/* ** Polygon Doom software renderer ** Copyright (c) 2016 Magnus Norddahl ** ** This software is provided 'as-is', without any express or implied ** warranty. In no event will the authors be held liable for any damages ** arising from the use of this software. ** ** Permission is granted to anyone to use this software for any purpose, ** including commercial applications, and to alter it and redistribute it ** freely, subject to the following restrictions: ** ** 1. The origin of this software must not be misrepresented; you must not ** claim that you wrote the original software. If you use this software ** in a product, an acknowledgment in the product documentation would be ** appreciated but is not required. ** 2. Altered source versions must be plainly marked as such, and must not be ** misrepresented as being the original software. ** 3. This notice may not be removed or altered from any source distribution. ** */ #include #include "templates.h" #include "filesystem.h" #include "v_video.h" #include "model.h" #include "poly_thread.h" #include "screen_triangle.h" #ifndef NO_SSE #include #endif PolyTriangleThreadData::PolyTriangleThreadData(int32_t core, int32_t num_cores, int32_t numa_node, int32_t num_numa_nodes, int numa_start_y, int numa_end_y) : core(core), num_cores(num_cores), numa_node(numa_node), num_numa_nodes(num_numa_nodes), numa_start_y(numa_start_y), numa_end_y(numa_end_y) { } void PolyTriangleThreadData::ClearDepth(float value) { int width = depthstencil->Width(); int height = depthstencil->Height(); float *data = depthstencil->DepthValues(); int skip = skipped_by_thread(0); int count = count_for_thread(0, height); data += skip * width; for (int i = 0; i < count; i++) { for (int x = 0; x < width; x++) data[x] = value; data += num_cores * width; } } void PolyTriangleThreadData::ClearStencil(uint8_t value) { int width = depthstencil->Width(); int height = depthstencil->Height(); uint8_t *data = depthstencil->StencilValues(); int skip = skipped_by_thread(0); int count = count_for_thread(0, height); data += skip * width; for (int i = 0; i < count; i++) { memset(data, value, width); data += num_cores * width; } } void PolyTriangleThreadData::SetViewport(int x, int y, int width, int height, uint8_t *new_dest, int new_dest_width, int new_dest_height, int new_dest_pitch, bool new_dest_bgra, PolyDepthStencil *new_depthstencil, bool new_topdown) { viewport_x = x; viewport_y = y; viewport_width = width; viewport_height = height; dest = new_dest; dest_width = new_dest_width; dest_height = new_dest_height; dest_pitch = new_dest_pitch; dest_bgra = new_dest_bgra; depthstencil = new_depthstencil; topdown = new_topdown; UpdateClip(); } void PolyTriangleThreadData::SetScissor(int x, int y, int w, int h) { scissor.left = x; scissor.right = x + w; scissor.top = y; scissor.bottom = y + h; UpdateClip(); } void PolyTriangleThreadData::UpdateClip() { clip.left = max(max(viewport_x, scissor.left), 0); clip.top = max(max(viewport_y, scissor.top), 0); clip.right = MIN(MIN(viewport_x + viewport_width, scissor.right), dest_width); clip.bottom = MIN(MIN(viewport_y + viewport_height, scissor.bottom), dest_height); } void PolyTriangleThreadData::PushStreamData(const StreamData &data, const PolyPushConstants &constants) { mainVertexShader.Data = data; mainVertexShader.uClipSplit = constants.uClipSplit; PushConstants = &constants; AlphaThreshold = clamp((int)(PushConstants->uAlphaThreshold * 255.0f + 0.5f), 0, 255) << 24; numPolyLights = 0; if (constants.uLightIndex >= 0) { const FVector4 &lightRange = lights[constants.uLightIndex]; static_assert(sizeof(FVector4) == 16, "sizeof(FVector4) is not 16 bytes"); if (lightRange.Y > lightRange.X) { int start = constants.uLightIndex + 1; int modulatedStart = static_cast(lightRange.X) + start; int modulatedEnd = static_cast(lightRange.Y) + start; for (int i = modulatedStart; i < modulatedEnd; i += 4) { if (numPolyLights == maxPolyLights) break; auto &lightpos = lights[i]; auto &lightcolor = lights[i + 1]; //auto &lightspot1 = lights[i + 2]; //auto &lightspot2 = lights[i + 3]; uint32_t r = (int)clamp(lightcolor.X * 255.0f, 0.0f, 255.0f); uint32_t g = (int)clamp(lightcolor.Y * 255.0f, 0.0f, 255.0f); uint32_t b = (int)clamp(lightcolor.Z * 255.0f, 0.0f, 255.0f); auto& polylight = polyLights[numPolyLights++]; polylight.x = lightpos.X; polylight.y = lightpos.Y; polylight.z = lightpos.Z; polylight.radius = 256.0f / lightpos.W; polylight.color = (r << 16) | (g << 8) | b; if (lightcolor.W < 0.0f) polylight.radius = -polylight.radius; } } } } void PolyTriangleThreadData::PushMatrices(const VSMatrix &modelMatrix, const VSMatrix &normalModelMatrix, const VSMatrix &textureMatrix) { mainVertexShader.ModelMatrix = modelMatrix; mainVertexShader.NormalModelMatrix = normalModelMatrix; mainVertexShader.TextureMatrix = textureMatrix; } void PolyTriangleThreadData::SetViewpointUniforms(const HWViewpointUniforms *uniforms) { mainVertexShader.Viewpoint = uniforms; } void PolyTriangleThreadData::SetDepthClamp(bool on) { DepthClamp = on; } void PolyTriangleThreadData::SetDepthMask(bool on) { WriteDepth = on; } void PolyTriangleThreadData::SetDepthFunc(int func) { if (func == DF_LEqual || func == DF_Less) { DepthTest = true; } else // if (func == DF_Always) { DepthTest = false; } } void PolyTriangleThreadData::SetDepthRange(float min, float max) { DepthRangeStart = min; DepthRangeScale = max - min; } void PolyTriangleThreadData::SetDepthBias(float depthBiasConstantFactor, float depthBiasSlopeFactor) { depthbias = (float)(depthBiasConstantFactor / 2500.0); } void PolyTriangleThreadData::SetColorMask(bool r, bool g, bool b, bool a) { WriteColor = r; } void PolyTriangleThreadData::SetStencil(int stencilRef, int op) { StencilTestValue = stencilRef; if (op == SOP_Increment) { StencilWriteValue = MIN(stencilRef + 1, (int)255); } else if (op == SOP_Decrement) { StencilWriteValue = max(stencilRef - 1, (int)0); } else // SOP_Keep { StencilWriteValue = stencilRef; } WriteStencil = StencilTest && (StencilTestValue != StencilWriteValue); } void PolyTriangleThreadData::SetCulling(int mode) { SetTwoSided(mode == Cull_None); SetCullCCW(mode == Cull_CCW); } void PolyTriangleThreadData::EnableStencil(bool on) { StencilTest = on; WriteStencil = on && (StencilTestValue != StencilWriteValue); } void PolyTriangleThreadData::SetRenderStyle(FRenderStyle style) { RenderStyle = style; } void PolyTriangleThreadData::SetShader(int specialEffect, int effectState, bool alphaTest, bool colormapShader) { SpecialEffect = specialEffect; EffectState = effectState; AlphaTest = alphaTest; ColormapShader = colormapShader; } void PolyTriangleThreadData::SetTexture(int unit, const void *pixels, int width, int height, bool bgra) { textures[unit].pixels = pixels; textures[unit].width = width; textures[unit].height = height; textures[unit].bgra = bgra; } void PolyTriangleThreadData::DrawIndexed(int index, int vcount, PolyDrawMode drawmode) { if (vcount < 3) return; elements += index; ShadedTriVertex vertbuffer[3]; ShadedTriVertex *vert[3] = { &vertbuffer[0], &vertbuffer[1], &vertbuffer[2] }; if (drawmode == PolyDrawMode::Triangles) { for (int i = 0; i < vcount / 3; i++) { for (int j = 0; j < 3; j++) *vert[j] = ShadeVertex(*(elements++)); DrawShadedTriangle(vert, ccw); } } else if (drawmode == PolyDrawMode::TriangleFan) { *vert[0] = ShadeVertex(*(elements++)); *vert[1] = ShadeVertex(*(elements++)); for (int i = 2; i < vcount; i++) { *vert[2] = ShadeVertex(*(elements++)); DrawShadedTriangle(vert, ccw); std::swap(vert[1], vert[2]); } } else if (drawmode == PolyDrawMode::TriangleStrip) { bool toggleccw = ccw; *vert[0] = ShadeVertex(*(elements++)); *vert[1] = ShadeVertex(*(elements++)); for (int i = 2; i < vcount; i++) { *vert[2] = ShadeVertex(*(elements++)); DrawShadedTriangle(vert, toggleccw); ShadedTriVertex *vtmp = vert[0]; vert[0] = vert[1]; vert[1] = vert[2]; vert[2] = vtmp; toggleccw = !toggleccw; } } else if (drawmode == PolyDrawMode::Lines) { for (int i = 0; i < vcount / 2; i++) { *vert[0] = ShadeVertex(*(elements++)); *vert[1] = ShadeVertex(*(elements++)); DrawShadedLine(vert); } } else if (drawmode == PolyDrawMode::Points) { for (int i = 0; i < vcount; i++) { *vert[0] = ShadeVertex(*(elements++)); DrawShadedPoint(vert); } } } void PolyTriangleThreadData::Draw(int index, int vcount, PolyDrawMode drawmode) { if (vcount < 3) return; int vinput = index; ShadedTriVertex vertbuffer[3]; ShadedTriVertex *vert[3] = { &vertbuffer[0], &vertbuffer[1], &vertbuffer[2] }; if (drawmode == PolyDrawMode::Triangles) { for (int i = 0; i < vcount / 3; i++) { for (int j = 0; j < 3; j++) *vert[j] = ShadeVertex(vinput++); DrawShadedTriangle(vert, ccw); } } else if (drawmode == PolyDrawMode::TriangleFan) { *vert[0] = ShadeVertex(vinput++); *vert[1] = ShadeVertex(vinput++); for (int i = 2; i < vcount; i++) { *vert[2] = ShadeVertex(vinput++); DrawShadedTriangle(vert, ccw); std::swap(vert[1], vert[2]); } } else if (drawmode == PolyDrawMode::TriangleStrip) { bool toggleccw = ccw; *vert[0] = ShadeVertex(vinput++); *vert[1] = ShadeVertex(vinput++); for (int i = 2; i < vcount; i++) { *vert[2] = ShadeVertex(vinput++); DrawShadedTriangle(vert, toggleccw); ShadedTriVertex *vtmp = vert[0]; vert[0] = vert[1]; vert[1] = vert[2]; vert[2] = vtmp; toggleccw = !toggleccw; } } else if (drawmode == PolyDrawMode::Lines) { for (int i = 0; i < vcount / 2; i++) { *vert[0] = ShadeVertex(vinput++); *vert[1] = ShadeVertex(vinput++); DrawShadedLine(vert); } } else if (drawmode == PolyDrawMode::Points) { for (int i = 0; i < vcount; i++) { *vert[0] = ShadeVertex(vinput++); DrawShadedPoint(vert); } } } ShadedTriVertex PolyTriangleThreadData::ShadeVertex(int index) { inputAssembly->Load(this, vertices, frame0, frame1, index); mainVertexShader.SIMPLE = (SpecialEffect == EFF_BURN) || (SpecialEffect == EFF_STENCIL); mainVertexShader.SPHEREMAP = (SpecialEffect == EFF_SPHEREMAP); mainVertexShader.main(); return mainVertexShader; } bool PolyTriangleThreadData::IsDegenerate(const ShadedTriVertex *const* vert) { // A degenerate triangle has a zero cross product for two of its sides. float ax = vert[1]->gl_Position.X - vert[0]->gl_Position.X; float ay = vert[1]->gl_Position.Y - vert[0]->gl_Position.Y; float az = vert[1]->gl_Position.W - vert[0]->gl_Position.W; float bx = vert[2]->gl_Position.X - vert[0]->gl_Position.X; float by = vert[2]->gl_Position.Y - vert[0]->gl_Position.Y; float bz = vert[2]->gl_Position.W - vert[0]->gl_Position.W; float crossx = ay * bz - az * by; float crossy = az * bx - ax * bz; float crossz = ax * by - ay * bx; float crosslengthsqr = crossx * crossx + crossy * crossy + crossz * crossz; return crosslengthsqr <= 1.e-8f; } bool PolyTriangleThreadData::IsFrontfacing(TriDrawTriangleArgs *args) { float a = args->v1->x * args->v2->y - args->v2->x * args->v1->y + args->v2->x * args->v3->y - args->v3->x * args->v2->y + args->v3->x * args->v1->y - args->v1->x * args->v3->y; return a <= 0.0f; } void PolyTriangleThreadData::DrawShadedPoint(const ShadedTriVertex *const* vertex) { } void PolyTriangleThreadData::DrawShadedLine(const ShadedTriVertex *const* vert) { static const int numclipdistances = 9; float clipdistance[numclipdistances * 2]; float *clipd = clipdistance; for (int i = 0; i < 2; i++) { const auto &v = *vert[i]; clipd[0] = v.gl_Position.X + v.gl_Position.W; clipd[1] = v.gl_Position.W - v.gl_Position.X; clipd[2] = v.gl_Position.Y + v.gl_Position.W; clipd[3] = v.gl_Position.W - v.gl_Position.Y; if (DepthClamp) { clipd[4] = 1.0f; clipd[5] = 1.0f; } else { clipd[4] = v.gl_Position.Z + v.gl_Position.W; clipd[5] = v.gl_Position.W - v.gl_Position.Z; } clipd[6] = v.gl_ClipDistance[0]; clipd[7] = v.gl_ClipDistance[1]; clipd[8] = v.gl_ClipDistance[2]; clipd += numclipdistances; } float t1 = 0.0f; float t2 = 1.0f; for (int p = 0; p < numclipdistances; p++) { float clipdistance1 = clipdistance[0 * numclipdistances + p]; float clipdistance2 = clipdistance[1 * numclipdistances + p]; if (clipdistance1 < 0.0f) t1 = max(-clipdistance1 / (clipdistance2 - clipdistance1), t1); if (clipdistance2 < 0.0f) t2 = MIN(1.0f + clipdistance2 / (clipdistance1 - clipdistance2), t2); if (t1 >= t2) return; } float weights[] = { 1.0f - t1, t1, 1.0f - t2, t2 }; ScreenTriVertex clippedvert[2]; for (int i = 0; i < 2; i++) { auto &v = clippedvert[i]; memset(&v, 0, sizeof(ScreenTriVertex)); for (int w = 0; w < 2; w++) { float weight = weights[i * 2 + w]; v.x += vert[w]->gl_Position.X * weight; v.y += vert[w]->gl_Position.Y * weight; v.z += vert[w]->gl_Position.Z * weight; v.w += vert[w]->gl_Position.W * weight; } // Calculate normalized device coordinates: v.w = 1.0f / v.w; v.x *= v.w; v.y *= v.w; v.z *= v.w; // Apply viewport scale to get screen coordinates: v.x = viewport_x + viewport_width * (1.0f + v.x) * 0.5f; if (topdown) v.y = viewport_y + viewport_height * (1.0f - v.y) * 0.5f; else v.y = viewport_y + viewport_height * (1.0f + v.y) * 0.5f; } uint32_t vColorA = (int)(vert[0]->vColor.W * 255.0f + 0.5f); uint32_t vColorR = (int)(vert[0]->vColor.X * 255.0f + 0.5f); uint32_t vColorG = (int)(vert[0]->vColor.Y * 255.0f + 0.5f); uint32_t vColorB = (int)(vert[0]->vColor.Z * 255.0f + 0.5f); uint32_t color = MAKEARGB(vColorA, vColorR, vColorG, vColorB); // Slow and naive implementation. Hopefully fast enough.. float x1 = clippedvert[0].x; float y1 = clippedvert[0].y; float x2 = clippedvert[1].x; float y2 = clippedvert[1].y; float dx = x2 - x1; float dy = y2 - y1; float step = (abs(dx) >= abs(dy)) ? abs(dx) : abs(dy); dx /= step; dy /= step; float x = x1; float y = y1; int istep = (int)step; int pixelsize = dest_bgra ? 