// //--------------------------------------------------------------------------- // // Copyright(C) 2004-2016 Christoph Oelckers // All rights reserved. // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with this program. If not, see http://www.gnu.org/licenses/ // //-------------------------------------------------------------------------- // /* ** gl_shader.cpp ** ** GLSL shader handling ** */ #include "gl_system.h" #include "c_cvars.h" #include "v_video.h" #include "filesystem.h" #include "engineerrors.h" #include "cmdlib.h" #include "md5.h" #include "gl_shader.h" #include "hw_shaderpatcher.h" #include "shaderuniforms.h" #include "hw_viewpointuniforms.h" #include "hw_lightbuffer.h" #include "i_specialpaths.h" #include "printf.h" #include "version.h" #include "gl_interface.h" #include "gl_debug.h" #include "matrix.h" #include "gl_renderer.h" #include #include namespace OpenGLRenderer { struct ProgramBinary { uint32_t format; TArray data; }; static const char *ShaderMagic = "ZDSC"; static std::map> ShaderCache; // Not a TMap because it doesn't support unique_ptr move semantics bool IsShaderCacheActive() { static bool active = true; static bool firstcall = true; if (firstcall) { const char *vendor = (const char *)glGetString(GL_VENDOR); active = !(strstr(vendor, "Intel") == nullptr); firstcall = false; } return active; } static FString CalcProgramBinaryChecksum(const FString &vertex, const FString &fragment) { const GLubyte *vendor = glGetString(GL_VENDOR); const GLubyte *renderer = glGetString(GL_RENDERER); const GLubyte *version = glGetString(GL_VERSION); uint8_t digest[16]; MD5Context md5; md5.Update(vendor, (unsigned int)strlen((const char*)vendor)); md5.Update(renderer, (unsigned int)strlen((const char*)renderer)); md5.Update(version, (unsigned int)strlen((const char*)version)); md5.Update((const uint8_t *)vertex.GetChars(), (unsigned int)vertex.Len()); md5.Update((const uint8_t *)fragment.GetChars(), (unsigned int)fragment.Len()); md5.Final(digest); char hexdigest[33]; for (int i = 0; i < 16; i++) { int v = digest[i] >> 4; hexdigest[i * 2] = v < 10 ? ('0' + v) : ('a' + v - 10); v = digest[i] & 15; hexdigest[i * 2 + 1] = v < 10 ? ('0' + v) : ('a' + v - 10); } hexdigest[32] = 0; return hexdigest; } static FString CreateProgramCacheName(bool create) { FString path = M_GetCachePath(create); if (create) CreatePath(path); path << "/shadercache.zdsc"; return path; } static void LoadShaders() { static bool loaded = false; if (loaded) return; loaded = true; try { FString path = CreateProgramCacheName(false); FileReader fr; if (!fr.OpenFile(path)) I_Error("Could not open shader file"); char magic[4]; fr.Read(magic, 4); if (memcmp(magic, ShaderMagic, 4) != 0) I_Error("Not a shader cache file"); uint32_t count = fr.ReadUInt32(); if (count > 512) I_Error("Too many shaders cached"); for (uint32_t i = 0; i < count; i++) { char hexdigest[33]; if (fr.Read(hexdigest, 32) != 32) I_Error("Read error"); hexdigest[32] = 0; std::unique_ptr binary(new ProgramBinary()); binary->format = fr.ReadUInt32(); uint32_t size = fr.ReadUInt32(); if (size > 1024 * 1024) I_Error("Shader too big, probably file corruption"); binary->data.Resize(size); if (fr.Read(binary->data.Data(), binary->data.Size()) != binary->data.Size()) I_Error("Read error"); ShaderCache[hexdigest] = std::move(binary); } } catch (...) { ShaderCache.clear(); } } static void SaveShaders() { FString path = CreateProgramCacheName(true); std::unique_ptr fw(FileWriter::Open(path)); if (fw) { uint32_t count = (uint32_t)ShaderCache.size(); fw->Write(ShaderMagic, 4); fw->Write(&count, sizeof(uint32_t)); for (const auto &it : ShaderCache) { uint32_t size = it.second->data.Size(); fw->Write(it.first.GetChars(), 32); fw->Write(&it.second->format, sizeof(uint32_t)); fw->Write(&size, sizeof(uint32_t)); fw->Write(it.second->data.Data(), it.second->data.Size()); } } } TArray LoadCachedProgramBinary(const