 1.0) || pr_overridespecular)
programbits |= prprogrambits[PR_BIT_SPECULAR_MATERIAL].bit;
// PR_BIT_MIRROR_MAP
if (!curlight && material->mirrormap)
programbits |= prprogrambits[PR_BIT_MIRROR_MAP].bit;
// PR_BIT_FOG
if (!material->artmap && !curlight && !material->mirrormap)
programbits |= prprogrambits[PR_BIT_FOG].bit;
// PR_BIT_GLOW_MAP
if (!curlight && r_glowmapping && material->glowmap)
programbits |= prprogrambits[PR_BIT_GLOW_MAP].bit;
// PR_BIT_POINT_LIGHT
if (matlightcount) {
programbits |= prprogrambits[PR_BIT_POINT_LIGHT].bit;
// PR_BIT_SPOT_LIGHT
if (prlights[lights[curlight]].radius) {
programbits |= prprogrambits[PR_BIT_SPOT_LIGHT].bit;
// PR_BIT_SHADOW_MAP
if (prlights[lights[curlight]].rtindex != -1) {
programbits |= prprogrambits[PR_BIT_SHADOW_MAP].bit;
programbits |= prprogrambits[PR_BIT_PROJECTION_MAP].bit;
}
// PR_BIT_LIGHT_MAP
if (prlights[lights[curlight]].lightmap) {
programbits |= prprogrambits[PR_BIT_LIGHT_MAP].bit;
programbits |= prprogrambits[PR_BIT_PROJECTION_MAP].bit;
}
}
}
// material override
programbits &= overridematerial;
programbits |= prprogrambits[PR_BIT_HEADER].bit;
programbits |= prprogrambits[PR_BIT_FOOTER].bit;
// --------- program compiling
if (!prprograms[programbits].handle)
polymer_compileprogram(programbits);
bglUseProgramObjectARB(prprograms[programbits].handle);
// --------- bit setup
texunit = 0;
// PR_BIT_ANIM_INTERPOLATION
if (programbits & prprogrambits[PR_BIT_ANIM_INTERPOLATION].bit)
{
bglEnableVertexAttribArrayARB(prprograms[programbits].attrib_nextFrameData);
if (prprograms[programbits].attrib_nextFrameNormal != -1)
bglEnableVertexAttribArrayARB(prprograms[programbits].attrib_nextFrameNormal);
bglVertexAttribPointerARB(prprograms[programbits].attrib_nextFrameData,
3, GL_FLOAT, GL_FALSE,
sizeof(float) * 15,
material->nextframedata);
if (prprograms[programbits].attrib_nextFrameNormal != -1)
bglVertexAttribPointerARB(prprograms[programbits].attrib_nextFrameNormal,
3, GL_FLOAT, GL_FALSE,
sizeof(float) * 15,
material->nextframedata + 3);
bglUniform1fARB(prprograms[programbits].uniform_frameProgress, material->frameprogress);
}
// PR_BIT_LIGHTING_PASS
if (programbits & prprogrambits[PR_BIT_LIGHTING_PASS].bit)
{
bglPushAttrib(GL_COLOR_BUFFER_BIT);
bglEnable(GL_BLEND);
bglBlendFunc(GL_ONE, GL_ONE);
if (prlights[lights[curlight]].publicflags.negative) {
bglBlendEquation(GL_FUNC_REVERSE_SUBTRACT);
}
}
// PR_BIT_NORMAL_MAP
if (programbits & prprogrambits[PR_BIT_NORMAL_MAP].bit)
{
float pos[3], bias[2];
pos[0] = fglobalposy;
pos[1] = fglobalposz * (-1.f/16.f);
pos[2] = -fglobalposx;
bglActiveTextureARB(texunit + GL_TEXTURE0_ARB);
bglBindTexture(GL_TEXTURE_2D, material->normalmap);
if (material->mdspritespace == GL_TRUE) {
float mdspritespacepos[3];
polymer_transformpoint(pos, mdspritespacepos, (float *)mdspritespace);
bglUniform3fvARB(prprograms[programbits].uniform_eyePosition, 1, mdspritespacepos);
} else
bglUniform3fvARB(prprograms[programbits].uniform_eyePosition, 1, pos);
bglUniform1iARB(prprograms[programbits].uniform_normalMap, texunit);
if (pr_overrideparallax) {
bias[0] = pr_parallaxscale;
bias[1] = pr_parallaxbias;
bglUniform2fvARB(prprograms[programbits].uniform_normalBias, 1, bias);
} else
bglUniform2fvARB(prprograms[programbits].uniform_normalBias, 1, material->normalbias);
if (material->tbn) {
bglEnableVertexAttribArrayARB(prprograms[programbits].attrib_T);
bglEnableVertexAttribArrayARB(prprograms[programbits].attrib_B);
bglEnableVertexAttribArrayARB(prprograms[programbits].attrib_N);
bglVertexAttribPointerARB(prprograms[programbits].attrib_T,
3, GL_FLOAT, GL_FALSE,
sizeof(float) * 15,
material->tbn);
bglVertexAttribPointerARB(prprograms[programbits].attrib_B,
3, GL_FLOAT, GL_FALSE,
sizeof(float) * 15,
material->tbn + 3);
bglVertexAttribPointerARB(prprograms[programbits].attrib_N,
3, GL_FLOAT, GL_FALSE,
sizeof(float) * 15,
material->tbn + 6);
}
texunit++;
}
// PR_BIT_ART_MAP
if (programbits & prprogrambits[PR_BIT_ART_MAP].bit)
{
bglActiveTextureARB(texunit + GL_TEXTURE0_ARB);
bglBindTexture(GL_TEXTURE_2D, material->artmap);
bglUniform1iARB(prprograms[programbits].uniform_artMap, texunit);
texunit++;
bglActiveTextureARB(texunit + GL_TEXTURE0_ARB);
bglBindTexture(GL_TEXTURE_2D, material->basepalmap);
bglUniform1iARB(prprograms[programbits].uniform_basePalMap, texunit);
texunit++;
bglActiveTextureARB(texunit + GL_TEXTURE0_ARB);
bglBindTexture(GL_TEXTURE_RECTANGLE, material->lookupmap);
bglUniform1iARB(prprograms[programbits].uniform_lookupMap, texunit);
texunit++;
bglUniform1fARB(prprograms[programbits].uniform_shadeOffset, (GLfloat)material->shadeoffset);
if (r_usenewshading == 4)
{
// the fog in Polymer is a sphere insted of a plane, the furthest visible point should be the same as Polymost
bglUniform1fARB(prprograms[programbits].uniform_visibility, globalvisibility / 262144.f * material->visibility);
}
else
{
static constexpr float material_visibility_divisor = 16.f;
// NOTE: the denominator was 1.024, but we increase it towards a bit
// farther far clipoff distance to account for the fact that the
// distance to the fragment is the common Euclidean one, as opposed to
// the "ortho" distance of Build.
