Update xxhash to r36

git-svn-id: https://svn.eduke32.com/eduke32@4599 1a8010ca-5511-0410-912e-c29ae57300e0
This commit is contained in:
terminx 2014-09-30 04:04:12 +00:00
parent 76ad1ce07e
commit 514f556a32
2 changed files with 411 additions and 76 deletions

View file

@ -1,5 +1,5 @@
/*
xxHash - Fast Hash algorithm
xxHash - Extremely Fast Hash algorithm
Header File
Copyright (C) 2012-2014, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
@ -64,18 +64,19 @@ extern "C" {
#endif
//****************************
// Type
//****************************
/*****************************
Type
*****************************/
typedef enum { XXH_OK=0, XXH_ERROR } XXH_errorcode;
//****************************
// Simple Hash Functions
//****************************
/*****************************
Simple Hash Functions
*****************************/
unsigned int XXH32 (const void* input, int len, unsigned int seed);
unsigned int XXH32 (const void* input, unsigned int len, unsigned int seed);
unsigned long long XXH64 (const void* input, unsigned int len, unsigned long long seed);
/*
XXH32() :
@ -86,79 +87,82 @@ XXH32() :
Speed on Core 2 Duo @ 3 GHz (single thread, SMHasher benchmark) : 5.4 GB/s
Note that "len" is type "int", which means it is limited to 2^31-1.
If your data is larger, use the advanced functions below.
XXH64() :
Calculate the 64-bits hash of sequence of length "len" stored at memory address "input".
*/
//****************************
// Advanced Hash Functions
//****************************
/*****************************
Advanced Hash Functions
*****************************/
void* XXH32_init (unsigned int seed);
XXH_errorcode XXH32_update (void* state, const void* input, int len);
XXH_errorcode XXH32_update (void* state, const void* input, unsigned int len);
unsigned int XXH32_digest (void* state);
void* XXH64_init (unsigned long long seed);
XXH_errorcode XXH64_update (void* state, const void* input, unsigned int len);
unsigned long long XXH64_digest (void* state);
/*
These functions calculate the xxhash of an input provided in several small packets,
as opposed to an input provided as a single block.
It must be started with :
void* XXH32_init()
void* XXHnn_init()
The function returns a pointer which holds the state of calculation.
If the pointer is NULL, allocation has failed, so no state can be tracked.
This pointer must be provided as "void* state" parameter for XXH32_update().
XXH32_update() can be called as many times as necessary.
The state pointer must be provided as "void* state" parameter for XXHnn_update().
XXHnn_update() can be called as many times as necessary.
The user must provide a valid (allocated) input.
The function returns an error code, with 0 meaning OK, and any other value meaning there is an error.
Note that "len" is type "int", which means it is limited to 2^31-1.
If your data is larger, it is recommended to chunk your data into blocks
of size for example 2^30 (1GB) to avoid any "int" overflow issue.
Finally, you can end the calculation anytime, by using XXH32_digest().
This function returns the final 32-bits hash.
You must provide the same "void* state" parameter created by XXH32_init().
Memory will be freed by XXH32_digest().
Finally, you can end the calculation anytime, by using XXHnn_digest().
This function returns the final nn-bits hash.
You must provide the same "void* state" parameter created by XXHnn_init().
Memory will be freed by XXHnn_digest().
*/
int XXH32_sizeofState();
int XXH32_sizeofState(void);
XXH_errorcode XXH32_resetState(void* state, unsigned int seed);
#define XXH32_SIZEOFSTATE 48
typedef struct { long long ll[(XXH32_SIZEOFSTATE+(sizeof(long long)-1))/sizeof(long long)]; } XXH32_stateSpace_t;
int XXH64_sizeofState(void);
XXH_errorcode XXH64_resetState(void* state, unsigned long long seed);
#define XXH64_SIZEOFSTATE 88
typedef struct { long long ll[(XXH64_SIZEOFSTATE+(sizeof(long long)-1))/sizeof(long long)]; } XXH64_stateSpace_t;
/*
These functions allow user application to make its own allocation for state.
XXH32_sizeofState() is used to know how much space must be allocated for the xxHash 32-bits state.
XXHnn_sizeofState() is used to know how much space must be allocated for the xxHash nn-bits state.
Note that the state must be aligned to access 'long long' fields. Memory must be allocated and referenced by a pointer.
This pointer must then be provided as 'state' into XXH32_resetState(), which initializes the state.
This pointer must then be provided as 'state' into XXHnn_resetState(), which initializes the state.
For static allocation purposes (such as allocation on stack, or freestanding systems without malloc()),
use the structure XXH32_stateSpace_t, which will ensure that memory space is large enough and correctly aligned to access 'long long' fields.
use the structure XXHnn_stateSpace_t, which will ensure that memory space is large enough and correctly aligned to access 'long long' fields.
*/
unsigned int XXH32_intermediateDigest (void* state);
unsigned long long XXH64_intermediateDigest (void* state);
/*
This function does the same as XXH32_digest(), generating a 32-bit hash,
These functions do the same as XXHnn_digest(), generating a nn-bit hash,
but preserve memory context.
This way, it becomes possible to generate intermediate hashes, and then continue feeding data with XXH32_update().
To free memory context, use XXH32_digest(), or free().
This way, it becomes possible to generate intermediate hashes, and then continue feeding data with XXHnn_update().
To free memory context, use XXHnn_digest(), or free().
*/
//****************************
// Deprecated function names
//****************************
// The following translations are provided to ease code transition
// You are encouraged to no longer this function names
#define XXH32_feed XXH32_update
#define XXH32_result XXH32_digest
#define XXH32_getIntermediateResult XXH32_intermediateDigest
#if defined (__cplusplus)
}
#endif