FString &vertex, const FString &fragment, uint32_t &binaryFormat) { LoadShaders(); auto it = ShaderCache.find(CalcProgramBinaryChecksum(vertex, fragment)); if (it != ShaderCache.end()) { binaryFormat = it->second->format; return it->second->data; } else { binaryFormat = 0; return {}; } } void SaveCachedProgramBinary(const FString &vertex, const FString &fragment, const TArray &binary, uint32_t binaryFormat) { auto &entry = ShaderCache[CalcProgramBinaryChecksum(vertex, fragment)]; entry.reset(new ProgramBinary()); entry->format = binaryFormat; entry->data = binary; SaveShaders(); } bool FShader::Load(const char * name, const char * vert_prog_lump, const char * frag_prog_lump, const char * proc_prog_lump, const char * light_fragprog, const char * defines) { static char buffer[10000]; FString error; FString i_data = R"( // these settings are actually pointless but there seem to be some old ATI drivers that fail to compile the shader without setting the precision here. precision highp int; precision highp float; // This must match the HWViewpointUniforms struct layout(std140) uniform ViewpointUBO { mat4 ProjectionMatrix; mat4 ViewMatrix; mat4 NormalViewMatrix; vec4 uCameraPos; vec4 uClipLine; float uGlobVis; // uGlobVis = R_GetGlobVis(r_visibility) / 32.0 int uPalLightLevels; int uViewHeight; // Software fuzz scaling float uClipHeight; float uClipHeightDirection; int uShadowmapFilter; }; uniform int uTextureMode; uniform vec2 uClipSplit; uniform float uAlphaThreshold; // colors uniform vec4 uObjectColor; uniform vec4 uObjectColor2; uniform vec4 uDynLightColor; uniform vec4 uAddColor; uniform vec4 uTextureBlendColor; uniform vec4 uTextureModulateColor; uniform vec4 uTextureAddColor; uniform vec4 uFogColor; uniform float uDesaturationFactor; uniform float uInterpolationFactor; // Glowing walls stuff uniform vec4 uGlowTopPlane; uniform vec4 uGlowTopColor; uniform vec4 uGlowBottomPlane; uniform vec4 uGlowBottomColor; uniform vec4 uGradientTopPlane; uniform vec4 uGradientBottomPlane; uniform vec4 uSplitTopPlane; uniform vec4 uSplitBottomPlane; uniform vec4 uDetailParms; // Lighting + Fog uniform vec4 uLightAttr; #define uLightLevel uLightAttr.a #define uFogDensity uLightAttr.b #define uLightFactor uLightAttr.g #define uLightDist uLightAttr.r uniform int uFogEnabled; // dynamic lights uniform int uLightIndex; // Blinn glossiness and specular level uniform vec2 uSpecularMaterial; // matrices uniform mat4 ModelMatrix; uniform mat4 NormalModelMatrix; uniform mat4 TextureMatrix; // light buffers #ifdef SHADER_STORAGE_LIGHTS layout(std430, binding = 1) buffer LightBufferSSO { vec4 lights[]; }; #elif defined NUM_UBO_LIGHTS uniform LightBufferUBO { vec4 lights[NUM_UBO_LIGHTS]; }; #endif // textures uniform sampler2D tex; uniform sampler2D ShadowMap; uniform sampler2D texture2; uniform sampler2D texture3; uniform sampler2D texture4; uniform sampler2D texture5; uniform sampler2D texture6; uniform sampler2D texture7; uniform sampler2D texture8; uniform sampler2D texture9; uniform sampler2D texture10; uniform sampler2D texture11; // timer data uniform float timer; // material types #if defined(SPECULAR) #define normaltexture texture2 #define speculartexture texture3 #define brighttexture texture4 #define detailtexture texture5 #define glowtexture texture6 #elif defined(PBR) #define normaltexture texture2 #define metallictexture texture3 #define roughnesstexture texture4 #define aotexture texture5 #define brighttexture texture6 #define detailtexture texture7 #define glowtexture texture8 #else #define brighttexture texture2 #define detailtexture texture3 #define glowtexture texture4 #endif )"; #ifdef __APPLE__ // The noise functions are completely broken in macOS OpenGL drivers // Garbage values are returned, and their infrequent usage causes extreme slowdown // Also, these functions must return zeroes since GLSL 4.4 i_data += "#define noise1(unused) 