static constexpr float factor_new = 1.f / ((2048.f * (1.07f / 1.024f) * (150.f / 230.f) / 35.f) * material_visibility_divisor);
static constexpr float factor_old = 1.f / ((2048.f * (1.07f / 1.024f) / 35.f) * material_visibility_divisor);
bglUniform1fARB(prprograms[programbits].uniform_visibility, globalvisibility * material->visibility * r_usenewshading > 1 ? factor_new : factor_old);
}
}
// PR_BIT_DIFFUSE_MAP
if (programbits & prprogrambits[PR_BIT_DIFFUSE_MAP].bit)
{
bglActiveTextureARB(texunit + GL_TEXTURE0_ARB);
bglBindTexture(GL_TEXTURE_2D, material->diffusemap);
bglUniform1iARB(prprograms[programbits].uniform_diffuseMap, texunit);
bglUniform2fvARB(prprograms[programbits].uniform_diffuseScale, 1, material->diffusescale);
texunit++;
}
// PR_BIT_HIGHPALOOKUP_MAP
if (programbits & prprogrambits[PR_BIT_HIGHPALOOKUP_MAP].bit)
{
bglActiveTextureARB(texunit + GL_TEXTURE0_ARB);
bglBindTexture(GL_TEXTURE_3D, material->highpalookupmap);
bglUniform1iARB(prprograms[programbits].uniform_highPalookupMap, texunit);
texunit++;
}
// PR_BIT_DIFFUSE_DETAIL_MAP
if (programbits & prprogrambits[PR_BIT_DIFFUSE_DETAIL_MAP].bit)
{
float scale[2];
// scale by the diffuse map scale if we're not doing normal mapping
if (!(programbits & prprogrambits[PR_BIT_NORMAL_MAP].bit))
{
scale[0] = material->diffusescale[0] * material->detailscale[0];
scale[1] = material->diffusescale[1] * material->detailscale[1];
} else {
scale[0] = material->detailscale[0];
scale[1] = material->detailscale[1];
}
bglActiveTextureARB(texunit + GL_TEXTURE0_ARB);
bglBindTexture(GL_TEXTURE_2D, material->detailmap);
bglUniform1iARB(prprograms[programbits].uniform_detailMap, texunit);
bglUniform2fvARB(prprograms[programbits].uniform_detailScale, 1, scale);
texunit++;
}
// PR_BIT_DIFFUSE_MODULATION
if (programbits & prprogrambits[PR_BIT_DIFFUSE_MODULATION].bit)
{
bglColor4ub(material->diffusemodulation[0],
material->diffusemodulation[1],
material->diffusemodulation[2],
material->diffusemodulation[3]);
}
// PR_BIT_SPECULAR_MAP
if (programbits & prprogrambits[PR_BIT_SPECULAR_MAP].bit)
{
bglActiveTextureARB(texunit + GL_TEXTURE0_ARB);
bglBindTexture(GL_TEXTURE_2D, material->specmap);
bglUniform1iARB(prprograms[programbits].uniform_specMap, texunit);
texunit++;
}
// PR_BIT_SPECULAR_MATERIAL
if (programbits & prprogrambits[PR_BIT_SPECULAR_MATERIAL].bit)
{
float specmaterial[2];
if (pr_overridespecular) {
specmaterial[0] = pr_specularpower;
specmaterial[1] = pr_specularfactor;
bglUniform2fvARB(prprograms[programbits].uniform_specMaterial, 1, specmaterial);
} else
bglUniform2fvARB(prprograms[programbits].uniform_specMaterial, 1, material->specmaterial);
}
// PR_BIT_MIRROR_MAP
if (programbits & prprogrambits[PR_BIT_MIRROR_MAP].bit)
{
bglActiveTextureARB(texunit + GL_TEXTURE0_ARB);
bglBindTexture(GL_TEXTURE_RECTANGLE, material->mirrormap);
bglUniform1iARB(prprograms[programbits].uniform_mirrorMap, texunit);
texunit++;
}
#ifdef PR_LINEAR_FOG
if (programbits & prprogrambits[PR_BIT_FOG].bit)
{
bglUniform1iARB(prprograms[programbits].uniform_linearFog, r_usenewshading >= 2);
}
#endif
// PR_BIT_GLOW_MAP
if (programbits & prprogrambits[PR_BIT_GLOW_MAP].bit)
{
bglActiveTextureARB(texunit + GL_TEXTURE0_ARB);
bglBindTexture(GL_TEXTURE_2D, material->glowmap);
bglUniform1iARB(prprograms[programbits].uniform_glowMap, texunit);
texunit++;
}
// PR_BIT_POINT_LIGHT
if (programbits & prprogrambits[PR_BIT_POINT_LIGHT].bit)
{
float inpos[4], pos[4];
float range[2];
float color[4];
inpos[0] = (float)prlights[lights[curlight]].y;
inpos[1] = -(float)prlights[lights[curlight]].z / 16.0f;
inpos[2] = -(float)prlights[lights[curlight]].x;
polymer_transformpoint(inpos, pos, curmodelviewmatrix);
// PR_BIT_SPOT_LIGHT
if (programbits & prprogrambits[PR_BIT_SPOT_LIGHT].bit)
{
float sinang, cosang, sinhorizang, coshorizangs;
float indir[3], dir[3];
cosang = (float)(sintable[(-prlights[lights[curlight]].angle+1024)&2047]) / 16383.0f;
sinang = (float)(sintable[(-prlights[lights[curlight]].angle+512)&2047]) / 16383.0f;
