/* ** sectorgeometry.cpp ** ** caches the triangle meshes used for rendering sector planes. ** **--------------------------------------------------------------------------- ** Copyright 2021 Christoph Oelckers ** All rights reserved. ** ** Redistribution and use in source and binary forms, with or without ** modification, are permitted provided that the following conditions ** are met: ** ** 1. Redistributions of source code must retain the above copyright ** notice, this list of conditions and the following disclaimer. ** 2. Redistributions in binary form must reproduce the above copyright ** notice, this list of conditions and the following disclaimer in the ** documentation and/or other materials provided with the distribution. ** 3. The name of the author may not be used to endorse or promote products ** derived from this software without specific prior written permission. ** ** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR ** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES ** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, ** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT ** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, ** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY ** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF ** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. **--------------------------------------------------------------------------- ** ** */ #include "sectorgeometry.h" #include "build.h" #include "gamefuncs.h" #include "texturemanager.h" #include "earcut.hpp" #include "hw_sections.h" #include "nodebuilder/nodebuild.h" SectorGeometry sectorGeometry; //========================================================================== // // CalcPlane fixme - this should be stored in the sector, not be recalculated each frame. // //========================================================================== static FVector3 CalcNormal(sectortype* sector, int plane) { FVector3 pt[3]; auto wal = &wall[sector->wallptr]; auto wal2 = &wall[wal->point2]; pt[0] = { (float)WallStartX(wal), (float)WallStartY(wal), 0 }; pt[1] = { (float)WallEndX(wal), (float)WallEndY(wal), 0 }; PlanesAtPoint(sector, wal->x, wal->y, plane ? &pt[0].Z : nullptr, plane? nullptr : &pt[0].Z); PlanesAtPoint(sector, wal2->x, wal2->y, plane ? &pt[1].Z : nullptr, plane ? nullptr : &pt[1].Z); if (pt[0].X == pt[1].X) { if (pt[0].Y == pt[1].Y) return { 0.f, 0.f, plane ? -1.f : 1.f }; pt[2].X = pt[0].X + 4; pt[2].Y = pt[0].Y; } else { pt[2].X = pt[0].X; pt[2].Y = pt[0].Y + 4; } PlanesAtPoint(sector, pt[2].X * 16, pt[2].Y * 16, plane ? &pt[2].Z : nullptr, plane ? nullptr : &pt[2].Z); auto normal = (pt[2] - pt[0]) ^ (pt[1] - pt[0]); if ((pt[2].Z < 0 && !plane) || (pt[2].Z > 0 && plane)) return -pt[2]; return pt[2]; } //========================================================================== // // The math used here to calculate texture positioning was derived from // Polymer but required several fixes for correctness. // //========================================================================== class UVCalculator { sectortype* sect; int myplane; int stat; float z1; int ix1; int iy1; int ix2; int iy2; float sinalign, cosalign; FGameTexture* tex; float xpanning, ypanning; float xscaled, yscaled; FVector2 offset; public: // Moved in from pragmas.h UVCalculator(sectortype* sec, int plane, FGameTexture* tx, const FVector2& off) { float xpan, ypan; sect = sec; tex = tx; myplane = plane; offset = off; auto firstwall = &wall[sec->wallptr]; ix1 = firstwall->x; iy1 = firstwall->y; ix2 = wall[firstwall->point2].x; iy2 = wall[firstwall->point2].y; if (plane == 0) { stat = sec->floorstat; xpan = sec->floorxpan_; ypan = sec->floorypan_; PlanesAtPoint(sec, ix1, iy1, nullptr, &z1); } else { stat = sec->ceilingstat; xpan = sec->ceilingxpan_; ypan = sec->ceilingypan_; PlanesAtPoint(sec, ix1, iy1, &z1, nullptr); } DVector2 dv = { double(ix2 - ix1), -double(iy2 - iy1) }; auto vang = dv.Angle() - 90.; cosalign = float(vang.Cos()); sinalign = float(vang.Sin()); int pow2width = 1 << sizeToBits((int)tx->GetDisplayWidth()); if (pow2width < (int)tx->GetDisplayWidth()) pow2width *= 2; int pow2height = 1 << sizeToBits((int)tx->GetDisplayHeight()); if (pow2height < (int)tx->GetDisplayHeight()) pow2height *= 2; xpanning = pow2width * xpan / (256.f * tx->GetDisplayWidth()); ypanning = pow2height * ypan / (256.f * tx->GetDisplayHeight()); float scalefactor = (stat & CSTAT_SECTOR_TEXHALF) ? 