0.0\n"; i_data += "#define noise2(unused) vec2(0)\n"; i_data += "#define noise3(unused) vec3(0)\n"; i_data += "#define noise4(unused) vec4(0)\n"; #endif // __APPLE__ #ifdef NPOT_EMULATION i_data += "#define NPOT_EMULATION\nuniform vec2 uNpotEmulation;\n"; #endif int vp_lump = fileSystem.CheckNumForFullName(vert_prog_lump, 0); if (vp_lump == -1) I_Error("Unable to load '%s'", vert_prog_lump); FileData vp_data = fileSystem.ReadFile(vp_lump); int fp_lump = fileSystem.CheckNumForFullName(frag_prog_lump, 0); if (fp_lump == -1) I_Error("Unable to load '%s'", frag_prog_lump); FileData fp_data = fileSystem.ReadFile(fp_lump); // // The following code uses GetChars on the strings to get rid of terminating 0 characters. Do not remove or the code may break! // FString vp_comb; assert(screen->mLights != NULL); bool lightbuffertype = screen->mLights->GetBufferType(); unsigned int lightbuffersize = screen->mLights->GetBlockSize(); if (!lightbuffertype) { vp_comb.Format("#version 330 core\n#define NUM_UBO_LIGHTS %d\n", lightbuffersize); } else { // This differentiation is for Intel which do not seem to expose the full extension, even if marked as required. if (gl.glslversion < 4.3f) vp_comb = "#version 400 core\n#extension GL_ARB_shader_storage_buffer_object : require\n#define SHADER_STORAGE_LIGHTS\n"; else vp_comb = "#version 430 core\n#define SHADER_STORAGE_LIGHTS\n"; } if ((gl.flags & RFL_SHADER_STORAGE_BUFFER) && screen->allowSSBO()) { vp_comb << "#define SUPPORTS_SHADOWMAPS\n"; } FString fp_comb = vp_comb; vp_comb << defines << i_data.GetChars(); fp_comb << "$placeholder$\n" << defines << i_data.GetChars(); vp_comb << "#line 1\n"; fp_comb << "#line 1\n"; vp_comb << RemoveLayoutLocationDecl(vp_data.GetString(), "out").GetChars() << "\n"; fp_comb << RemoveLayoutLocationDecl(fp_data.GetString(), "in").GetChars() << "\n"; FString placeholder = "\n"; if (proc_prog_lump != NULL) { fp_comb << "#line 1\n"; if (*proc_prog_lump != '#') { int pp_lump = fileSystem.CheckNumForFullName(proc_prog_lump, 0); // if it's a core shader, ignore overrides by user mods. if (pp_lump == -1) pp_lump = fileSystem.CheckNumForFullName(proc_prog_lump); if (pp_lump == -1) I_Error("Unable to load '%s'", proc_prog_lump); FileData pp_data = fileSystem.ReadFile(pp_lump); if (pp_data.GetString().IndexOf("ProcessMaterial") < 0 && pp_data.GetString().IndexOf("SetupMaterial") < 0) { // this looks like an old custom hardware shader. if (pp_data.GetString().IndexOf("GetTexCoord") >= 0) { int pl_lump = fileSystem.CheckNumForFullName("shaders/glsl/func_defaultmat2.fp", 0); if (pl_lump == -1) I_Error("Unable to load '%s'", "shaders/glsl/func_defaultmat2.fp"); FileData pl_data = fileSystem.ReadFile(pl_lump); fp_comb << "\n" << pl_data.GetString().GetChars(); } else { int pl_lump = fileSystem.CheckNumForFullName("shaders/glsl/func_defaultmat.fp", 0); if (pl_lump == -1) I_Error("Unable to load '%s'", "shaders/glsl/func_defaultmat.fp"); FileData pl_data = fileSystem.ReadFile(pl_lump); fp_comb << "\n" << pl_data.GetString().GetChars(); if (pp_data.GetString().IndexOf("ProcessTexel") < 0) { // this looks like an even older custom hardware shader. // We need to replace the ProcessTexel call to make it work. fp_comb.Substitute("material.Base = ProcessTexel();", "material.Base = Process(vec4(1.0));"); } } if (pp_data.GetString().IndexOf("ProcessLight") >= 0) { // The ProcessLight signatured changed. Forward to the old one. fp_comb << "\nvec4 ProcessLight(vec4 color);\n"; fp_comb << "\nvec4 ProcessLight(Material material, vec4 color) { return ProcessLight(color); }\n"; } } fp_comb << RemoveLegacyUserUniforms(pp_data.GetString()).GetChars(); fp_comb.Substitute("gl_TexCoord[0]", "vTexCoord"); // fix old custom shaders. if (pp_data.GetString().IndexOf("ProcessLight") < 0) { int pl_lump = fileSystem.CheckNumForFullName("shaders/glsl/func_defaultlight.fp", 0); if (pl_lump == -1) I_Error("Unable