coshorizangs = (float)(sintable[(getangle(128, prlights[lights[curlight]].horiz-100)+1024)&2047]) / 16383.0f;
sinhorizang = (float)(sintable[(getangle(128, prlights[lights[curlight]].horiz-100)+512)&2047]) / 16383.0f;
indir[0] = inpos[0] + sinhorizang * cosang;
indir[1] = inpos[1] - coshorizangs;
indir[2] = inpos[2] - sinhorizang * sinang;
polymer_transformpoint(indir, dir, curmodelviewmatrix);
dir[0] -= pos[0];
dir[1] -= pos[1];
dir[2] -= pos[2];
indir[0] = (float)(sintable[(prlights[lights[curlight]].radius+512)&2047]) / 16383.0f;
indir[1] = (float)(sintable[(prlights[lights[curlight]].faderadius+512)&2047]) / 16383.0f;
indir[1] = 1.0 / (indir[1] - indir[0]);
bglUniform3fvARB(prprograms[programbits].uniform_spotDir, 1, dir);
bglUniform2fvARB(prprograms[programbits].uniform_spotRadius, 1, indir);
// PR_BIT_PROJECTION_MAP
if (programbits & prprogrambits[PR_BIT_PROJECTION_MAP].bit)
{
GLfloat matrix[16];
bglMatrixMode(GL_TEXTURE);
bglLoadMatrixf(shadowBias);
bglMultMatrixf(prlights[lights[curlight]].proj);
bglMultMatrixf(prlights[lights[curlight]].transform);
if (material->mdspritespace == GL_TRUE)
bglMultMatrixf(spritemodelview);
bglGetFloatv(GL_TEXTURE_MATRIX, matrix);
bglLoadIdentity();
bglMatrixMode(GL_MODELVIEW);
bglUniformMatrix4fvARB(prprograms[programbits].uniform_shadowProjMatrix, 1, GL_FALSE, matrix);
// PR_BIT_SHADOW_MAP
if (programbits & prprogrambits[PR_BIT_SHADOW_MAP].bit)
{
bglActiveTextureARB(texunit + GL_TEXTURE0_ARB);
bglBindTexture(prrts[prlights[lights[curlight]].rtindex].target, prrts[prlights[lights[curlight]].rtindex].z);
bglUniform1iARB(prprograms[programbits].uniform_shadowMap, texunit);
texunit++;
}
// PR_BIT_LIGHT_MAP
if (programbits & prprogrambits[PR_BIT_LIGHT_MAP].bit)
{
bglActiveTextureARB(texunit + GL_TEXTURE0_ARB);
bglBindTexture(GL_TEXTURE_2D, prlights[lights[curlight]].lightmap);
bglUniform1iARB(prprograms[programbits].uniform_lightMap, texunit);
texunit++;
}
}
}
range[0] = prlights[lights[curlight]].range / 1000.0f;
range[1] = 1 / (range[0] * range[0]);
color[0] = prlights[lights[curlight]].color[0] / 255.0f;
color[1] = prlights[lights[curlight]].color[1] / 255.0f;
color[2] = prlights[lights[curlight]].color[2] / 255.0f;
// If this isn't a lighting-only pass, just negate the components
if (!curlight && prlights[lights[curlight]].publicflags.negative) {
color[0] = -color[0];
color[1] = -color[1];
color[2] = -color[2];
}
bglLightfv(GL_LIGHT0, GL_AMBIENT, pos);
bglLightfv(GL_LIGHT0, GL_DIFFUSE, color);
if (material->mdspritespace == GL_TRUE) {
float mdspritespacepos[3];
polymer_transformpoint(inpos, mdspritespacepos, (float *)mdspritespace);
bglLightfv(GL_LIGHT0, GL_SPECULAR, mdspritespacepos);
} else {
bglLightfv(GL_LIGHT0, GL_SPECULAR, inpos);
}
bglLightfv(GL_LIGHT0, GL_LINEAR_ATTENUATION, &range[1]);
}
bglActiveTextureARB(GL_TEXTURE0_ARB);
return programbits;
}
static void polymer_unbindmaterial(int32_t programbits)
{
// repair any dirty GL state here
// PR_BIT_ANIM_INTERPOLATION
if (programbits & prprogrambits[PR_BIT_ANIM_INTERPOLATION].bit)
{
if (prprograms[programbits].attrib_nextFrameNormal != -1)
bglDisableVertexAttribArrayARB(prprograms[programbits].attrib_nextFrameNormal);
bglDisableVertexAttribArrayARB(prprograms[programbits].attrib_nextFrameData);
}
// PR_BIT_LIGHTING_PASS
if (programbits & prprogrambits[PR_BIT_LIGHTING_PASS].bit)
{
bglPopAttrib();
}
// PR_BIT_NORMAL_MAP
if (programbits & prprogrambits[PR_BIT_NORMAL_MAP].bit)
{
bglDisableVertexAttribArrayARB(prprograms[programbits].attrib_T);
bglDisableVertexAttribArrayARB(prprograms[programbits].attrib_B);
bglDisableVertexAttribArrayARB(prprograms[programbits].attrib_N);
}
bglUseProgramObjectARB(0);
}
static void polymer_compileprogram(int32_t programbits)
{
int32_t i, enabledbits;
GLhandleARB vert, frag, program;
const GLcharARB* source[PR_BIT_COUNT * 2];
GLcharARB infobuffer[PR_INFO_LOG_BUFFER_SIZE];
GLint linkstatus;
// --------- VERTEX
vert = bglCreateShaderObjectARB(GL_VERTEX_SHADER_ARB);
