//------------------------------------------------------------------------- /* Copyright (C) 2019 Christoph Oelckers Copyright (C) 2020 Mitchell Richters This is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ //------------------------------------------------------------------------- #include "gamecontrol.h" #include "gameinput.h" #include "gamestruct.h" #include "serializer.h" #include "gamefuncs.h" //--------------------------------------------------------------------------- // // Input scale helper functions. // //--------------------------------------------------------------------------- inline static double getTicrateScale(const double value) { return value / GameTicRate; } inline static double getCorrectedScale(const double scaleAdjust) { // When using the output of I_GetInputFrac() to scale input adjustments at framerate, deviations of over 100 ms can occur. // Below formula corrects the deviation, with 0.2125 being an average between an ideal value of 0.205 for 40Hz and 0.22 for 30Hz. // We use the average value here as the difference is under 5 ms and is not worth complicating the algorithm for such precision. return scaleAdjust < 1. ? scaleAdjust * (1. + 0.2125 * (1. - scaleAdjust)) : scaleAdjust; } inline static fixedhoriz getscaledhoriz(const double value, const double scaleAdjust, const fixedhoriz object, const double push) { return buildfhoriz(getCorrectedScale(scaleAdjust) * ((object.asbuildf() * getTicrateScale(value)) + push)); } inline static DAngle getscaledangle(const double value, const double scaleAdjust, const DAngle object, const DAngle push) { return ((object.Normalized180() * getTicrateScale(value)) + push) * getCorrectedScale(scaleAdjust); } inline static void scaletozero(fixedhoriz& object, const double value, const double scaleAdjust, const double push = DBL_MAX) { if (auto sgn = Sgn(object.asq16())) { object -= getscaledhoriz(value, scaleAdjust, object, push == DBL_MAX ? sgn * 2. / 9. : push); if (sgn != Sgn(object.asq16())) object = q16horiz(0); } } inline static void scaletozero(DAngle& object, const double value, const double scaleAdjust, const DAngle push = -minAngle) { if (auto sgn = object.Sgn()) { object -= getscaledangle(value, scaleAdjust, object, push == -minAngle ? DAngle::fromDeg(sgn * 5. / 128.) : push); if (sgn != object.Sgn()) object = nullAngle; } } //--------------------------------------------------------------------------- // // Functions for determining whether its turbo turn time (turn key held for a number of tics). // //--------------------------------------------------------------------------- /* // Turbo turn time. Blood: 24 * 30 = 720; Duke: 120 / 8 * 30 = 450; SW: 120 / 8 * 40 = 600; Exhumed: N/A; Average: 590.; */ enum { BUILDTICRATE = 120, TURBOTURNBASE = 590, }; static double turnheldtime; void updateTurnHeldAmt(double const scaleAdjust) { turnheldtime += getTicrateScale(BUILDTICRATE) * scaleAdjust; } bool isTurboTurnTime() { return turnheldtime >= getTicrateScale(TURBOTURNBASE); } void resetTurnHeldAmt() { turnheldtime = 0; } //--------------------------------------------------------------------------- // // Player's movement function, called from game's ticker or from gi->GetInput() as required. // //--------------------------------------------------------------------------- /* // Running speed. Blood: 92 / 4 * 2 * 30 = 1380; Duke: 15 * 2 * 2 * 30 = 1800; SW: 28 * 1.40625 * 40 = 1575; // Precisely, ((((28 * 12) + ((28 * 12) / 4)) * 3) / 32) * 40 Exhumed: 12 * 4 * 30 = 1440; Average: 1548.75; // Normal speed. Blood: 92 / 4 * 30 = 690; Duke: 15 * 2 * 30 = 900; SW: 18 * 1.40625 * 40 = 1012.5; // Precisely, (((((12 + 6) * 12) + (((12 + 6) * 12) / 4)) * 3) / 32) * 40 Exhumed: 8 * 4 * 30 = 960; Average: 890.625; // Preamble. Blood: N/A; Exhumed: N/A; Duke: 5 * 2 * 30 = 300; SW: 3 * 1.40625 * 40 = 168.75; // Precisely, ((((3 * 12) + ((3 * 12) / 4)) * 3) / 32) * 40 Average: 234.375; */ static constexpr double TURNSPEEDS[3] = { 234.375, 890.625, 1548.75 }; static constexpr double PREAMBLESCALE = TURNSPEEDS[0] / TURNSPEEDS[1]; void processMovement(InputPacket* const currInput, InputPacket* const inputBuffer, ControlInfo* const hidInput, double const scaleAdjust, int const drink_amt, bool const allowstrafe, double const turnscale) { // set up variables. int const keymove = 1 << int(!!(inputBuffer->actions & SB_RUN)); float const hidspeed = float(getTicrateScale(TURNSPEEDS[2]) * turnscale * BAngToDegree); float const scaleAdjustf = float(scaleAdjust); // determine player input. auto const turning = buttonMap.ButtonDown(gamefunc_Turn_Right) - buttonMap.ButtonDown(gamefunc_Turn_Left); auto const moving = buttonMap.ButtonDown(gamefunc_Move_Forward) - buttonMap.ButtonDown(gamefunc_Move_Backward) + hidInput->dz * scaleAdjustf; auto const strafing = buttonMap.ButtonDown(gamefunc_Strafe_Right) - buttonMap.ButtonDown(gamefunc_Strafe_Left) - hidInput->dx * scaleAdjustf; // process player angle input. if (!(buttonMap.ButtonDown(gamefunc_Strafe) && allowstrafe)) { float const turndir = clamp(turning + strafing * !allowstrafe, -1.f, 1.f); float const turnspeed = float(getTicrateScale(TURNSPEEDS[keymove]) * turnscale * BAngToDegree * (isTurboTurnTime() ? 1. : PREAMBLESCALE)); currInput->avel += hidInput->mouseturnx + (hidInput->dyaw * hidspeed + turndir * turnspeed) * scaleAdjustf; if (turndir) updateTurnHeldAmt(scaleAdjust); else resetTurnHeldAmt(); } else { currInput->svel += hidInput->mousemovex + (hidInput->dyaw + turning) * keymove * scaleAdjustf; } // process player pitch input. if (!(inputBuffer->actions & SB_AIMMODE)) currInput->horz -= hidInput->mouseturny + hidInput->dpitch * hidspeed * scaleAdjustf; else currInput->fvel -= hidInput->mousemovey + hidInput->dpitch * keymove * scaleAdjustf; // process movement input. currInput->fvel += moving * keymove; currInput->svel += strafing * keymove * allowstrafe; if (isRR() && drink_amt >= 66 && drink_amt <= 87) currInput->svel += drink_amt & 1 ? -currInput->fvel : currInput->fvel; // add collected input to game's local input accumulation packet. inputBuffer->fvel = clamp(inputBuffer->fvel + currInput->fvel, -keymove, keymove); inputBuffer->svel = clamp(inputBuffer->svel + currInput->svel, -keymove, keymove); inputBuffer->avel += currInput->avel; inputBuffer->horz += currInput->horz; } //--------------------------------------------------------------------------- // // Player's horizon function, called from game's ticker or from gi->GetInput() as required. // //--------------------------------------------------------------------------- /* // Aim speed. Duke: 6 * 30 = 180; SW: (16 / 2) * 40 = 320; Average: 250.; // Look speed. Duke: 12 * 30 = 360; SW: 16 * 40 = 640; Average: 500.; // Return to centre speed. Duke: (1 / 3) * 30 = 10; SW: (1 / 4) * 40 = 10; Average: 10.; */ enum { AIMSPEED = 250, LOOKSPEED = 500, CNTRSPEED = 10, }; void PlayerHorizon::applyinput(float const horz, ESyncBits* actions, double const scaleAdjust) { // Process only if movement isn't locked. if (!movementlocked()) { // Test if we have input to process. if (horz || *actions & (SB_AIM_UP | SB_AIM_DOWN | SB_LOOK_UP | SB_LOOK_DOWN)) { // Store current horizon as true pitch. double pitch = horiz.aspitch(); // Process mouse input. if (horz) { *actions &= ~SB_CENTERVIEW; pitch += horz; } // Process keyboard input. auto doKbdInput = [&](ESyncBits_ const up, ESyncBits_ const down, double const rate, bool const lock) { if (*actions & (up | down)) { if (lock) *actions &= ~SB_CENTERVIEW; else *actions |= SB_CENTERVIEW; double const amount = scaleAdjust * HorizToPitch(getTicrateScale(rate)); if (*actions & down) pitch -= amount; if (*actions & up) pitch += amount; } }; doKbdInput(SB_AIM_UP, SB_AIM_DOWN, AIMSPEED, true); doKbdInput(SB_LOOK_UP, SB_LOOK_DOWN, LOOKSPEED, false); // clamp before converting back to horizon horiz = q16horiz(clamp(PitchToHoriz(pitch), gi->playerHorizMin(), gi->playerHorizMax())); } // return to center if conditions met. if ((*actions & SB_CENTERVIEW) && !(*actions & (SB_LOOK_UP|SB_LOOK_DOWN))) { scaletozero(horiz, CNTRSPEED, scaleAdjust); if (!horiz.asq16()) *actions &= ~SB_CENTERVIEW; } } else { *actions &= ~SB_CENTERVIEW; } } //--------------------------------------------------------------------------- // // Player's angle function, called from game's ticker or from gi->GetInput() as required. // //--------------------------------------------------------------------------- /* // Rotate return speed. Duke: (1 / 2) * 30 = 15; // Look return speed. Duke: (1 / 4) * 30 = 7.5; // Rotating speed. Duke: 24 * 30 = 720; // Looking speed. Duke: 152 * 30 = 4560; // Spin standing speed. Duke: 128 * 30 = 3840; Blood: 128 * 30 = 3840; // Looking speed. Blood: 64 * 30 = 1920; */ static constexpr double ROTRETURNSPEED = (1. / 2.) * 30.; static constexpr double LOOKRETURNSPEED = (1. / 4.) * 30.; enum { ROTATESPEED = 720, LOOKINGSPEED = 4560, SPINSTAND = 3840, SPINCROUCH = 1920, }; void PlayerAngle::applyinput(float const avel, ESyncBits* actions, double const scaleAdjust) { // Process angle return to zeros. scaletozero(rotscrnang, ROTRETURNSPEED, scaleAdjust); scaletozero(look_ang, LOOKRETURNSPEED, scaleAdjust); // Process keyboard input. auto doLookKeys = [&](ESyncBits_ const key, double const direction) { if (*actions & key) { look_ang += DAngle::fromDeg(getTicrateScale(LOOKINGSPEED) * getCorrectedScale(scaleAdjust) * direction * BAngToDegree); rotscrnang -= DAngle::fromDeg(getTicrateScale(ROTATESPEED) * getCorrectedScale(scaleAdjust) * direction * BAngToDegree); } }; doLookKeys(SB_LOOK_LEFT, -1); doLookKeys(SB_LOOK_RIGHT, 1); if (!movementlocked()) { if (*actions & SB_TURNAROUND) { if (spin == nullAngle) { // currently not spinning, so start a spin spin = -DAngle180; } *actions &= ~SB_TURNAROUND; } if (avel) { // add player's input ang += DAngle::fromDeg(avel); } if (spin < nullAngle) { // return spin to 0 DAngle add = DAngle::fromDeg(getTicrateScale(!