//------------------------------------------------------------------------- /* Copyright (C) 2021 Christoph Oelckers & Mitchell Richters This is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ //------------------------------------------------------------------------- #include "gamefuncs.h" #include "gamestruct.h" #include "intvec.h" #include "coreactor.h" #include "interpolate.h" #include "hw_voxels.h" IntRect viewport3d; //--------------------------------------------------------------------------- // // Unified chasecam function for all games. // //--------------------------------------------------------------------------- double cameradist, cameraclock; bool calcChaseCamPos(DVector3& ppos, DCoreActor* act, sectortype** psect, DAngle ang, DAngle horiz, double const interpfrac) { if (!*psect) return false; // Calculate new pos to shoot backwards DVector3 npos = gi->chaseCamPos(ang, horiz); HitInfoBase hitinfo; auto bakcstat = act->spr.cstat; act->spr.cstat &= ~CSTAT_SPRITE_BLOCK_ALL; updatesectorz(ppos, psect); hitscan(ppos, *psect, npos, hitinfo, CLIPMASK1); act->spr.cstat = bakcstat; auto hpos = hitinfo.hitpos - ppos; if (!*psect) return false; // If something is in the way, make cameradist lower if necessary if (npos.XY().Sum() > hpos.XY().Sum()) { double DVector3::* c = fabs(npos.X) > fabs(npos.Y) ? &DVector3::X : &DVector3::Y; if (hitinfo.hitWall != nullptr) { // Push you a little bit off the wall *psect = hitinfo.hitSector; hpos.*c -= npos.*c * npos.XY().dot(hitinfo.hitWall->delta().Angle().ToVector().Rotated90CW()) * (1. / 1024.); } else if (hitinfo.hitActor == nullptr) { // Push you off the ceiling/floor *psect = hitinfo.hitSector; hpos.*c -= npos.*c * (1. / 32.); } else { // If you hit a sprite that's not a wall sprite - try again. if (!(hitinfo.hitActor->spr.cstat & CSTAT_SPRITE_ALIGNMENT_WALL)) { bakcstat = hitinfo.hitActor->spr.cstat; hitinfo.hitActor->spr.cstat &= ~(CSTAT_SPRITE_BLOCK | CSTAT_SPRITE_BLOCK_HITSCAN); calcChaseCamPos(ppos, act, psect, ang, horiz, interpfrac); hitinfo.hitActor->spr.cstat = bakcstat; return false; } else { // same as wall calculation. hpos.*c -= npos.*c * npos.XY().dot((act->spr.angle - DAngle90).ToVector().Rotated90CW()) * (1. / 1024.); } } double newdist = hpos.*c / npos.*c; if (newdist < cameradist) cameradist = newdist; } // Actually move you! (camerdist is 1 if nothing is in the way) ppos += npos * cameradist; // Calculate clock using GameTicRate so it increases the same rate on all speed computers. double myclock = PlayClock + 120 / GameTicRate * interpfrac; if (cameraclock == INT_MIN) { // Third person view was just started. cameraclock = myclock; } // Slowly increase cameradist until it reaches 1. cameradist = min(cameradist + ((myclock - cameraclock) * (1. / 64.)), 1.); cameraclock = myclock; // Make sure psectnum is correct. updatesectorz(ppos, psect); return true; } //========================================================================== // // consolidated slope calculation // //========================================================================== void calcSlope(const sectortype* sec, double xpos, double ypos, double* pceilz, double* pflorz) { int bits = 0; if (pceilz) { bits |= sec->ceilingstat; *pceilz = sec->ceilingz; } if (pflorz) { bits |= sec->floorstat; *pflorz = sec->floorz; } if ((bits & CSTAT_SECTOR_SLOPE) == CSTAT_SECTOR_SLOPE) { auto wal = sec->firstWall(); double len = wal->Length(); if (len != 0) { double fac = (wal->delta().X * (ypos - wal->pos.Y) - wal->delta().Y * (xpos - wal->pos.X)) / len * (1. / SLOPEVAL_FACTOR); if (pceilz && sec->ceilingstat & CSTAT_SECTOR_SLOPE) *pceilz += (sec->ceilingheinum * fac); if (pflorz && sec->floorstat & CSTAT_SECTOR_SLOPE) *pflorz += (sec->floorheinum * fac); } } } // only used by clipmove et.al. void getcorrectzsofslope(int sectnum, int dax, int day, double* ceilz, double* florz) { DVector2 closestv; SquareDistToSector(dax * inttoworld, day * inttoworld, §or[sectnum], &closestv); double ffloorz, fceilz; calcSlope(§or[sectnum], closestv.X, closestv.Y, &fceilz, &ffloorz); if (ceilz) *ceilz = fceilz; if (florz) *florz = ffloorz; } //========================================================================== // // // //========================================================================== int getslopeval(sectortype* sect, const DVector3& pos, double basez) { auto wal = sect->firstWall(); auto delta = wal->delta(); double i = (pos.Y - wal->pos.Y) * delta.X - (pos.X - wal->pos.X) * delta.Y; return i == 0? 0 : SLOPEVAL_FACTOR * (pos.Z - basez) * wal->Length() / i; } //========================================================================== // // Calculate the distance to the closest point in the given sector // //========================================================================== double SquareDistToSector(double px, double py, const sectortype* sect, DVector2* point) { if (inside(px, py, sect)) { if (point) *point = { px, py }; return 0; } double bestdist = DBL_MAX; DVector2 bestpt = { px, py }; for (auto& wal : wallsofsector(sect)) { DVector2 pt; auto dist = SquareDistToWall(px, py, &wal, &pt); if (dist < bestdist) { bestdist = dist; bestpt = pt; } } if (point) *point = bestpt; return bestdist; } //========================================================================== // // Calculate the position of a wall sprite in the world // //========================================================================== void GetWallSpritePosition(const spritetypebase* spr, const DVector2& pos, DVector2* out, bool render) { auto tex = tileGetTexture(spr->picnum); double width, xoffset; if (render && hw_hightile && TileFiles.tiledata[spr->picnum].hiofs.xsize) { width = TileFiles.tiledata[spr->picnum].hiofs.xsize; xoffset = (TileFiles.tiledata[spr->picnum].hiofs.xoffs + spr->xoffset); } else { width = tex->GetDisplayWidth(); xoffset = tex->GetDisplayLeftOffset() + spr->xoffset; } double x = spr->angle.Sin() * spr->xrepeat * REPEAT_SCALE; double y = -spr->angle.Cos() * spr->xrepeat * REPEAT_SCALE; if (spr->cstat & CSTAT_SPRITE_XFLIP) xoffset = -xoffset; double origin = (width * 0.5) + xoffset; out[0].X = pos.X - x * origin; out[0].Y = pos.Y - y * origin; out[1].X = out[0].X + x * width; out[1].Y = out[0].Y + y * width; } //========================================================================== // // Calculate the position of a floor sprite in the world // //========================================================================== void TGetFlatSpritePosition(const spritetypebase* spr, const DVector2& pos, DVector2* out, double* outz, int heinum, bool render) { auto tex = tileGetTexture(spr->picnum); double width, height, leftofs, topofs; double sloperatio = sqrt(heinum * heinum + SLOPEVAL_FACTOR * SLOPEVAL_FACTOR) * (1. / SLOPEVAL_FACTOR); double xrepeat = spr->xrepeat * REPEAT_SCALE; double yrepeat = spr->yrepeat * REPEAT_SCALE; int xo = heinum ? 0 : spr->xoffset; int yo = heinum ? 0 : spr->yoffset; if (render && hw_hightile && TileFiles.tiledata[spr->picnum].hiofs.xsize) { width = TileFiles.tiledata[spr->picnum].hiofs.xsize * xrepeat; height = TileFiles.tiledata[spr->picnum].hiofs.ysize * yrepeat; leftofs = (TileFiles.tiledata[spr->picnum].hiofs.xoffs + xo) * xrepeat; topofs = (TileFiles.tiledata[spr->picnum].hiofs.yoffs + yo) * yrepeat; } else { width = (int)tex->GetDisplayWidth() * xrepeat; height = (int)tex->GetDisplayHeight() * yrepeat; leftofs = ((int)tex->GetDisplayLeftOffset() + xo) * xrepeat; topofs = ((int)tex->GetDisplayTopOffset() + yo) * yrepeat; } if (spr->cstat & CSTAT_SPRITE_XFLIP) leftofs = -leftofs; if (spr->cstat & CSTAT_SPRITE_YFLIP) topofs = -topofs; double sprcenterx = (width * 0.5) + leftofs; double sprcentery = (height * 0.5) + topofs; double cosang = spr->angle.Cos(); double sinang = spr->angle.Sin(); double cosangslope = cosang / sloperatio; double sinangslope = sinang / sloperatio; out[0].X = pos.X + sinang * sprcenterx + cosangslope * sprcentery; out[0].Y = pos.Y + sinangslope * sprcentery - cosang * sprcenterx; out[1].X = out[0].X - sinang * width; out[1].Y = out[0].Y + cosang * width; DVector2 sub = { cosangslope * height, sinangslope * height }; out[2] = out[1] - sub; out[3] = out[0] - sub; if (outz) { if (!heinum) outz[3] = outz[2] = outz[1] = outz[0] = 0; else { for (int i = 0; i < 4; i++) { outz[i] = (sinang * (out[i].Y - pos.Y) + cosang * (out[i].X - pos.X)) * heinum * (1. / SLOPEVAL_FACTOR); } } } } void GetFlatSpritePosition(DCoreActor* actor, const DVector2& pos, DVector2* out, double* outz, bool render) { TGetFlatSpritePosition(&actor->spr, pos, out, outz, spriteGetSlope(actor), render); } void GetFlatSpritePosition(const tspritetype* spr, const DVector2& pos, DVector2* out, double* outz, bool render) { TGetFlatSpritePosition(spr, pos, out, outz, tspriteGetSlope(spr), render); } //========================================================================== // // checks if the given point is sufficiently close to the given line segment. // //========================================================================== EClose IsCloseToLine(const DVector2& point, const DVector2& start, const DVector2& end, double maxdist) { auto const v1 = start - point; auto const v2 = end - point; // trivially outside the box. if ( ((v1.X < -maxdist) && (v2.X < -maxdist)) || // fully to the left ((v1.Y < -maxdist) && (v2.Y < -maxdist)) || // fully below ((v1.X >= maxdist) && (v2.X >= maxdist)) || // fully to the right ((v1.Y >= maxdist) && (v2.Y >= maxdist))) // fully above return EClose::Outside; auto waldelta = end - start; if (waldelta.X * v1.Y <= waldelta.Y * v1.X) { // is it in front? waldelta.X *= waldelta.X > 0 ? v1.Y + maxdist : v1.Y - maxdist; waldelta.Y *= waldelta.Y > 0 ? v1.X - maxdist : v1.X + maxdist; return waldelta.X > waldelta.Y ? EClose::InFront : EClose::Outside; } else { // or behind? waldelta.X *= waldelta.X > 0 ? v1.Y - maxdist : v1.Y + maxdist; waldelta.Y *= waldelta.Y > 0 ? v1.X + maxdist : v1.X - maxdist; return (waldelta.X <= waldelta.Y) ? EClose::Behind : EClose::Outside; } } EClose IsCloseToWall(const DVector2& point, walltype* wal, double maxdist) { return IsCloseToLine(point, wal->pos, wal->point2Wall()->pos, maxdist); } //========================================================================== // // Check if some walls are set to use rotated textures. // Ideally this should just have been done with texture rotation, // but the effects on the render code would be too severe due to the alignment mess. // //========================================================================== void checkRotatedWalls() { for (auto& w : wall) { if (w.cstat & CSTAT_WALL_ROTATE_90) { int picnum = w.picnum; tileUpdatePicnum(&picnum); auto& tile = RotTile(picnum); if (tile.newtile == -1 && tile.owner == -1) { tile.newtile = TileFiles.tileCreateRotated(picnum); assert(tile.newtile != -1); RotTile(tile.newtile).owner = picnum; } } } } //========================================================================== // // check if two sectors share a wall connection // //========================================================================== bool sectorsConnected(int sect1, int sect2) { for (auto& wal : wallsofsector(sect1)) { if (wal.nextsector == sect2) return true; } return