4 : 1; for (int i = 0; i <= istep; i++) { int scrx = (int)x; int scry = (int)y; if (scrx >= clip.left && scrx < clip.right && scry >= clip.top && scry < clip.bottom && !line_skipped_by_thread(scry)) { uint8_t *destpixel = dest + (scrx + scry * dest_width) * pixelsize; if (pixelsize == 4) { *reinterpret_cast(destpixel) = color; } else { *destpixel = color; } } x += dx; y += dy; } } void PolyTriangleThreadData::DrawShadedTriangle(const ShadedTriVertex *const* vert, bool ccw) { // Reject triangle if degenerate if (IsDegenerate(vert)) return; // Cull, clip and generate additional vertices as needed ScreenTriVertex clippedvert[max_additional_vertices]; int numclipvert = ClipEdge(vert); // Convert barycentric weights to actual vertices for (int i = 0; i < numclipvert; i++) { auto &v = clippedvert[i]; memset(&v, 0, sizeof(ScreenTriVertex)); for (int w = 0; w < 3; w++) { float weight = weights[i * 3 + w]; v.x += vert[w]->gl_Position.X * weight; v.y += vert[w]->gl_Position.Y * weight; v.z += vert[w]->gl_Position.Z * weight; v.w += vert[w]->gl_Position.W * weight; v.u += vert[w]->vTexCoord.X * weight; v.v += vert[w]->vTexCoord.Y * weight; v.worldX += vert[w]->pixelpos.X * weight; v.worldY += vert[w]->pixelpos.Y * weight; v.worldZ += vert[w]->pixelpos.Z * weight; v.a += vert[w]->vColor.W * weight; v.r += vert[w]->vColor.X * weight; v.g += vert[w]->vColor.Y * weight; v.b += vert[w]->vColor.Z * weight; v.gradientdistZ += vert[w]->gradientdist.Z * weight; } } #ifdef NO_SSE // Map to 2D viewport: for (int j = 0; j < numclipvert; j++) { auto &v = clippedvert[j]; // Calculate normalized device coordinates: v.w = 1.0f / v.w; v.x *= v.w; v.y *= v.w; v.z *= v.w; // Apply viewport scale to get screen coordinates: v.x = viewport_x + viewport_width * (1.0f + v.x) * 0.5f; if (topdown) v.y = viewport_y + viewport_height * (1.0f - v.y) * 0.5f; else v.y = viewport_y + viewport_height * (1.0f + v.y) * 0.5f; } #else // Map to 2D viewport: __m128 mviewport_x = _mm_set1_ps((float)viewport_x); __m128 mviewport_y = _mm_set1_ps((float)viewport_y); __m128 mviewport_halfwidth = _mm_set1_ps(viewport_width * 0.5f); __m128 mviewport_halfheight = _mm_set1_ps(viewport_height * 0.5f); __m128 mone = _mm_set1_ps(1.0f); int sse_length = (numclipvert + 3) / 4 * 4; for (int j = 0; j < sse_length; j += 4) { __m128 vx = _mm_loadu_ps(&clippedvert[j].x); __m128 vy = _mm_loadu_ps(&clippedvert[j + 1].x); __m128 vz = _mm_loadu_ps(&clippedvert[j + 2].x); __m128 vw = _mm_loadu_ps(&clippedvert[j + 3].x); _MM_TRANSPOSE4_PS(vx, vy, vz, vw); // Calculate normalized device coordinates: vw = _mm_div_ps(mone, vw); vx = _mm_mul_ps(vx, vw); vy = _mm_mul_ps(vy, vw); vz = _mm_mul_ps(vz, vw); // Apply viewport scale to get screen coordinates: vx = _mm_add_ps(mviewport_x, _mm_mul_ps(mviewport_halfwidth, _mm_add_ps(mone, vx))); if (topdown) vy = _mm_add_ps(mviewport_y, _mm_mul_ps(mviewport_halfheight, _mm_sub_ps(mone, vy))); else