-- "Extended" math module for Lunatic. local ffi = require("ffi") local bit = require("bit") local math = require("math") local geom = require("geom") local assert = assert module(...) local BANG2RAD = math.pi/1024 local isintab = ffi.new("int16_t [?]", 2048) local dsintab = ffi.new("double [?]", 2048) for a=0,511 do local s = math.sin(a*BANG2RAD) isintab[a] = 16384*s dsintab[a] = s end isintab[512] = 16384 dsintab[512] = 1 for i=513,1023 do isintab[i] = isintab[1024-i]; dsintab[i] = dsintab[1024-i]; end for i=1024,2047 do isintab[i] = -isintab[i-1024]; dsintab[i] = -dsintab[i-1024]; end local band = bit.band local function ksc_common(ang) ang = band(ang, 2047) assert(ang < 2048+0ULL) -- might have been passed NaN return ang end -- k{sin,cos}: 16384-scaled output, 2048-based angle input function ksin(ang) return isintab[ksc_common(ang)] end function kcos(ang) return isintab[ksc_common(ang+512)] end local sin, cos = math.sin, math.cos -- {sin,cos}b: [-1..1] output, 2048-based angle input function sinb(ang) return dsintab[ksc_common(ang)] end function cosb(ang) return dsintab[ksc_common(ang+512)] end -- Approximations to 2D and 3D Euclidean distances (also see common.c) local abs = math.abs local arshift = bit.arshift local function dist_common(pos1, pos2) local x = abs(pos1.x - pos2.x) local y = abs(pos1.y - pos2.y) if (x < y) then x, y = y, x end return x, y end function ldist(pos1, pos2) local x, y = dist_common(pos1, pos2) local t = y + arshift(y,1) return x - arshift(x,5) - arshift(x,7) + arshift(t,2) + arshift(t,6) end function dist(pos1, pos2) local x, y = dist_common(pos1, pos2) local z = abs(arshift(pos1.z - pos2.z, 4)) if (x < z) then x, z = z, x end local t = y + z return x - arshift(x,4) + arshift(t,2) + arshift(t,3) end -- Point rotation. Note the different order of arguments from engine function. -- XXX: passing mixed vec2/vec3 is problematic. Get rid of geom.vec2? -- : BUILD angle (0-2047 based) function rotate(pos, pivot, ang) local p = geom.tovec3(pos)-pivot local c, s = cosb(ang), sinb(ang) p.x = pivot.x + (c*p.x - s*p.y) p.y = pivot.y + (c*p.y + s*p.x) return p end