false; } //========================================================================== // // // //========================================================================== void dragpoint(walltype* startwall, int newx, int newy) { vertexscan(startwall, [&](walltype* wal) { wal->movexy(newx, newy); wal->sectorp()->exflags |= SECTOREX_DRAGGED; }); } void dragpoint(walltype* startwall, const DVector2& pos) { vertexscan(startwall, [&](walltype* wal) { wal->move(pos); wal->sectorp()->exflags |= SECTOREX_DRAGGED; }); } //========================================================================== // // // //========================================================================== int64_t checkforinside(double x, double y, const DVector2& pt1, const DVector2& pt2) { // Perform the checks here in 48.16 fixed point. // Doing it directly with floats and multiplications does not work reliably due to underflows. // Unfortunately, due to the conversions, this is a bit slower. :( int64_t xs = int64_t(0x10000 * (pt1.X - x)); int64_t ys = int64_t(0x10000 * (pt1.Y - y)); int64_t xe = int64_t(0x10000 * (pt2.X - x)); int64_t ye = int64_t(0x10000 * (pt2.Y - y)); if ((ys ^ ye) < 0) { int64_t val; if ((xs ^ xe) >= 0) val = xs; else val = ((xs * ye) - xe * ys) ^ ye; return val; } return 0; } //========================================================================== // // // //========================================================================== int inside(double x, double y, const sectortype* sect) { if (sect) { int64_t acc = 1; for (auto& wal : wallsofsector(sect)) { acc ^= checkforinside(x, y, wal.pos, wal.point2Wall()->pos); } return acc < 0; } return -1; } //========================================================================== // // // //========================================================================== int insidePoly(double x, double y, const DVector2* points, int count) { int64_t acc = 1; for (int i = 0; i < count; i++) { int j = (i + 1) % count; acc ^= checkforinside(x, y, points[i], points[j]); } return acc < 0; } //========================================================================== // // find the closest neighboring sector plane in the given direction. // Does not consider slopes, just like the original! // //========================================================================== sectortype* nextsectorneighborzptr(sectortype* sectp, double startz, int flags) { double factor = (flags & Find_Up)? -1 : 1; double bestz = INT_MAX; sectortype* bestsec = (flags & Find_Safe)? sectp : nullptr; const auto planez = (flags & Find_Ceiling)? §ortype::ceilingz : §ortype::floorz; startz *= factor; for(auto& wal : wallsofsector(sectp)) { if (wal.twoSided()) { auto nextsec = wal.nextSector(); auto nextz = factor * nextsec->*planez; if (startz < nextz && nextz < bestz) { bestz = nextz; bestsec = nextsec; } } } return bestsec; } //========================================================================== // // // //========================================================================== bool cansee(const DVector3& start, sectortype* sect1, const DVector3& end, sectortype* sect2) { if (!sect1 || !sect2) return false; auto delta = end - start; if (delta.XY().isZero()) return (sect1 == sect2); BFSSectorSearch search(sect1); while (auto sec = search.GetNext()) { for (auto& wal : wallsofsector(sec)) { double factor = InterceptLineSegments(start.X, start.Y, delta.X, delta.Y, wal.pos.X, wal.pos.Y, wal.delta().X, wal.delta().Y, nullptr, true); if (factor <= 0 || factor >= 1) continue; if (!wal.twoSided() || wal.cstat & CSTAT_WALL_1WAY) return false; auto spot = start + delta * factor; double floorz, ceilz; for (auto isec : { sec, wal.nextSector() }) { getzsofslopeptr(isec, spot, &ceilz, &floorz); if (spot.Z <= ceilz || spot.Z >= floorz) return false; } search.Add(wal.nextSector()); } } return search.Check(sect2); } //--------------------------------------------------------------------------- // // taken out of SW. // //--------------------------------------------------------------------------- int testpointinquad(const DVector2& pt, const DVector2* quad) { for (int i = 0; i < 4; i++) { double dist = PointOnLineSide(pt.X, pt.Y, quad[i].X, quad[i].Y, quad[(i + 1) & 3].X - quad[i].X, quad[(i + 1) & 3].Y - quad[i].Y); if (dist > 0) return false; } return true; } //========================================================================== // // // //========================================================================== double intersectSprite(DCoreActor* actor, const DVector3& start, const DVector3& direction, DVector3& result, double maxfactor) { auto end = start + direction; if (direction.isZero()) return false; // get point on trace that is closest to the sprite double factor = NearestPointOnLineFast(actor->spr.pos.X, actor->spr.pos.Y, start.X, start.Y, end.X, end.Y); if (factor < 0 || factor > maxfactor) return -1; auto sprwidth = tileWidth(actor->spr.picnum) * actor->spr.xrepeat * (REPEAT_SCALE * 0.5); auto point = start + direction * factor; // Using proper distance here, Build originally used the sum of x- and y-distance if ((point.XY() - actor->spr.pos.XY()).LengthSquared() > sprwidth * sprwidth * 0.5) return -1; // too far away double siz, hitz = actor->spr.pos.Z + actor->GetOffsetAndHeight(siz); if (point.Z < hitz - siz || point.Z > hitz) return -1; result = point; return factor; } //========================================================================== // // // //========================================================================== double intersectWallSprite(DCoreActor* actor, const DVector3& start, const DVector3& direction, DVector3& result, double maxfactor, bool checktex) { DVector2 points[2]; GetWallSpritePosition(&actor->spr, actor->spr.pos, points, false); points[1] -= points[0]; if ((actor->spr.cstat & CSTAT_SPRITE_ONE_SIDE)) //check for back side of one way sprite { if (PointOnLineSide(start.X, start.Y, points[0].X, points[0].Y, points[1].X, points[1].Y) > 0) return -1; } // the wall factor is needed for doing a texture check. double factor2, factor = InterceptLineSegments(start.X, start.Y, direction.X, direction.Y, points[0].X, points[0].Y, points[1].X, points[1].Y, &factor2); if (factor < 0 || factor > maxfactor) return -1; result = start + factor * direction; double height, position = actor->spr.pos.Z + actor->GetOffsetAndHeight(height); if (result.Z <= position - height || result.Z >= position) return -1; if (checktex) { int tilenum = actor->spr.picnum; tileUpdatePicnum(&tilenum); if (tileLoad(tilenum)) { double zfactor = 1. - (position - result.Z) / height; // all other flags have been taken care of already by GetWallSpritePosition and GetOffsetAndHeight // - but we have to handle the flip flags here to fetch the correct texel. if (actor->spr.cstat & CSTAT_SPRITE_XFLIP) factor2 = 1 - factor2; if (actor->spr.cstat & CSTAT_SPRITE_YFLIP) zfactor = 1 - zfactor; int xtex = int(factor2 * tileWidth(tilenum)); int ytex = int(zfactor * tileHeight(tilenum)); auto texel = (tilePtr(tilenum) + tileHeight(tilenum) * xtex + ytex); if (*texel == TRANSPARENT_INDEX) return -1; } } return factor; } //========================================================================== // // // //========================================================================== double intersectFloorSprite(DCoreActor* actor, const DVector3& start, const DVector3& direction, DVector3& result, double maxfactor) { if (actor->spr.cstat & CSTAT_SPRITE_ONE_SIDE) { if ((start.Z > actor->spr.pos.Z) == ((actor->spr.cstat & CSTAT_SPRITE_YFLIP) == 0)) return -1; } DVector2 points[4]; GetFlatSpritePosition(actor, actor->spr.pos, points, nullptr, false); double factor = (actor->spr.pos.Z - start.Z) / direction.Z; if (factor <= 0 || factor > maxfactor) return -1; result = start + factor * direction; if (!testpointinquad(result.XY(), points)) return -1; return factor; } //========================================================================== // // // //========================================================================== double intersectSlopeSprite(DCoreActor* actor, const DVector3& start, const DVector3& direction, DVector3& result, double maxfactor) { DVector2 points[4]; double ptz[4]; GetFlatSpritePosition(actor, actor->spr.pos, points, ptz, false); DVector3 pt1(points[0], ptz[0]); DVector3 pt2(points[1], ptz[1]); DVector3 pt3(points[2], ptz[2]); double factor = LinePlaneIntersect(start, direction, pt1, pt2 - pt1, pt3 - pt1); if (factor <= 0 || factor > maxfactor) return -1; result = start + factor * direction; // we can only do this after calculating the actual intersection spot... if (actor->spr.cstat & CSTAT_SPRITE_ONE_SIDE) { double checkz = spriteGetZOfSlopef(&actor->spr, start.XY(), spriteGetSlope(actor)); if ((start.Z > checkz) == ((actor->spr.cstat & CSTAT_SPRITE_YFLIP) == 0)) return -1; } if (!testpointinquad(result.XY(), points)) return -1; return factor; } //========================================================================== // // // //========================================================================== double checkWallHit(walltype* wal, EWallFlags flagmask, const DVector3& start, const DVector3& direction, DVector3& result, double maxfactor) { if (PointOnLineSide(start.XY(), wal) > 0) return -1; double factor = InterceptLineSegments(start.X, start.Y, direction.X, direction.Y, wal->pos.X, wal->pos.Y, wal->delta().X, wal->delta().Y); if (factor <= 0 || factor > maxfactor) return -1; // did not connect. result = start + factor * direction; if (wal->twoSided() && !(wal->cstat & flagmask)) { // check if the trace passes this wall or hits the upper or lower tier. double cz, fz; getzsofslopeptr(wal->nextSector(), result, &cz, &fz); if (result.Z > cz && result.Z < fz) return -2; // trace will pass this wall, i.e. no hit. Return -2 to tell the caller to go on. } return factor; } //========================================================================== // // // //========================================================================== double checkSectorPlaneHit(sectortype* sec, const DVector3& start, const DVector3& direction, DVector3& result, double maxfactor) { if (sec->wallnum < 3) return -1; auto wal = sec->firstWall(); double len = wal->Length(); DVector3 pt1, pt2, pt3; double startcz, startfz; double p3cz, p3fz; pt1.XY() = wal->pos; pt2.XY() = wal->point2Wall()->pos; pt3.X = pt1.X + pt2.Y - pt1.Y; pt3.Y = pt1.Y + pt2.X - pt1.X; // somewhere off the first line. calcSlope(sec, start.X, start.Y, &startcz, &startfz); calcSlope(sec, pt3.X, pt3.Y, &p3cz, &p3fz); double factor; for (int i = 0; i < 2; i++) { bool sloped; if (i == 0) { if (start.Z <= startcz) continue; sloped = (sec->ceilingstat & CSTAT_SECTOR_SLOPE) && len > 0; pt1.Z = pt2.Z = sec->ceilingz; pt3.Z = p3cz; } else { if (start.Z >= startfz) continue; sloped = (sec->floorstat & CSTAT_SECTOR_SLOPE && len > 0); pt1.Z = pt2.Z = sec->floorz; pt3.Z = p3fz; } if (sloped) { factor = LinePlaneIntersect(start, direction, pt1, pt2 - pt1, pt3 - pt1); } else { factor = (pt1.Z - start.Z) / direction.Z; } if (factor > 0 && factor <= maxfactor) { result = start + factor * direction; return inside(result.X, result.Y, sec) ? factor : -1; } } return -1; } //========================================================================== // // // //========================================================================== int hitscan(const DVector3& start, const sectortype* startsect, const DVector3& vect, HitInfoBase& hitinfo, unsigned cliptype, double maxrange) { double hitfactor = DBL_MAX; const auto wallflags = EWallFlags::FromInt(cliptype & 65535); const auto spriteflags = ESpriteFlags::FromInt(cliptype >> 16); hitinfo.clearObj(); if (startsect == nullptr) return -1; if (maxrange > 0) { hitfactor = maxrange / vect.Length(); hitinfo.hitpos = start + hitfactor * vect; } else hitinfo.hitpos.X = hitinfo.hitpos.Y = DBL_MAX; BFSSectorSearch search(startsect); while (auto sec = search.GetNext()) { DVector3 v; double hit = checkSectorPlaneHit(sec, start, vect, v, hitfactor); if (hit > 0) { hitfactor = hit; hitinfo.set(sec, nullptr, nullptr, v); } // check all walls in this sector for (auto& w : wallsofsector(sec)) { hit = checkWallHit(&w, EWallFlags::FromInt(wallflags), start, vect, v, hitfactor); if (hit > 0) { hitfactor = hit; hitinfo.set(sec, &w, nullptr, v); } else if (hit == -2) search.Add(w.nextSector()); } if (!spriteflags) continue; //Check all sprites in this sector TSectIterator it(sec); while (auto actor = it.Next()) { if (actor->spr.cstat2 & CSTAT2_SPRITE_NOFIND) continue; if (!(actor->spr.cstat & spriteflags)) continue; hit = -1; // we pass hitfactor to the workers because it can shortcut their calculations a lot. switch (actor->spr.cstat & CSTAT_SPRITE_ALIGNMENT_MASK) { case CSTAT_SPRITE_ALIGNMENT_FACING: hit = intersectSprite(actor, start, vect, v, hitfactor); break; case CSTAT_SPRITE_ALIGNMENT_WALL: hit = intersectWallSprite(actor, start, vect, v, hitfactor, (picanm[actor->spr.picnum].sf & PICANM_TEXHITSCAN_BIT)); break; case CSTAT_SPRITE_ALIGNMENT_FLOOR: hit = intersectFloorSprite(actor, start, vect, v, hitfactor); break; case CSTAT_SPRITE_ALIGNMENT_SLOPE: hit = intersectSlopeSprite(actor, start, vect, v, hitfactor); break; } if (hit > 0) { hitfactor = hit; hitinfo.set(sec, nullptr, actor, v); } } } return 0; } //========================================================================== // // // //========================================================================== void neartag(const DVector3& pos, sectortype* startsect, DAngle angle, HitInfoBase& result, double range, int flags) { auto checkTag = [=](const auto* object) { return (((flags & NT_Lotag) && object->lotag) || ((flags & NT_Hitag) && object->hitag)); }; auto v = DVector3(angle.ToVector() * range * 1.000001, 0); // extend the range a tiny bit so that we really find everything we need. result.clearObj(); result.hitpos.X = result.hitpos.Y = 0; if (!startsect || (flags & (NT_Lotag | NT_Hitag)) == 0) return; BFSSectorSearch search(startsect); while (auto sect = search.GetNext()) { for (auto& wal : wallsofsector(sect)) { const auto nextsect = wal.nextSector(); if (PointOnLineSide(pos.XY(), &wal) > 0) continue; double factor = InterceptLineSegments(pos.X, pos.Y, v.X, v.Y, wal.pos.X, wal.pos.Y, wal.delta().X, wal.delta().Y); if (factor > 0 && factor < 1) { bool foundsector = (wal.twoSided() && checkTag(nextsect)); bool foundwall = checkTag(&wal); #if 0 // does not work if the trace goes right through the vertex between two walls. if (!wal.twoSided() && !foundwall && !foundsector) { // this case was not handled by Build: // If we hit an untagged one-sided wall it should both shorten the scan trace and clear all hits beyond. // Otherwise this may cause problems with some weirdly shaped sectors. result.hitSector = nullptr; result.hitWall = nullptr; result.hitpos.X = 0; v *= factor; continue; } #endif if (foundsector) result.hitSector = nextsect; if (foundwall) result.hitWall = &wal; if (foundwall || foundsector) { v *= factor; result.hitpos.X = v.XY().Length(); } if (wal.twoSided()) { search.Add(nextsect); } } } if (!