vy = _mm_add_ps(mviewport_y, _mm_mul_ps(mviewport_halfheight, _mm_add_ps(mone, vy))); _MM_TRANSPOSE4_PS(vx, vy, vz, vw); _mm_storeu_ps(&clippedvert[j].x, vx); _mm_storeu_ps(&clippedvert[j + 1].x, vy); _mm_storeu_ps(&clippedvert[j + 2].x, vz); _mm_storeu_ps(&clippedvert[j + 3].x, vw); } #endif if (!topdown) ccw = !ccw; TriDrawTriangleArgs args; if (twosided && numclipvert > 2) { args.v1 = &clippedvert[0]; args.v2 = &clippedvert[1]; args.v3 = &clippedvert[2]; ccw = !IsFrontfacing(&args); } // Draw screen triangles if (ccw) { for (int i = numclipvert - 1; i > 1; i--) { args.v1 = &clippedvert[numclipvert - 1]; args.v2 = &clippedvert[i - 1]; args.v3 = &clippedvert[i - 2]; if (IsFrontfacing(&args) == ccw && args.CalculateGradients()) { ScreenTriangle::Draw(&args, this); } } } else { for (int i = 2; i < numclipvert; i++) { args.v1 = &clippedvert[0]; args.v2 = &clippedvert[i - 1]; args.v3 = &clippedvert[i]; if (IsFrontfacing(&args) != ccw && args.CalculateGradients()) { ScreenTriangle::Draw(&args, this); } } } } int PolyTriangleThreadData::ClipEdge(const ShadedTriVertex *const* verts) { // use barycentric weights for clipped vertices weights = weightsbuffer; for (int i = 0; i < 3; i++) { weights[i * 3 + 0] = 0.0f; weights[i * 3 + 1] = 0.0f; weights[i * 3 + 2] = 0.0f; weights[i * 3 + i] = 1.0f; } // Clip and cull so that the following is true for all vertices: // -v.w <= v.x <= v.w // -v.w <= v.y <= v.w // -v.w <= v.z <= v.w // halfspace clip distances static const int numclipdistances = 9; #ifdef NO_SSE float clipdistance[numclipdistances * 3]; bool needsclipping = false; float *clipd = clipdistance; for (int i = 0; i < 3; i++) { const auto &v = *verts[i]; clipd[0] = v.gl_Position.X + v.gl_Position.W; clipd[1] = v.gl_Position.W - v.gl_Position.X; clipd[2] = v.gl_Position.Y + v.gl_Position.W; clipd[3] = v.gl_Position.W - v.gl_Position.Y; if (DepthClamp) { clipd[4] = 1.0f; clipd[5] = 1.0f; } else { clipd[4] = v.gl_Position.Z + v.gl_Position.W; clipd[5] = v.gl_Position.W - v.gl_Position.Z; } clipd[6] = v.gl_ClipDistance[0]; clipd[7] = v.gl_ClipDistance[1]; clipd[8] = v.gl_ClipDistance[2]; for (int j = 0; j < 9; j++) needsclipping = needsclipping || clipd[i]; clipd += numclipdistances; } // If all halfspace clip distances are positive then the entire triangle is visible. Skip the expensive clipping step. if (!needsclipping) { return 3; } #else __m128 mx = _mm_loadu_ps(&verts[0]->gl_Position.X); __m128 my = _mm_loadu_ps(&verts[1]->gl_Position.X); __m128 mz = _mm_loadu_ps(&verts[2]->gl_Position.X); __m128 mw = _mm_setzero_ps(); _MM_TRANSPOSE4_PS(mx, my, mz, mw); __m128 clipd0 = _mm_add_ps(mx, mw); __m128 clipd1 = _mm_sub_ps(mw, mx); __m128 clipd2 = _mm_add_ps(my, mw); __m128 clipd3 = _mm_sub_ps(mw, my); __m128 clipd4 = DepthClamp ? _mm_set1_ps(1.0f) : _mm_add_ps(mz, mw); __m128 clipd5 = DepthClamp ? _mm_set1_ps(1.0f) : _mm_sub_ps(mw, mz); __m128 clipd6 = _mm_setr_ps(verts[0]->gl_ClipDistance[0], verts[1]->gl_ClipDistance[0], verts[2]->gl_ClipDistance[0], 0.0f); __m128 clipd7 = _mm_setr_ps(verts[0]->gl_ClipDistance[1], verts[1]->gl_ClipDistance[1], verts[2]->gl_ClipDistance[1], 0.0f); __m128 clipd8 = _mm_setr_ps(verts[0]->gl_ClipDistance[2], verts[1]->gl_ClipDistance[2], verts[2]->gl_ClipDistance[2], 0.0f); __m128 