enabledbits = i = 0;
while (i < PR_BIT_COUNT)
{
if (programbits & prprogrambits[i].bit)
source[enabledbits++] = prprogrambits[i].vert_def;
i++;
}
i = 0;
while (i < PR_BIT_COUNT)
{
if (programbits & prprogrambits[i].bit)
source[enabledbits++] = prprogrambits[i].vert_prog;
i++;
}
bglShaderSourceARB(vert, enabledbits, source, NULL);
bglCompileShaderARB(vert);
// --------- FRAGMENT
frag = bglCreateShaderObjectARB(GL_FRAGMENT_SHADER_ARB);
enabledbits = i = 0;
while (i < PR_BIT_COUNT)
{
if (programbits & prprogrambits[i].bit)
source[enabledbits++] = prprogrambits[i].frag_def;
i++;
}
i = 0;
while (i < PR_BIT_COUNT)
{
if (programbits & prprogrambits[i].bit)
source[enabledbits++] = prprogrambits[i].frag_prog;
i++;
}
bglShaderSourceARB(frag, enabledbits, (const GLcharARB**)source, NULL);
bglCompileShaderARB(frag);
// --------- PROGRAM
program = bglCreateProgramObjectARB();
bglAttachObjectARB(program, vert);
bglAttachObjectARB(program, frag);
bglLinkProgramARB(program);
bglGetObjectParameterivARB(program, GL_OBJECT_LINK_STATUS_ARB, &linkstatus);
bglGetInfoLogARB(program, PR_INFO_LOG_BUFFER_SIZE, NULL, infobuffer);
prprograms[programbits].handle = program;
#ifdef DEBUGGINGAIDS
if (pr_verbosity >= 1)
#else
if (pr_verbosity >= 2)
#endif
OSD_Printf("PR : Compiling GPU program with bits (octal) %o...\n", (unsigned)programbits);
if (!linkstatus) {
OSD_Printf("PR : Failed to compile GPU program with bits (octal) %o!\n", (unsigned)programbits);
if (pr_verbosity >= 1) OSD_Printf("PR : Compilation log:\n%s\n", infobuffer);
bglGetShaderSourceARB(vert, PR_INFO_LOG_BUFFER_SIZE, NULL, infobuffer);
if (pr_verbosity >= 1) OSD_Printf("PR : Vertex source dump:\n%s\n", infobuffer);
bglGetShaderSourceARB(frag, PR_INFO_LOG_BUFFER_SIZE, NULL, infobuffer);
if (pr_verbosity >= 1) OSD_Printf("PR : Fragment source dump:\n%s\n", infobuffer);
}
// --------- ATTRIBUTE/UNIFORM LOCATIONS
// PR_BIT_ANIM_INTERPOLATION
if (programbits & prprogrambits[PR_BIT_ANIM_INTERPOLATION].bit)
{
prprograms[programbits].attrib_nextFrameData = bglGetAttribLocationARB(program, "nextFrameData");
prprograms[programbits].attrib_nextFrameNormal = bglGetAttribLocationARB(program, "nextFrameNormal");
prprograms[programbits].uniform_frameProgress = bglGetUniformLocationARB(program, "frameProgress");
}
// PR_BIT_NORMAL_MAP
if (programbits & prprogrambits[PR_BIT_NORMAL_MAP].bit)
{
prprograms[programbits].attrib_T = bglGetAttribLocationARB(program, "T");
prprograms[programbits].attrib_B = bglGetAttribLocationARB(program, "B");
prprograms[programbits].attrib_N = bglGetAttribLocationARB(program, "N");
prprograms[programbits].uniform_eyePosition = bglGetUniformLocationARB(program, "eyePosition");
prprograms[programbits].uniform_normalMap = bglGetUniformLocationARB(program, "normalMap");
prprograms[programbits].uniform_normalBias = bglGetUniformLocationARB(program, "normalBias");
}
// PR_BIT_ART_MAP
if (programbits & prprogrambits[PR_BIT_ART_MAP].bit)
{
prprograms[programbits].uniform_artMap = bglGetUniformLocationARB(program, "artMap");
prprograms[programbits].uniform_basePalMap = bglGetUniformLocationARB(program, "basePalMap");
prprograms[programbits].uniform_lookupMap = bglGetUniformLocationARB(program, "lookupMap");
prprograms[programbits].uniform_shadeOffset = bglGetUniformLocationARB(program, "shadeOffset");
prprograms[programbits].uniform_visibility = bglGetUniformLocationARB(program, "visibility");
}
// PR_BIT_DIFFUSE_MAP
if (programbits & prprogrambits[PR_BIT_DIFFUSE_MAP].bit)
{
prprograms[programbits].uniform_diffuseMap = bglGetUniformLocationARB(program, "diffuseMap");
prprograms[programbits].uniform_diffuseScale = bglGetUniformLocationARB(program, "diffuseScale");
}
// PR_BIT_HIGHPALOOKUP_MAP
if (programbits & prprogrambits[PR_BIT_HIGHPALOOKUP_MAP].bit)
{
prprograms[programbits].uniform_highPalookupMap = bglGetUniformLocationARB(program, "highPalookupMap");
}
// PR_BIT_DIFFUSE_DETAIL_MAP
if (programbits & prprogrambits[PR_BIT_DIFFUSE_DETAIL_MAP].bit)
