#pragma once #include "gamecontrol.h" #include "binaryangle.h" #include "build.h" // breadth first search, this gets used multiple times throughout the engine, mainly for iterating over sectors. // Only works on indices, this has no knowledge of the actual objects being looked at. // All objects of this type operate on the same shared store. Interleaved use is not allowed, nested use is fine. class BFSSearch { static inline TArray store; unsigned bitpos; unsigned startpos; unsigned curpos; public: enum { EOL = ~0u }; BFSSearch(unsigned datasize, unsigned startnode) { bitpos = store.Size(); unsigned bitsize = (datasize + 31) >> 5; store.Reserve(bitsize); memset(&store[bitpos], 0, bitsize*4); startpos = store.Size(); curpos = startpos; Set(startnode); store.Push(startnode); } // This allows this object to just work as a bit array // which is useful for using its shared storage. BFSSearch(unsigned datasize) { bitpos = store.Size(); unsigned bitsize = (datasize + 31) >> 5; store.Reserve(bitsize); memset(&store[bitpos], 0, bitsize * 4); } ~BFSSearch() { store.Clamp(bitpos); } bool Check(unsigned index) const { return !!(store[bitpos + (index >> 5)] & (1 << (index & 31))); } void Set(unsigned index) { store[bitpos + (index >> 5)] |= (1 << (index & 31)); } private: public: unsigned GetNext() { curpos++; if (curpos <= store.Size()) return store[curpos-1]; else return ~0; } void Rewind() { curpos = startpos; } void Add(unsigned elem) { if (!Check(elem)) { Set(elem); store.Push(elem); } } }; class BFSSectorSearch : public BFSSearch { public: BFSSectorSearch(const sectortype* startnode) : BFSSearch(numsectors, sector.IndexOf(startnode)) { } bool Check(const sectortype* index) const { return BFSSearch::Check(sector.IndexOf(index)); } void Set(const sectortype* index) { BFSSearch::Set(sector.IndexOf(index)); } sectortype* GetNext() { unsigned ret = BFSSearch::GetNext(); return ret == EOL? nullptr : §or[ret]; } void Add(sectortype* elem) { BFSSearch::Add(sector.IndexOf(elem)); } }; extern int cameradist, cameraclock; void loaddefinitionsfile(const char* fn, bool cumulative = false, bool maingrp = false); bool calcChaseCamPos(int* px, int* py, int* pz, spritetype* pspr, sectortype** psectnum, binangle ang, fixedhoriz horiz, double const smoothratio); void PlanesAtPoint(const sectortype* sec, int dax, int day, float* ceilz, float* florz); inline void PlanesAtPoint(const sectortype* sec, float dax, float day, float* ceilz, float* florz) // this is just for warning evasion. { PlanesAtPoint(sec, int(dax), int(day), ceilz, florz); } void setWallSectors(); void GetWallSpritePosition(const spritetype* spr, vec2_t pos, vec2_t* out, bool render = false); void GetFlatSpritePosition(const spritetype* spr, vec2_t pos, vec2_t* out, bool render = false); void checkRotatedWalls(); // y is negated so that the orientation is the same as in GZDoom, in order to use its utilities. // The render code should NOT use Build coordinates for anything! inline double WallStartX(int wallnum) { return wall[wallnum].x * (1 / 16.); } inline double WallStartY(int wallnum) { return wall[wallnum].y * (1 / -16.); } inline double WallEndX(int wallnum) { return wall[wallnum].point2Wall()->x * (1 / 16.); } inline double WallEndY(int wallnum) { return wall[wallnum].point2Wall()->y * (1 / -16.); } inline double WallStartX(const walltype* wallnum) { return wallnum->x * (1 / 16.); } inline double WallStartY(const walltype* wallnum) { return wallnum->y * (1 / -16.); } inline DVector2 WallStart(const walltype* wallnum) { return { WallStartX(wallnum), WallStartY(wallnum) }; } inline double WallEndX(const walltype* wallnum) { return wallnum->point2Wall()->x * (1 / 16.); } inline double WallEndY(const walltype* wallnum) { return wallnum->point2Wall()->y * (1 / -16.); } inline DVector2 WallEnd(const walltype* wallnum) { return { WallEndX(wallnum), WallEndY(wallnum) }; } inline DVector2 WallDelta(const walltype* wallnum) { return WallEnd(wallnum) - WallStart(wallnum); } inline double