View file

@ -58,7 +58,6 @@ You can contact the author at :
// This option has no impact on Little_Endian CPU.
#define XXH_FORCE_NATIVE_FORMAT 0
//**************************************
// Compiler Specific Options
//**************************************
@ -77,7 +76,6 @@ You can contact the author at :
# endif
#endif
//**************************************
// Includes & Memory related functions
//**************************************
@ -126,12 +124,14 @@ FORCE_INLINE void* XXH_memcpy(void* dest, const void* src, size_t size) { return
#endif
typedef struct _U32_S { U32 v; } _PACKED U32_S;
typedef struct _U64_S { U64 v; } _PACKED U64_S;
#if !defined(XXH_USE_UNALIGNED_ACCESS) && !defined(__GNUC__)
# pragma pack(pop)
#endif
#define A32(x) (((U32_S *)(x))->v)
#define A64(x) (((U64_S *)(x))->v)
//***************************************
@ -142,20 +142,33 @@ typedef struct _U32_S { U32 v; } _PACKED U32_S;
// Note : although _rotl exists for minGW (GCC under windows), performance seems poor
#if defined(_MSC_VER)
# define XXH_rotl32(x,r) _rotl(x,r)
# define XXH_rotl64(x,r) _rotl64(x,r)
#else
# define XXH_rotl32(x,r) ((x << r) | (x >> (32 - r)))
# define XXH_rotl64(x,r) ((x << r) | (x >> (64 - r)))
#endif
#if defined(_MSC_VER) // Visual Studio
# define XXH_swap32 _byteswap_ulong
# define XXH_swap64 _byteswap_uint64
#elif GCC_VERSION >= 403
# define XXH_swap32 __builtin_bswap32
# define XXH_swap64 __builtin_bswap64
#else
static inline U32 XXH_swap32 (U32 x) {
return ((x << 24) & 0xff000000 ) |
((x << 8) & 0x00ff0000 ) |
((x >> 8) & 0x0000ff00 ) |
((x >> 24) & 0x000000ff );}
static inline U64 XXH_swap64 (U64 x) {
return ((x << 56) & 0xff00000000000000ULL) |
((x << 40) & 0x00ff000000000000ULL) |
((x << 24) & 0x0000ff0000000000ULL) |
((x << 8) & 0x000000ff00000000ULL) |
((x >> 8) & 0x00000000ff000000ULL) |
((x >> 24) & 0x0000000000ff0000ULL) |
((x >> 40) & 0x000000000000ff00ULL) |
((x >> 56) & 0x00000000000000ffULL);}
#endif
@ -168,6 +181,11 @@ static inline U32 XXH_swap32 (U32 x) {
#define PRIME32_4 668265263U
#define PRIME32_5 374761393U
#define PRIME64_1 11400714785074694791ULL
#define PRIME64_2 14029467366897019727ULL
#define PRIME64_3 1609587929392839161ULL
#define PRIME64_4 9650029242287828579ULL
#define PRIME64_5 2870177450012600261ULL
//**************************************
// Architecture Macros
@ -182,7 +200,7 @@ typedef enum { XXH_bigEndian=0, XXH_littleEndian=1 } XXH_endianess;
//**************************************
// Macros
//**************************************
#define XXH_STATIC_ASSERT(c) { enum { XXH_static_assert = 1/(!!(c)) }; } // use only *after* variable declarations
#define XXH_STATIC_ASSERT(c) { enum { XXH_static_assert = 1/(int)(!!(c)) }; } // use only *after* variable declarations
//****************************
@ -200,18 +218,29 @@ FORCE_INLINE U32 XXH_readLE32_align(const U32* ptr, XXH_endianess endian, XXH_al
FORCE_INLINE U32 XXH_readLE32(const U32* ptr, XXH_endianess endian) { return XXH_readLE32_align(ptr, endian, XXH_unaligned); }