8.0f : 16.0f; if ((stat & (CSTAT_SECTOR_SLOPE | CSTAT_SECTOR_ALIGN)) == (CSTAT_SECTOR_ALIGN)) { // This is necessary to adjust for some imprecisions in the math. // To calculate the inverse Build performs an integer division with significant loss of precision // that can cause the texture to be shifted by multiple pixels. // The code below calculates the amount of this deviation so that it can be added back to the formula. int len = ksqrt(uhypsq(ix2 - ix1, iy2 - iy1)); if (len != 0) { int i = 1048576 / len; scalefactor *= 1048576.f / (i * len); } } xscaled = scalefactor * (int)tx->GetDisplayWidth(); yscaled = scalefactor * (int)tx->GetDisplayHeight(); } FVector2 GetUV(int x, int y, float z) { float tv, tu; if (stat & CSTAT_SECTOR_ALIGN) { float dx = (float)(x - ix1); float dy = (float)(y - iy1); tu = -(dx * sinalign + dy * cosalign); tv = (dx * cosalign - dy * sinalign); if (stat & CSTAT_SECTOR_SLOPE) { float dz = (z - z1) * 16; float newtv = sqrt(tv * tv + dz * dz); tv = tv < 0 ? -newtv : newtv; } } else { tu = x - offset.X; tv = -y - offset.Y; } if (stat & CSTAT_SECTOR_SWAPXY) std::swap(tu, tv); if (stat & CSTAT_SECTOR_XFLIP) tu = -tu; if (stat & CSTAT_SECTOR_YFLIP) tv = -tv; return { tu / xscaled + xpanning, tv / yscaled + ypanning }; } }; //========================================================================== // // // //========================================================================== bool SectorGeometry::MakeVertices(unsigned int secnum, int plane, const FVector2& offset) { auto sec = §ions[secnum]; auto sectorp = §or[sec->sector]; int numvertices = sec->lines.Size(); TArray points(numvertices, true); using Point = std::pair; std::vector> polygon; std::vector* curPoly; polygon.resize(1); curPoly = &polygon.back(); FixedBitArray done; int fz = sectorp->floorz, cz = sectorp->ceilingz; int vertstoadd = numvertices; done.Zero(); while (vertstoadd > 0) { int start = 0; while (done[start] && start < numvertices) start++; int s = start; if (start < numvertices) { while (!done[start]) { auto sline = §ionLines[sec->lines[start]]; auto wallp = &wall[sline->startpoint]; float X = float(WallStartX(wallp)); float Y = float(WallStartY(wallp)); if (fabs(X) > 32768.f || fabs(Y) > 32768.f) { // If we get here there's some fuckery going around with the coordinates. Let's better abort and wait for things to realign. // Do not try alternative methods if this happens. return true; } curPoly->push_back(std::make_pair(X, Y)); done.Set(start); vertstoadd--; start = sline->point2index; } polygon.resize(polygon.size() + 1); curPoly = &polygon.back(); if (start != s) return false; // means the sector is badly defined. RRRA'S E1L3 triggers this. } } // Now make sure that the outer boundary is the first polygon by picking a point that's as much to the outside as possible. int outer = 0; float minx = FLT_MAX; float miny = FLT_MAX; for (size_t a = 0; a < polygon.size(); a++) { for (auto& pt : polygon[a]) { if (pt.first < minx || (pt.first == minx && pt.second < miny)) { minx = pt.first; miny = pt.second; outer = int(a); } } } if (outer != 0) std::swap(polygon[0], polygon[outer]); auto indices = mapbox::earcut(polygon); if (indices.size() < 3 * (sec->lines.Size() - 2)) { // this means that full triangulation failed. return false; } sectorp->floorz = sectorp->ceilingz = 0; int p = 0; for (size_t a = 0; a < polygon.size(); a++) { for (auto& pt : polygon[a]) { float planez; PlanesAtPoint(sectorp, (pt.first * 16), (pt.second * -16), plane ? &planez : nullptr, !plane ? &planez : nullptr); FVector3 point = { pt.first, pt.second, planez }; points[p++] = point; } } auto& entry = data[secnum].planes[plane]; entry.vertices.Resize((unsigned)indices.size()); entry.texcoords.Resize((unsigned)indices.size()); entry.normal = CalcNormal(sectorp, plane); auto texture = tileGetTexture(plane ? sectorp->ceilingpicnum : sectorp->floorpicnum); UVCalculator uvcalc(sectorp, plane, texture, offset); for(unsigned i = 0; i < entry.vertices.Size(); i++) { auto& pt = points[indices[i]]; entry.vertices[i] = pt; entry.texcoords[i] = uvcalc.GetUV(int(pt.X * 16), int(pt.Y * -16), pt.Z); } sectorp->floorz = fz; sectorp->ceilingz = cz; return true; } //========================================================================== // // Use ZDoom's node builder if the simple approach