to load '%s'", "shaders/glsl/func_defaultlight.fp"); FileData pl_data = fileSystem.ReadFile(pl_lump); fp_comb << "\n" << pl_data.GetString().GetChars(); } // ProcessMaterial must be considered broken because it requires the user to fill in data they possibly cannot know all about. if (pp_data.GetString().IndexOf("ProcessMaterial") >= 0 && pp_data.GetString().IndexOf("SetupMaterial") < 0) { // This reactivates the old logic and disables all features that cannot be supported with that method. placeholder << "#define LEGACY_USER_SHADER\n"; } } else { // Proc_prog_lump is not a lump name but the source itself (from generated shaders) fp_comb << proc_prog_lump + 1; } } fp_comb.Substitute("$placeholder$", placeholder); if (light_fragprog) { int pp_lump = fileSystem.CheckNumForFullName(light_fragprog, 0); if (pp_lump == -1) I_Error("Unable to load '%s'", light_fragprog); FileData pp_data = fileSystem.ReadFile(pp_lump); fp_comb << pp_data.GetString().GetChars() << "\n"; } if (gl.flags & RFL_NO_CLIP_PLANES) { // On ATI's GL3 drivers we have to disable gl_ClipDistance because it's hopelessly broken. // This will cause some glitches and regressions but is the only way to avoid total display garbage. vp_comb.Substitute("gl_ClipDistance", "//"); } hShader = glCreateProgram(); FGLDebug::LabelObject(GL_PROGRAM, hShader, name); uint32_t binaryFormat = 0; TArray binary; if (IsShaderCacheActive()) binary = LoadCachedProgramBinary(vp_comb, fp_comb, binaryFormat); bool linked = false; if (binary.Size() > 0 && glProgramBinary) { glProgramBinary(hShader, binaryFormat, binary.Data(), binary.Size()); GLint status = 0; glGetProgramiv(hShader, GL_LINK_STATUS, &status); linked = (status == GL_TRUE); } if (!linked) { hVertProg = glCreateShader(GL_VERTEX_SHADER); hFragProg = glCreateShader(GL_FRAGMENT_SHADER); FGLDebug::LabelObject(GL_SHADER, hVertProg, vert_prog_lump); FGLDebug::LabelObject(GL_SHADER, hFragProg, frag_prog_lump); int vp_size = (int)vp_comb.Len(); int fp_size = (int)fp_comb.Len(); const char *vp_ptr = vp_comb.GetChars(); const char *fp_ptr = fp_comb.GetChars(); glShaderSource(hVertProg, 1, &vp_ptr, &vp_size); glShaderSource(hFragProg, 1, &fp_ptr, &fp_size); glCompileShader(hVertProg); glCompileShader(hFragProg); glAttachShader(hShader, hVertProg); glAttachShader(hShader, hFragProg); glLinkProgram(hShader); glGetShaderInfoLog(hVertProg, 10000, NULL, buffer); if (*buffer) { error << "Vertex shader:\n" << buffer << "\n"; } glGetShaderInfoLog(hFragProg, 10000, NULL, buffer); if (*buffer) { error << "Fragment shader:\n" << buffer << "\n"; } glGetProgramInfoLog(hShader, 10000, NULL, buffer); if (*buffer) { error << "Linking:\n" << buffer << "\n"; } GLint status = 0; glGetProgramiv(hShader, GL_LINK_STATUS, &status); linked = (status == GL_TRUE); if (!linked) { // only print message if there's an error. I_Error("Init Shader '%s':\n%s\n", name, error.GetChars()); } else if (glProgramBinary && IsShaderCacheActive()) { int binaryLength = 0; glGetProgramiv(hShader, GL_PROGRAM_BINARY_LENGTH, &binaryLength); binary.Resize(binaryLength); glGetProgramBinary(hShader, binary.Size(), &binaryLength, &binaryFormat, binary.Data()); binary.Resize(binaryLength); SaveCachedProgramBinary(vp_comb, fp_comb, binary, binaryFormat); } } else { hVertProg = 0; hFragProg = 0; } muDesaturation.Init(hShader, "uDesaturationFactor"); muFogEnabled.Init(hShader, "uFogEnabled"); muTextureMode.Init(hShader, "uTextureMode"); muLightParms.Init(hShader, "uLightAttr"); muClipSplit.Init(hShader, "uClipSplit"); muLightIndex.Init(hShader, "uLightIndex"); muFogColor.Init(hShader, "uFogColor"); muDynLightColor.Init(hShader, "uDynLightColor"); muObjectColor.Init(hShader, "uObjectColor"); muObjectColor2.Init(hShader, "uObjectColor2"); muGlowBottomColor.Init(hShader, "uGlowBottomColor"); muGlowTopColor.Init(hShader, "uGlowTopColor"); muGlowBottomPlane.Init(hShader, "uGlowBottomPlane"); muGlowTopPlane.Init(hShader, "uGlowTopPlane"); muGradientBottomPlane.Init(hShader, "uGradientBottomPlane"); muGradientTopPlane.Init(hShader, "uGradientTopPlane"); muSplitBottomPlane.Init(hShader, "uSplitBottomPlane"); muSplitTopPlane.Init(hShader, "uSplitTopPlane"); muDetailParms.Init(hShader, "uDetailParms"); #ifdef