(*actions & SB_CROUCH) ? SPINSTAND : SPINCROUCH) * scaleAdjust * BAngToDegree); spin += add; if (spin > nullAngle) { // Don't overshoot our target. With variable factor this is possible. add -= spin; spin = nullAngle; } ang += add; } } else { spin = nullAngle; } } //--------------------------------------------------------------------------- // // Player's slope tilt when playing without a mouse and on a slope. // //--------------------------------------------------------------------------- /* // Horizoff centre speed. Duke: (1 / 8) * 30 = 3.75; SW: (1 / 8) * 40 = 5; Average: 4.375; */ static constexpr double HORIZOFFSPEED = (1. / 8.) * 35.; enum { // Values used by Duke/SW, where this function originated from. DEFSINSHIFT = 5, DEFVIEWPITCH = 160, // Values used by Blood since it calculates differently to Duke/SW. BLOODSINSHIFT = 8, SINSHIFTDELTA = BLOODSINSHIFT - DEFSINSHIFT, BLOODVIEWPITCH = (0x4000 >> SINSHIFTDELTA) - (DEFVIEWPITCH << (SINSHIFTDELTA - 1)), // 1408. }; void PlayerHorizon::calcviewpitch(vec2_t const pos, DAngle const ang, bool const aimmode, bool const canslopetilt, sectortype* const cursectnum, double const scaleAdjust, bool const climbing) { if (cl_slopetilting && cursectnum != nullptr) { if (aimmode && canslopetilt) // If the floor is sloped { // Get a point, 512 (64 for Blood) units ahead of player's position int const shift = isBlood() ? BLOODSINSHIFT : DEFSINSHIFT; int const x = pos.X + int(ang.Cos() * (1 << (BUILDSINBITS - shift))); int const y = pos.Y + int(ang.Sin() * (1 << (BUILDSINBITS - shift))); auto tempsect = cursectnum; updatesector(x, y, &tempsect); if (tempsect != nullptr) // If the new point is inside a valid sector... { // Get the floorz as if the new (x,y) point was still in // your sector int const j = getflorzofslopeptr(cursectnum, pos.X, pos.Y); int const k = getflorzofslopeptr(tempsect, x, y); // If extended point is in same sector as you or the slopes // of the sector of the extended point and your sector match // closely (to avoid accidently looking straight out when // you're at the edge of a sector line) then adjust horizon // accordingly if (cursectnum == tempsect || (!isBlood() && abs(getflorzofslopeptr(tempsect, x, y) - k) <= (4 << 8))) { horizoff += q16horiz(fixed_t(scaleAdjust * ((j - k) * (!isBlood() ? DEFVIEWPITCH : BLOODVIEWPITCH)))); } } } if (climbing) { // tilt when climbing but you can't even really tell it. if (horizoff.asq16() < IntToFixed(100)) horizoff += getscaledhoriz(HORIZOFFSPEED, scaleAdjust, buildhoriz(100) - horizoff, 1.); } else { // Make horizoff grow towards 0 since horizoff is not modified when you're not on a slope. scaletozero(horizoff, HORIZOFFSPEED, scaleAdjust, Sgn(horizoff.asq16())); } } } //--------------------------------------------------------------------------- // // // //--------------------------------------------------------------------------- FSerializer& Serialize(FSerializer& arc, const char* keyname, PlayerAngle& w, PlayerAngle* def) { if (arc.BeginObject(keyname)) { arc("ang", w.ang) ("lookang", w.look_ang) ("rotscrnang", w.rotscrnang) ("spin", w.spin) ("inputdisabled", w.inputdisabled) .EndObject(); if (arc.isReading()) { w.oang = w.ang; w.olook_ang = w.look_ang; w.orotscrnang = w.rotscrnang; w.inputdisabled = w.inputdisabled; w.resetadjustment(); } } return arc; } FSerializer& Serialize(FSerializer& arc, const char* keyname, PlayerHorizon& w, PlayerHorizon* def) { if (arc.BeginObject(keyname)) { arc("horiz", w.horiz) ("horizoff", w.horizoff) ("inputdisabled", w.inputdisabled) .EndObject(); if (arc.isReading()) { w.ohoriz = w.horiz; w.ohorizoff = w.horizoff; w.inputdisabled = w.inputdisabled; w.resetadjustment(); } } return arc; }