{
prprograms[programbits].uniform_detailMap = bglGetUniformLocationARB(program, "detailMap");
prprograms[programbits].uniform_detailScale = bglGetUniformLocationARB(program, "detailScale");
}
// PR_BIT_SPECULAR_MAP
if (programbits & prprogrambits[PR_BIT_SPECULAR_MAP].bit)
{
prprograms[programbits].uniform_specMap = bglGetUniformLocationARB(program, "specMap");
}
// PR_BIT_SPECULAR_MATERIAL
if (programbits & prprogrambits[PR_BIT_SPECULAR_MATERIAL].bit)
{
prprograms[programbits].uniform_specMaterial = bglGetUniformLocationARB(program, "specMaterial");
}
// PR_BIT_MIRROR_MAP
if (programbits & prprogrambits[PR_BIT_MIRROR_MAP].bit)
{
prprograms[programbits].uniform_mirrorMap = bglGetUniformLocationARB(program, "mirrorMap");
}
#ifdef PR_LINEAR_FOG
if (programbits & prprogrambits[PR_BIT_FOG].bit)
{
prprograms[programbits].uniform_linearFog = bglGetUniformLocationARB(program, "linearFog");
}
#endif
// PR_BIT_GLOW_MAP
if (programbits & prprogrambits[PR_BIT_GLOW_MAP].bit)
{
prprograms[programbits].uniform_glowMap = bglGetUniformLocationARB(program, "glowMap");
}
// PR_BIT_PROJECTION_MAP
if (programbits & prprogrambits[PR_BIT_PROJECTION_MAP].bit)
{
prprograms[programbits].uniform_shadowProjMatrix = bglGetUniformLocationARB(program, "shadowProjMatrix");
}
// PR_BIT_SHADOW_MAP
if (programbits & prprogrambits[PR_BIT_SHADOW_MAP].bit)
{
prprograms[programbits].uniform_shadowMap = bglGetUniformLocationARB(program, "shadowMap");
}
// PR_BIT_LIGHT_MAP
if (programbits & prprogrambits[PR_BIT_LIGHT_MAP].bit)
{
prprograms[programbits].uniform_lightMap = bglGetUniformLocationARB(program, "lightMap");
}
// PR_BIT_SPOT_LIGHT
if (programbits & prprogrambits[PR_BIT_SPOT_LIGHT].bit)
{
prprograms[programbits].uniform_spotDir = bglGetUniformLocationARB(program, "spotDir");
prprograms[programbits].uniform_spotRadius = bglGetUniformLocationARB(program, "spotRadius");
}
}
// LIGHTS
static void polymer_removelight(int16_t lighti)
{
_prplanelist* oldhead;
while (prlights[lighti].planelist)
{
polymer_deleteplanelight(prlights[lighti].planelist->plane, lighti);
oldhead = prlights[lighti].planelist;
prlights[lighti].planelist = prlights[lighti].planelist->n;
oldhead->n = plpool;
plpool = oldhead;
plpool->plane = NULL;
}
prlights[lighti].planecount = 0;
prlights[lighti].planelist = NULL;
}
static void polymer_updatelights(void)
{
int32_t i = 0;
do
{
_prlight* light = &prlights[i];
if (light->flags.active && light->flags.invalidate) {
// highly suboptimal
polymer_removelight(i);
if (light->radius)
polymer_processspotlight(light);
polymer_culllight(i);
light->flags.invalidate = 0;
}
if (light->flags.active) {
// get the texture handle for the lightmap
if (light->radius && light->tilenum > 0)
{
int16_t picnum = light->tilenum;
pthtyp* pth;
DO_TILE_ANIM(picnum, 0);
if (!waloff[picnum])
loadtile(picnum);
pth = NULL;
pth = texcache_fetch(picnum, 0, 0, DAMETH_NOMASK);
if (pth)
light->lightmap = pth->glpic;
}
light->rtindex = -1;
}
}
while (++i < PR_MAXLIGHTS);
}
static inline void polymer_resetplanelights(_prplane* plane)
{
Bmemset(&plane->lights[0], -1, sizeof(plane->lights[0]) * plane->lightcount);
plane->lightcount = 0;
}
static void polymer_addplanelight(_prplane* plane, int16_t lighti)
{
_prplanelist* oldhead;
int32_t i = 0;
if (plane->lightcount)
{
if (plane->lightcount == PR_MAXLIGHTS - 1)
return;
do
{
if (plane->lights[i++] == lighti)
goto out;
}
while (i < plane->lightcount);
i = 0;
while (i < plane->lightcount && prlights[plane->lights[i]].priority < prlights[lighti].priority)
i++;
Bmemmove(&plane->lights[i+1], &plane->lights[i], sizeof(int16_t) * (plane->lightcount - i));
}
plane->lights[i] = lighti;
plane->lightcount++;
out:
oldhead = prlights[lighti].planelist;
while (oldhead != NULL)
{
if (oldhead->plane == plane) return;
oldhead = oldhead->n;
}
oldhead = prlights[lighti].planelist;
if (plpool == NULL)
{
prlights[lighti].planelist = (_prplanelist *) Xmalloc(sizeof(_prplanelist));
prlights[lighti].planelist->n = oldhead;