NPOT_EMULATION muNpotEmulation.Init(hShader, "uNpotEmulation"); #endif muInterpolationFactor.Init(hShader, "uInterpolationFactor"); muAlphaThreshold.Init(hShader, "uAlphaThreshold"); muSpecularMaterial.Init(hShader, "uSpecularMaterial"); muAddColor.Init(hShader, "uAddColor"); muTextureAddColor.Init(hShader, "uTextureAddColor"); muTextureModulateColor.Init(hShader, "uTextureModulateColor"); muTextureBlendColor.Init(hShader, "uTextureBlendColor"); muTimer.Init(hShader, "timer"); lights_index = glGetUniformLocation(hShader, "lights"); modelmatrix_index = glGetUniformLocation(hShader, "ModelMatrix"); texturematrix_index = glGetUniformLocation(hShader, "TextureMatrix"); normalmodelmatrix_index = glGetUniformLocation(hShader, "NormalModelMatrix"); if (!lightbuffertype) { int tempindex = glGetUniformBlockIndex(hShader, "LightBufferUBO"); if (tempindex != -1) glUniformBlockBinding(hShader, tempindex, LIGHTBUF_BINDINGPOINT); } int tempindex = glGetUniformBlockIndex(hShader, "ViewpointUBO"); if (tempindex != -1) glUniformBlockBinding(hShader, tempindex, VIEWPOINT_BINDINGPOINT); glUseProgram(hShader); // set up other texture units (if needed by the shader) for (int i = 2; i<16; i++) { char stringbuf[20]; mysnprintf(stringbuf, 20, "texture%d", i); int tempindex = glGetUniformLocation(hShader, stringbuf); if (tempindex > 0) glUniform1i(tempindex, i - 1); } int shadowmapindex = glGetUniformLocation(hShader, "ShadowMap"); if (shadowmapindex > 0) glUniform1i(shadowmapindex, 16); glUseProgram(0); return linked; } //========================================================================== // // // //========================================================================== FShader::~FShader() { glDeleteProgram(hShader); if (hVertProg != 0) glDeleteShader(hVertProg); if (hFragProg != 0) glDeleteShader(hFragProg); } //========================================================================== // // // //========================================================================== bool FShader::Bind() { GLRenderer->mShaderManager->SetActiveShader(this); return true; } //========================================================================== // // Since all shaders are REQUIRED, any error here needs to be fatal // //========================================================================== FShader *FShaderCollection::Compile (const char *ShaderName, const char *ShaderPath, const char *LightModePath, const char *shaderdefines, bool usediscard, EPassType passType) { FString defines; defines += shaderdefines; // this can't be in the shader code due to ATI strangeness. if (!usediscard) defines += "#define NO_ALPHATEST\n"; if (passType == GBUFFER_PASS) defines += "#define GBUFFER_PASS\n"; FShader *shader = NULL; try { shader = new FShader(ShaderName); if (!shader->Load(ShaderName, "shaders/glsl/main.vp", "shaders/glsl/main.fp", ShaderPath, LightModePath, defines.GetChars())) { I_FatalError("Unable to load shader %s\n", ShaderName); } } catch(CRecoverableError &err) { if (shader != NULL) delete shader; shader = NULL; I_FatalError("Unable to load shader %s:\n%s\n", ShaderName, err.GetMessage()); } return shader; } //========================================================================== // // // //========================================================================== FShaderManager::FShaderManager() { for (int passType = 0; passType < MAX_PASS_TYPES; passType++) mPassShaders.Push(new FShaderCollection((EPassType)passType)); } FShaderManager::~FShaderManager() { glUseProgram(0); mActiveShader = NULL; for (auto collection : mPassShaders) delete collection; } void FShaderManager::SetActiveShader(FShader *sh) { if (mActiveShader != sh) { glUseProgram(sh!