(flags & NT_NoSpriteCheck)) { double factor = 1; TSectIterator it(sect); while (auto actor = it.Next()) { if (actor->spr.cstat2 & CSTAT2_SPRITE_NOFIND) continue; if (checkTag(&actor->spr)) { DVector3 spot; double newfactor = intersectSprite(actor, pos, v, spot, factor - 1. / 65536.); if (newfactor > 0) { factor = newfactor; result.hitActor = actor; // return distance to sprite in a separate variable because there is // no means to determine what is for if both a sprite and wall are found. // Only SW's NearTagList actually uses it. result.hitpos.Y = (spot - pos).XY().Length(); } } } } } } //========================================================================== // // // //========================================================================== bool isAwayFromWall(DCoreActor* ac, double delta) { sectortype* s1; updatesector(ac->spr.pos + DVector2(delta, delta), &s1); if (s1 == ac->sector()) { updatesector(ac->spr.pos - DVector2(delta, delta), &s1); if (s1 == ac->sector()) { updatesector(ac->spr.pos + DVector2(delta, -delta), &s1); if (s1 == ac->sector()) { updatesector(ac->spr.pos + DVector2(-delta, delta), &s1); if (s1 == ac->sector()) return true; } } } return false; } //========================================================================== // // // //========================================================================== tspritetype* renderAddTsprite(tspriteArray& tsprites, DCoreActor* actor) { auto tspr = tsprites.newTSprite(); tspr->pos = actor->spr.pos; tspr->cstat = actor->spr.cstat; tspr->picnum = actor->spr.picnum; tspr->shade = actor->spr.shade; tspr->pal = actor->spr.pal; tspr->clipdist = 0; tspr->blend = actor->spr.blend; tspr->xrepeat = actor->spr.xrepeat; tspr->yrepeat = actor->spr.yrepeat; tspr->xoffset = actor->spr.xoffset; tspr->yoffset = actor->spr.yoffset; tspr->sectp = actor->spr.sectp; tspr->statnum = actor->spr.statnum; tspr->angle = actor->spr.angle; tspr->xint = actor->spr.xint; tspr->yint = actor->spr.yint; tspr->inittype = actor->spr.inittype; // not used by tsprites. tspr->lotag = actor->spr.lotag; tspr->hitag = actor->spr.hitag; tspr->extra = actor->spr.extra; tspr->time = actor->time; tspr->cstat2 = actor->spr.cstat2; tspr->ownerActor = actor; // need to copy the slope sprite flag around because for tsprites the bit combination means 'voxel'. if ((tspr->cstat & CSTAT_SPRITE_ALIGNMENT_MASK) == CSTAT_SPRITE_ALIGNMENT_SLOPE) { tspr->cstat &= ~CSTAT_SPRITE_ALIGNMENT_WALL; tspr->clipdist |= TSPR_SLOPESPRITE; } return tspr; } //========================================================================== // // // //========================================================================== int tilehasmodelorvoxel(int const tilenume, int pal) { return (mdinited && hw_models && tile2model[Ptile2tile(tilenume, pal)].modelid != -1) || (r_voxels && tiletovox[tilenume] != -1); } //========================================================================== // // vector serializers // //========================================================================== FSerializer& Serialize(FSerializer& arc, const char* key, vec2_t& c, vec2_t* def) { if (arc.isWriting() && def && !memcmp(&c, def, sizeof(c))) return arc; if (arc.BeginObject(key)) { arc("x", c.X, def ? &def->X : nullptr) ("y", c.Y, def ? &def->Y : nullptr) .EndObject(); } return arc; } FSerializer& Serialize(FSerializer& arc, const char* key, vec3_t& c, vec3_t* def) { if (arc.isWriting() && def && !memcmp(&c, def, sizeof(c))) return arc; if (arc.BeginObject(key)) { arc("x", c.X, def ? &def->X : nullptr) ("y", c.Y, def ? &def->Y : nullptr) ("z", c.Z, def ? &def->Z : nullptr) .EndObject(); } return arc; }