}
else
{
prlights[lighti].planelist = plpool;
plpool = plpool->n;
prlights[lighti].planelist->n = oldhead;
}
prlights[lighti].planelist->plane = plane;
prlights[lighti].planecount++;
}
static inline void polymer_deleteplanelight(_prplane* plane, int16_t lighti)
{
int32_t i = plane->lightcount-1;
while (i >= 0)
{
if (plane->lights[i] == lighti)
{
Bmemmove(&plane->lights[i], &plane->lights[i+1], sizeof(int16_t) * (plane->lightcount - i));
plane->lightcount--;
return;
}
i--;
}
}
static int32_t polymer_planeinlight(_prplane* plane, _prlight* light)
{
float lightpos[3];
int32_t i, j, k, l;
if (!plane->vertcount)
return 0;
if (light->radius)
return polymer_planeinfrustum(plane, light->frustum);
lightpos[0] = (float)light->y;
lightpos[1] = -(float)light->z / 16.0f;
lightpos[2] = -(float)light->x;
i = 0;
do
{
j = k = l = 0;
do
{
if ((&plane->buffer[j].x)[i] > (lightpos[i] + light->range)) k++;
if ((&plane->buffer[j].x)[i] < (lightpos[i] - light->range)) l++;
}
while (++j < plane->vertcount);
if ((k == plane->vertcount) || (l == plane->vertcount))
return 0;
}
while (++i < 3);
return 1;
}
static void polymer_invalidateplanelights(_prplane* plane)
{
int32_t i = plane->lightcount;
while (i--)
{
if (((unsigned)plane->lights[i] < PR_MAXLIGHTS) && (prlights[plane->lights[i]].flags.active))
prlights[plane->lights[i]].flags.invalidate = 1;
}
}
static void polymer_invalidatesectorlights(int16_t sectnum)
{
int32_t i;
_prsector *s = prsectors[sectnum];
sectortype *sec = &sector[sectnum];
if (!s)
return;
polymer_invalidateplanelights(&s->floor);
polymer_invalidateplanelights(&s->ceil);
i = sec->wallnum;
while (i--)
{
_prwall *w;
if (!(w = prwalls[sec->wallptr + i])) continue;
polymer_invalidateplanelights(&w->wall);
polymer_invalidateplanelights(&w->over);
polymer_invalidateplanelights(&w->mask);
}
}
static void polymer_processspotlight(_prlight* light)
{
float radius, ang, horizang, lightpos[3];
// hack to avoid lights beams perpendicular to walls
if ((light->horiz <= 100) && (light->horiz > 90))
light->horiz = 90;
if ((light->horiz > 100) && (light->horiz < 110))
light->horiz = 110;
lightpos[0] = (float)light->y;
lightpos[1] = -(float)light->z / 16.0f;
lightpos[2] = -(float)light->x;
// calculate the spot light transformations and matrices
radius = (float)(light->radius) * (360.f/2048.f);
ang = (float)(light->angle) * (360.f/2048.f);
horizang = (float)(-getangle(128, light->horiz-100)) * (360.f/2048.f);
bglMatrixMode(GL_PROJECTION);
bglPushMatrix();
bglLoadIdentity();
bgluPerspective(radius * 2, 1, 0.1f, light->range * (1.f/1000.f));
bglGetFloatv(GL_PROJECTION_MATRIX, light->proj);
bglPopMatrix();
bglMatrixMode(GL_MODELVIEW);
bglPushMatrix();
bglLoadIdentity();
bglRotatef(horizang, 1.0f, 0.0f, 0.0f);
bglRotatef(ang, 0.0f, 1.0f, 0.0f);
bglScalef(1.0f / 1000.0f, 1.0f / 1000.0f, 1.0f / 1000.0f);
bglTranslatef(-lightpos[0], -lightpos[1], -lightpos[2]);
bglGetFloatv(GL_MODELVIEW_MATRIX, light->transform);
bglPopMatrix();
polymer_extractfrustum(light->transform, light->proj, light->frustum);
light->rtindex = -1;
light->lightmap = 0;
}
static inline void polymer_culllight(int16_t lighti)
{
_prlight* light = &prlights[lighti];
int32_t front = 0;
int32_t back = 1;
int32_t i;
int32_t j;
int32_t zdiff;
int32_t checkror;
int16_t bunchnum;
int16_t ns;
_prsector *s;
_prwall *w;
sectortype *sec;
Bmemset(drawingstate, 0, sizeof(int16_t) * numsectors);
drawingstate[light->sector] = 1;
sectorqueue[0] = light->sector;
do
{
s = prsectors[sectorqueue[front]];
sec = &sector[sectorqueue[front]];
polymer_pokesector(sectorqueue[front]);
checkror = FALSE;
zdiff = light->z - s->floorz;
if (zdiff < 0)
zdiff = -zdiff;
zdiff >>= 4;
if (!light->radius && !(sec->floorstat & 1)) {
if (zdiff < light->range) {
polymer_addplanelight(&s->floor, lighti);
checkror = TRUE;
}
} else if (polymer_planeinlight(&s->floor, light)) {
polymer_addplanelight(&s->floor, lighti);
checkror = TRUE;
}
#ifdef YAX_ENABLE
// queue ROR neighbors