= NULL? sh->GetHandle() : 0); mActiveShader = sh; } } FShader *FShaderManager::BindEffect(int effect, EPassType passType) { if (passType < mPassShaders.Size()) return mPassShaders[passType]->BindEffect(effect); else return nullptr; } FShader *FShaderManager::Get(unsigned int eff, bool alphateston, EPassType passType) { if (passType < mPassShaders.Size()) return mPassShaders[passType]->Get(eff, alphateston); else return nullptr; } //========================================================================== // // // //========================================================================== FShaderCollection::FShaderCollection(EPassType passType) { CompileShaders(passType); } //========================================================================== // // // //========================================================================== FShaderCollection::~FShaderCollection() { Clean(); } //========================================================================== // // // //========================================================================== void FShaderCollection::CompileShaders(EPassType passType) { mMaterialShaders.Clear(); mMaterialShadersNAT.Clear(); for (int i = 0; i < MAX_EFFECTS; i++) { mEffectShaders[i] = NULL; } for(int i=0;defaultshaders[i].ShaderName != NULL;i++) { FShader *shc = Compile(defaultshaders[i].ShaderName, defaultshaders[i].gettexelfunc, defaultshaders[i].lightfunc, defaultshaders[i].Defines, true, passType); mMaterialShaders.Push(shc); if (i < SHADER_NoTexture) { FShader *shc = Compile(defaultshaders[i].ShaderName, defaultshaders[i].gettexelfunc, defaultshaders[i].lightfunc, defaultshaders[i].Defines, false, passType); mMaterialShadersNAT.Push(shc); } } for(unsigned i = 0; i < usershaders.Size(); i++) { FString name = ExtractFileBase(usershaders[i].shader); FString defines = defaultshaders[usershaders[i].shaderType].Defines + usershaders[i].defines; FShader *shc = Compile(name, usershaders[i].shader, defaultshaders[usershaders[i].shaderType].lightfunc, defines, true, passType); mMaterialShaders.Push(shc); } for(int i=0;iLoad(effectshaders[i].ShaderName, effectshaders[i].vp, effectshaders[i].fp1, effectshaders[i].fp2, effectshaders[i].fp3, effectshaders[i].defines)) { delete eff; } else mEffectShaders[i] = eff; } } //========================================================================== // // // //========================================================================== void FShaderCollection::Clean() { for (unsigned int i = 0; i < mMaterialShadersNAT.Size(); i++) { if (mMaterialShadersNAT[i] != NULL) delete mMaterialShadersNAT[i]; } for (unsigned int i = 0; i < mMaterialShaders.Size(); i++) { if (mMaterialShaders[i] != NULL) delete mMaterialShaders[i]; } for (int i = 0; i < MAX_EFFECTS; i++) { if (mEffectShaders[i] != NULL) delete mEffectShaders[i]; mEffectShaders[i] = NULL; } mMaterialShaders.Clear(); mMaterialShadersNAT.Clear(); } //========================================================================== // // // //========================================================================== int FShaderCollection::Find(const char * shn) { FName sfn = shn; for(unsigned int i=0;imName == sfn) { return i; } } return -1; } //========================================================================== // // // //========================================================================== FShader *FShaderCollection::BindEffect(int effect) { if (effect >= 0 && effect < MAX_EFFECTS && mEffectShaders[effect] != NULL) { mEffectShaders[effect]->Bind(); return mEffectShaders[effect]; } return NULL; } //========================================================================== // // // //========================================================================== void gl_DestroyUserShaders() { // todo } }