SpriteX(spritetype* spr) { return spr->x * (1 / 16.); } inline double SpriteY(spritetype* spr) { return spr->y * (1 / -16.); } inline DVector2 SpritePos(spritetype* spr) { return { SpriteX(spr), SpriteY(spr) }; } inline double PointOnLineSide(double x, double y, double linex, double liney, double deltax, double deltay) { return (x - linex) * deltay - (y - liney) * deltax; } inline double PointOnLineSide(const DVector2 &pos, const walltype *line) { return (pos.X - WallStartX(line)) * WallDelta(line).Y - (pos.Y - WallStartY(line)) * WallDelta(line).X; } template inline double PointOnLineSide(const TVector2& pos, const TVector2& linestart, const TVector2& lineend) { return (pos.X - linestart.X) * (lineend.Y - linestart.Y) - (pos.Y - linestart.Y) * (lineend.X - linestart.X); } extern int numshades; // Return type is int because this gets passed to variadic functions where structs may produce undefined behavior. inline int shadeToLight(int shade) { shade = clamp(shade, 0, numshades - 1); int light = Scale(numshades - 1 - shade, 255, numshades - 1); return PalEntry(255, light, light, light); } inline void copyfloorpal(spritetype* spr, const sectortype* sect) { if (!lookups.noFloorPal(sect->floorpal)) spr->pal = sect->floorpal; } inline void spriteSetSlope(spritetype* spr, int heinum) { if (spr->cstat & CSTAT_SPRITE_ALIGNMENT_FLOOR) { spr->xoffset = heinum & 255; spr->yoffset = (heinum >> 8) & 255; spr->cstat = (spr->cstat & ~CSTAT_SPRITE_ALIGNMENT_MASK) | (heinum != 0 ? CSTAT_SPRITE_ALIGNMENT_SLOPE : CSTAT_SPRITE_ALIGNMENT_FLOOR); } } inline int spriteGetSlope(spritetype* spr) { return ((spr->cstat & CSTAT_SPRITE_ALIGNMENT_MASK) != CSTAT_SPRITE_ALIGNMENT_SLOPE) ? 0 : uint8_t(spr->xoffset) + (uint8_t(spr->yoffset) << 8); } inline int I_GetBuildTime() { return I_GetTime(120); } inline int32_t getangle(walltype* wal) { return getangle( wal->point2Wall()->x - wal->x, wal->point2Wall()->y - wal->y); } inline TArrayView sectors() { return TArrayView(§or[0], numsectors); } inline TArrayView walls() { return TArrayView(&wall[0], numwalls); } inline TArrayView wallsofsector(sectortype* sec) { return TArrayView(sec->firstWall(), sec->wallnum); } inline TArrayView wallsofsector(int sec) { return wallsofsector(§or[sec]); } // these are mainly meant as refactoring aids to mark function calls to work on. inline int wallnum(const walltype* wal) { return wall.IndexOf(wal); } inline int sectnum(const sectortype* sect) { return sector.IndexOf(sect); } inline double SquareDist(double lx1, double ly1, double lx2, double ly2) { double dx = lx2 - lx1; double dy = ly2 - ly1; return dx * dx + dy * dy; } inline double SquareDistToWall(double px, double py, const walltype* wal) { double lx1 = wal->x; double ly1 = wal->y; double lx2 = wal->point2Wall()->x; double ly2 = wal->point2Wall()->y; double wall_length = SquareDist(lx1, ly1, lx2, ly2); if (wall_length == 0) return SquareDist(px, py, lx1, ly1); double t = ((px - lx1) * (lx2 - lx1) + (py - ly1) * (ly2 - ly1)) / wall_length; t = clamp(t, 0., 1.); return SquareDist(px, py, lx1 + t * (lx2 - lx1), ly1 + t * (ly2 - ly1)); } inline int inside(int x, int y, sectortype* sect) { return inside(x, y, sectnum(sect)); } inline void dragpoint(walltype* pointhighlight, int32_t dax, int32_t day) { dragpoint(wallnum(pointhighlight), dax, day); } inline void alignceilslope(sectortype* dasect, int32_t x, int32_t y, int32_t z) { alignceilslope(sector.IndexOf(dasect), x, y, z); } inline void alignflorslope(sectortype* dasect, int32_t x, int32_t y, int32_t z) { alignflorslope(sector.IndexOf(dasect), x, y, z); } inline void updatesectorneighbor(int32_t const x, int32_t const y, sectortype* * const sect, int32_t maxDistance = MAXUPDATESECTORDIST) { int sectno = *sect? sector.IndexOf(*sect) : -1; updatesectorneighbor(x, y, §no, maxDistance); *sect = sectno < 0? nullptr : §or[sectno]; } inline int findwallbetweensectors(sectortype* sect1, sectortype* sect2) { return findwallbetweensectors(sectnum(sect1), sectnum(sect2)); }