if (checkror &&
(bunchnum = yax_getbunch(sectorqueue[front], YAX_FLOOR)) >= 0) {
for (SECTORS_OF_BUNCH(bunchnum, YAX_CEILING, ns)) {
if (ns >= 0 && !drawingstate[ns] &&
polymer_planeinlight(&prsectors[ns]->ceil, light)) {
sectorqueue[back++] = ns;
drawingstate[ns] = 1;
}
}
}
#endif
checkror = FALSE;
zdiff = light->z - s->ceilingz;
if (zdiff < 0)
zdiff = -zdiff;
zdiff >>= 4;
if (!light->radius && !(sec->ceilingstat & 1)) {
if (zdiff < light->range) {
polymer_addplanelight(&s->ceil, lighti);
checkror = TRUE;
}
} else if (polymer_planeinlight(&s->ceil, light)) {
polymer_addplanelight(&s->ceil, lighti);
checkror = TRUE;
}
#ifdef YAX_ENABLE
// queue ROR neighbors
if (checkror &&
(bunchnum = yax_getbunch(sectorqueue[front], YAX_CEILING)) >= 0) {
for (SECTORS_OF_BUNCH(bunchnum, YAX_FLOOR, ns)) {
if (ns >= 0 && !drawingstate[ns] &&
polymer_planeinlight(&prsectors[ns]->floor, light)) {
sectorqueue[back++] = ns;
drawingstate[ns] = 1;
}
}
}
#endif
i = 0;
while (i < sec->wallnum)
{
w = prwalls[sec->wallptr + i];
j = 0;
if (polymer_planeinlight(&w->wall, light)) {
polymer_addplanelight(&w->wall, lighti);
j++;
}
if (polymer_planeinlight(&w->over, light)) {
polymer_addplanelight(&w->over, lighti);
j++;
}
// assume the light hits the middle section if it hits the top and bottom
if (wallvisible(light->x, light->y, sec->wallptr + i) &&
(j == 2 || polymer_planeinlight(&w->mask, light))) {
if ((w->mask.vertcount == 4) &&
(w->mask.buffer[0].y >= w->mask.buffer[3].y) &&
(w->mask.buffer[1].y >= w->mask.buffer[2].y))
{
i++;
continue;
}
polymer_addplanelight(&w->mask, lighti);
if ((wall[sec->wallptr + i].nextsector >= 0) &&
(!drawingstate[wall[sec->wallptr + i].nextsector])) {
drawingstate[wall[sec->wallptr + i].nextsector] = 1;
sectorqueue[back] = wall[sec->wallptr + i].nextsector;
back++;
}
}
i++;
}
front++;
}
while (front != back);
i = MAXSPRITES-1;
do
{
_prsprite *s = prsprites[i];
if ((sprite[i].cstat & 48) == 0 || s == NULL || sprite[i].statnum == MAXSTATUS || sprite[i].sectnum == MAXSECTORS)
continue;
if (polymer_planeinlight(&s->plane, light))
polymer_addplanelight(&s->plane, lighti);
}
while (i--);
}
static void polymer_prepareshadows(void)
{
int16_t oviewangle, oglobalang;
int32_t i, j, k;
int32_t gx, gy, gz;
int32_t oldoverridematerial;
// for wallvisible()
gx = globalposx;
gy = globalposy;
gz = globalposz;
// build globals used by drawmasks
oviewangle = viewangle;
oglobalang = globalang;
i = j = k = 0;
while ((k < lightcount) && (j < pr_shadowcount))
{
while (!prlights[i].flags.active)
i++;
if (prlights[i].radius && prlights[i].publicflags.emitshadow &&
prlights[i].flags.isinview)
{
prlights[i].flags.isinview = 0;
prlights[i].rtindex = j + 1;
if (pr_verbosity >= 3) OSD_Printf("PR : Drawing shadow %i...\n", i);
bglBindFramebufferEXT(GL_FRAMEBUFFER_EXT, prrts[prlights[i].rtindex].fbo);
bglPushAttrib(GL_VIEWPORT_BIT);
bglViewport(0, 0, prrts[prlights[i].rtindex].xdim, prrts[prlights[i].rtindex].ydim);
bglClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
bglMatrixMode(GL_PROJECTION);
bglPushMatrix();
bglLoadMatrixf(prlights[i].proj);
bglMatrixMode(GL_MODELVIEW);
bglLoadMatrixf(prlights[i].transform);
bglEnable(GL_POLYGON_OFFSET_FILL);
bglPolygonOffset(5, SHADOW_DEPTH_OFFSET);
set_globalpos(prlights[i].x, prlights[i].y, prlights[i].z);
// build globals used by rotatesprite
viewangle = prlights[i].angle;
set_globalang(prlights[i].angle);
oldoverridematerial = overridematerial;
// smooth model shadows
overridematerial = prprogrambits[PR_BIT_ANIM_INTERPOLATION].bit;
// used by alpha-testing for sprite silhouette
overridematerial |= prprogrambits[PR_BIT_DIFFUSE_MAP].bit;
overridematerial |= prprogrambits[PR_BIT_DIFFUSE_MAP2].bit;
// to force sprite drawing
mirrors[depth++].plane = NULL;
polymer_displayrooms(prlights[i].sector);
depth--;
overridematerial = oldoverridematerial;
bglDisable(GL_POLYGON_OFFSET_FILL);
bglMatrixMode(GL_PROJECTION);
bglPopMatrix();
bglPopAttrib();
bglBindFramebufferEXT(GL_FRAMEBUFFER_EXT, 0);