fails. // This will create something usable in the vast majority of cases, // even if the result is less efficient. // //========================================================================== bool SectorGeometry::MakeVertices2(unsigned int secnum, int plane, const FVector2& offset) { auto sec = §ions[secnum]; auto sectorp = §or[sec->sector]; int numvertices = sec->lines.Size(); // Convert our sector into something the node builder understands TArray vertexes(sectorp->wallnum, true); TArray lines(numvertices, true); TArray sides(numvertices, true); for (int i = 0; i < numvertices; i++) { auto sline = §ionLines[sec->lines[i]]; auto wal = &wall[sline->startpoint]; vertexes[i].p = { wal->x * (1 / 16.), wal->y * (1 / -16.) }; lines[i].backsector = nullptr; lines[i].frontsector = sectorp; lines[i].linenum = i; lines[i].sidedef[0] = &sides[i]; lines[i].sidedef[1] = nullptr; lines[i].v1 = &vertexes[i]; lines[i].v2 = &vertexes[sline->point2index]; sides[i].sidenum = i; sides[i].sector = sectorp; } FNodeBuilder::FLevel leveldata = { &vertexes[0], (int)vertexes.Size(), &sides[0], (int)sides.Size(), &lines[0], (int)lines.Size(), 0, 0, 0, 0 }; leveldata.FindMapBounds(); FNodeBuilder builder(leveldata); FLevelLocals Level; builder.Extract(Level); // Now turn the generated subsectors into triangle meshes auto& entry = data[secnum].planes[plane]; entry.vertices.Clear(); entry.texcoords.Clear(); int fz = sectorp->floorz, cz = sectorp->ceilingz; sectorp->floorz = sectorp->ceilingz = 0; for (auto& sub : Level.subsectors) { auto v0 = sub.firstline->v1; for (unsigned i = 1; i < sub.numlines-1; i++) { auto v1 = sub.firstline[i].v1; auto v2 = sub.firstline[i].v2; entry.vertices.Push({ (float)v0->fX(), (float)v0->fY(), 0 }); entry.vertices.Push({ (float)v1->fX(), (float)v1->fY(), 0 }); entry.vertices.Push({ (float)v2->fX(), (float)v2->fY(), 0 }); } } // calculate the rest. auto texture = tileGetTexture(plane ? sectorp->ceilingpicnum : sectorp->floorpicnum); UVCalculator uvcalc(sectorp, plane, texture, offset); entry.texcoords.Resize(entry.vertices.Size()); for (unsigned i = 0; i < entry.vertices.Size(); i++) { auto& pt = entry.vertices[i]; float planez; PlanesAtPoint(sectorp, (pt.X * 16), (pt.Y * -16), plane ? &planez : nullptr, !plane ? &planez : nullptr); entry.vertices[i].Z = planez; entry.texcoords[i] = uvcalc.GetUV(int(pt.X * 16.), int(pt.Y * -16.), pt.Z); } entry.normal = CalcNormal(sectorp, plane); sectorp->floorz = fz; sectorp->ceilingz = cz; return true; } //========================================================================== // // // //========================================================================== void SectorGeometry::ValidateSector(unsigned int secnum, int plane, const FVector2& offset) { auto sec = §or[sections[secnum].sector]; auto compare = &data[secnum].compare[plane]; if (plane == 0) { if (sec->floorheinum == compare->floorheinum && sec->floorpicnum == compare->floorpicnum && ((sec->floorstat ^ compare->floorstat) & (CSTAT_SECTOR_ALIGN | CSTAT_SECTOR_YFLIP | CSTAT_SECTOR_XFLIP | CSTAT_SECTOR_TEXHALF | CSTAT_SECTOR_SWAPXY)) == 0 && sec->floorxpan_ == compare->floorxpan_ && sec->floorypan_ == compare->floorypan_ && wall[sec->wallptr].pos == data[secnum].poscompare[0] && wall[wall[sec->wallptr].point2].pos == data[secnum].poscompare2[0] && !(sec->dirty & 1) && data[secnum].planes[plane].vertices.Size() ) return; sec->dirty &= ~1; } else { if (sec->ceilingheinum == compare->ceilingheinum && sec->ceilingpicnum == compare->ceilingpicnum && ((sec->ceilingstat ^ compare->ceilingstat) & (CSTAT_SECTOR_ALIGN | CSTAT_SECTOR_YFLIP | CSTAT_SECTOR_XFLIP | CSTAT_SECTOR_TEXHALF | CSTAT_SECTOR_SWAPXY)) == 0 && sec->ceilingxpan_ == compare->ceilingxpan_ && sec->ceilingypan_ == compare->ceilingypan_ && wall[sec->wallptr].pos == data[secnum].poscompare[1] && wall[wall[sec->wallptr].point2].pos == data[secnum].poscompare2[1] && !(sec->dirty & 2) && data[secnum].planes[1].vertices.Size()) return; sec->dirty &= ~2; } *compare = *sec; data[secnum].poscompare[plane] = wall[sec->wallptr].pos; data[secnum].poscompare2[plane] = wall[wall[sec->wallptr].point2].pos; if (data[secnum].degenerate || !MakeVertices(secnum, plane, offset)) { data[secnum].degenerate = true; //Printf(TEXTCOLOR_YELLOW "Normal triangulation failed for sector %d. Retrying with alternative approach\n", secnum); MakeVertices2(secnum, plane, offset); } }