mneedsclipping = _mm_cmplt_ps(clipd0, _mm_setzero_ps()); mneedsclipping = _mm_or_ps(mneedsclipping, _mm_cmplt_ps(clipd1, _mm_setzero_ps())); mneedsclipping = _mm_or_ps(mneedsclipping, _mm_cmplt_ps(clipd2, _mm_setzero_ps())); mneedsclipping = _mm_or_ps(mneedsclipping, _mm_cmplt_ps(clipd3, _mm_setzero_ps())); mneedsclipping = _mm_or_ps(mneedsclipping, _mm_cmplt_ps(clipd4, _mm_setzero_ps())); mneedsclipping = _mm_or_ps(mneedsclipping, _mm_cmplt_ps(clipd5, _mm_setzero_ps())); mneedsclipping = _mm_or_ps(mneedsclipping, _mm_cmplt_ps(clipd6, _mm_setzero_ps())); mneedsclipping = _mm_or_ps(mneedsclipping, _mm_cmplt_ps(clipd7, _mm_setzero_ps())); mneedsclipping = _mm_or_ps(mneedsclipping, _mm_cmplt_ps(clipd8, _mm_setzero_ps())); if (_mm_movemask_ps(mneedsclipping) == 0) { return 3; } float clipdistance[numclipdistances * 4]; _mm_storeu_ps(clipdistance, clipd0); _mm_storeu_ps(clipdistance + 4, clipd1); _mm_storeu_ps(clipdistance + 8, clipd2); _mm_storeu_ps(clipdistance + 12, clipd3); _mm_storeu_ps(clipdistance + 16, clipd4); _mm_storeu_ps(clipdistance + 20, clipd5); _mm_storeu_ps(clipdistance + 24, clipd6); _mm_storeu_ps(clipdistance + 28, clipd7); _mm_storeu_ps(clipdistance + 32, clipd8); #endif // Clip against each halfspace float *input = weights; float *output = weights + max_additional_vertices * 3; int inputverts = 3; for (int p = 0; p < numclipdistances; p++) { // Clip each edge int outputverts = 0; for (int i = 0; i < inputverts; i++) { int j = (i + 1) % inputverts; #ifdef NO_SSE float clipdistance1 = clipdistance[0 * numclipdistances + p] * input[i * 3 + 0] + clipdistance[1 * numclipdistances + p] * input[i * 3 + 1] + clipdistance[2 * numclipdistances + p] * input[i * 3 + 2]; float clipdistance2 = clipdistance[0 * numclipdistances + p] * input[j * 3 + 0] + clipdistance[1 * numclipdistances + p] * input[j * 3 + 1] + clipdistance[2 * numclipdistances + p] * input[j * 3 + 2]; #else float clipdistance1 = clipdistance[0 + p * 4] * input[i * 3 + 0] + clipdistance[1 + p * 4] * input[i * 3 + 1] + clipdistance[2 + p * 4] * input[i * 3 + 2]; float clipdistance2 = clipdistance[0 + p * 4] * input[j * 3 + 0] + clipdistance[1 + p * 4] * input[j * 3 + 1] + clipdistance[2 + p * 4] * input[j * 3 + 2]; #endif // Clip halfspace if ((clipdistance1 >= 0.0f || clipdistance2 >= 0.0f) && outputverts + 1 < max_additional_vertices) { float t1 = (clipdistance1 < 0.0f) ? max(-clipdistance1 / (clipdistance2 - clipdistance1), 0.0f) : 0.0f; float t2 = (clipdistance2 < 0.0f) ? MIN(1.0f + clipdistance2 / (clipdistance1 - clipdistance2), 1.0f) : 1.0f; // add t1 vertex for (int k = 0; k < 3; k++) output[outputverts * 3 + k] = input[i * 3 + k] * (1.0f - t1) + input[j * 3 + k] * t1; outputverts++; if (t2 != 1.0f && t2 > t1) { // add t2 vertex for (int k = 0; k < 3; k++) output[outputverts * 3 + k] = input[i * 3 + k] * (1.0f - t2) + input[j * 3 + k] * t2; outputverts++; } } } std::swap(input, output); inputverts = outputverts; if (inputverts == 0) break; } weights = input; return inputverts; } PolyTriangleThreadData *PolyTriangleThreadData::Get(DrawerThread *thread) { if (!thread->poly) thread->poly = std::make_shared(thread->core, thread->num_cores, thread->numa_node, thread->num_numa_nodes, thread->numa_start_y, thread->numa_end_y); return thread->poly.get(); }