j++;
}
i++;
k++;
}
set_globalpos(gx, gy, gz);
viewangle = oviewangle;
set_globalang(oglobalang);
}
// RENDER TARGETS
static void polymer_initrendertargets(int32_t count)
{
int32_t i;
static int32_t ocount;
if (count == 0) // uninit
{
if (prrts)
{
for (i=0; i<ocount; i++)
{
if (prrts[i].color)
{
bglDeleteTextures(1, &prrts[i].color);
prrts[i].color = 0;
}
bglDeleteTextures(1, &prrts[i].z);
prrts[i].z = 0;
bglDeleteFramebuffersEXT(1, &prrts[i].fbo);
prrts[i].fbo = 0;
}
DO_FREE_AND_NULL(prrts);
}
ocount = 0;
return;
}
ocount = count;
//////////
prrts = (_prrt *)Xcalloc(count, sizeof(_prrt));
i = 0;
while (i < count)
{
if (!i) {
prrts[i].target = GL_TEXTURE_RECTANGLE;
prrts[i].xdim = xdim;
prrts[i].ydim = ydim;
bglGenTextures(1, &prrts[i].color);
bglBindTexture(prrts[i].target, prrts[i].color);
bglTexImage2D(prrts[i].target, 0, GL_RGB, prrts[i].xdim, prrts[i].ydim, 0, GL_RGB, GL_SHORT, NULL);
bglTexParameteri(prrts[i].target, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
bglTexParameteri(prrts[i].target, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
bglTexParameteri(prrts[i].target, GL_TEXTURE_WRAP_S, glinfo.clamptoedge?GL_CLAMP_TO_EDGE:GL_CLAMP);
bglTexParameteri(prrts[i].target, GL_TEXTURE_WRAP_T, glinfo.clamptoedge?GL_CLAMP_TO_EDGE:GL_CLAMP);
} else {
prrts[i].target = GL_TEXTURE_2D;
prrts[i].xdim = 128 << pr_shadowdetail;
prrts[i].ydim = 128 << pr_shadowdetail;
prrts[i].color = 0;
if (pr_ati_fboworkaround) {
bglGenTextures(1, &prrts[i].color);
bglBindTexture(prrts[i].target, prrts[i].color);
bglTexImage2D(prrts[i].target, 0, GL_RGB, prrts[i].xdim, prrts[i].ydim, 0, GL_RGB, GL_SHORT, NULL);
bglTexParameteri(prrts[i].target, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
bglTexParameteri(prrts[i].target, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
bglTexParameteri(prrts[i].target, GL_TEXTURE_WRAP_S, glinfo.clamptoedge?GL_CLAMP_TO_EDGE:GL_CLAMP);
bglTexParameteri(prrts[i].target, GL_TEXTURE_WRAP_T, glinfo.clamptoedge?GL_CLAMP_TO_EDGE:GL_CLAMP);
}
}
bglGenTextures(1, &prrts[i].z);
bglBindTexture(prrts[i].target, prrts[i].z);
bglTexImage2D(prrts[i].target, 0, GL_DEPTH_COMPONENT, prrts[i].xdim, prrts[i].ydim, 0, GL_DEPTH_COMPONENT, GL_SHORT, NULL);
bglTexParameteri(prrts[i].target, GL_TEXTURE_MIN_FILTER, pr_shadowfiltering ? GL_LINEAR : GL_NEAREST);
bglTexParameteri(prrts[i].target, GL_TEXTURE_MAG_FILTER, pr_shadowfiltering ? GL_LINEAR : GL_NEAREST);
bglTexParameteri(prrts[i].target, GL_TEXTURE_WRAP_S, glinfo.clamptoedge?GL_CLAMP_TO_EDGE:GL_CLAMP);
bglTexParameteri(prrts[i].target, GL_TEXTURE_WRAP_T, glinfo.clamptoedge?GL_CLAMP_TO_EDGE:GL_CLAMP);
bglTexParameteri(prrts[i].target, GL_TEXTURE_COMPARE_MODE_ARB, GL_COMPARE_R_TO_TEXTURE_ARB);
bglTexParameteri(prrts[i].target, GL_TEXTURE_COMPARE_FUNC_ARB, GL_LEQUAL);
bglTexParameteri(prrts[i].target, GL_DEPTH_TEXTURE_MODE_ARB, GL_ALPHA);
bglGenFramebuffersEXT(1, &prrts[i].fbo);
bglBindFramebufferEXT(GL_FRAMEBUFFER_EXT, prrts[i].fbo);
if (prrts[i].color)
bglFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0_EXT,
prrts[i].target, prrts[i].color, 0);
else {
bglDrawBuffer(GL_NONE);
bglReadBuffer(GL_NONE);
}
bglFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_DEPTH_ATTACHMENT_EXT, prrts[i].target, prrts[i].z, 0);
if (bglCheckFramebufferStatusEXT(GL_FRAMEBUFFER_EXT) != GL_FRAMEBUFFER_COMPLETE_EXT)
{
OSD_Printf("PR : FBO #%d initialization failed.\n", i);
}
bglBindTexture(prrts[i].target, 0);
bglBindFramebufferEXT(GL_FRAMEBUFFER_EXT, 0);
i++;
}
}
// DEBUG OUTPUT
void PR_CALLBACK polymer_debugoutputcallback(GLenum source,GLenum type,GLuint id,GLenum severity,GLsizei length,const GLchar *message,GLvoid *userParam)
{
UNREFERENCED_PARAMETER(source);
UNREFERENCED_PARAMETER(type);
UNREFERENCED_PARAMETER(id);
UNREFERENCED_PARAMETER(severity);
UNREFERENCED_PARAMETER(length);
UNREFERENCED_PARAMETER(userParam);
if (type == GL_DEBUG_TYPE_ERROR_ARB)
{
OSD_Printf("PR : Received OpenGL debug message: %s\n", message);
}
}
#endif