FORCE_INLINE U64 XXH_readLE64_align(const U64* ptr, XXH_endianess endian, XXH_alignment align)
{
if (align==XXH_unaligned)
return endian==XXH_littleEndian ? A64(ptr) : XXH_swap64(A64(ptr));
else
return endian==XXH_littleEndian ? *ptr : XXH_swap64(*ptr);
}
FORCE_INLINE U64 XXH_readLE64(const U64* ptr, XXH_endianess endian) { return XXH_readLE64_align(ptr, endian, XXH_unaligned); }
//****************************
// Simple Hash Functions
//****************************
FORCE_INLINE U32 XXH32_endian_align(const void* input, int len, U32 seed, XXH_endianess endian, XXH_alignment align)
FORCE_INLINE U32 XXH32_endian_align(const void* input, unsigned int len, U32 seed, XXH_endianess endian, XXH_alignment align)
{
const BYTE* p = (const BYTE*)input;
const BYTE* const bEnd = p + len;
const BYTE* bEnd = p + len;
U32 h32;
#define XXH_get32bits(p) XXH_readLE32_align((const U32*)p, endian, align)
#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
if (p==NULL) { len=0; p=(const BYTE*)(size_t)16; }
if (p==NULL) { len=0; bEnd=p=(const BYTE*)(size_t)16; }
#endif
if (len>=16)
@ -224,10 +253,10 @@ FORCE_INLINE U32 XXH32_endian_align(const void* input, int len, U32 seed, XXH_en
do
{
v1 += XXH_readLE32_align((const U32*)p, endian, align) * PRIME32_2; v1 = XXH_rotl32(v1, 13); v1 *= PRIME32_1; p+=4;
v2 += XXH_readLE32_align((const U32*)p, endian, align) * PRIME32_2; v2 = XXH_rotl32(v2, 13); v2 *= PRIME32_1; p+=4;
v3 += XXH_readLE32_align((const U32*)p, endian, align) * PRIME32_2; v3 = XXH_rotl32(v3, 13); v3 *= PRIME32_1; p+=4;
v4 += XXH_readLE32_align((const U32*)p, endian, align) * PRIME32_2; v4 = XXH_rotl32(v4, 13); v4 *= PRIME32_1; p+=4;
v1 += XXH_get32bits(p) * PRIME32_2; v1 = XXH_rotl32(v1, 13); v1 *= PRIME32_1; p+=4;
v2 += XXH_get32bits(p) * PRIME32_2; v2 = XXH_rotl32(v2, 13); v2 *= PRIME32_1; p+=4;
v3 += XXH_get32bits(p) * PRIME32_2; v3 = XXH_rotl32(v3, 13); v3 *= PRIME32_1; p+=4;
v4 += XXH_get32bits(p) * PRIME32_2; v4 = XXH_rotl32(v4, 13); v4 *= PRIME32_1; p+=4;
} while (p<=limit);
h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7) + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18);
@ -239,9 +268,9 @@ FORCE_INLINE U32 XXH32_endian_align(const void* input, int len, U32 seed, XXH_en
h32 += (U32) len;
while (p<=bEnd-4)
while (p+4<=bEnd)
{
h32 += XXH_readLE32_align((const U32*)p, endian, align) * PRIME32_3;
h32 += XXH_get32bits(p) * PRIME32_3;
h32 = XXH_rotl32(h32, 17) * PRIME32_4 ;
p+=4;
}
@ -263,7 +292,7 @@ FORCE_INLINE U32 XXH32_endian_align(const void* input, int len, U32 seed, XXH_en
}
U32 XXH32(const void* input, int len, U32 seed)
U32 XXH32(const void* input, unsigned int len, U32 seed)
{
#if 0
// Simple version, good for code maintenance, but unfortunately slow for small inputs
@ -274,7 +303,7 @@ U32 XXH32(const void* input, int len, U32 seed)
XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
# if !defined(XXH_USE_UNALIGNED_ACCESS)
if ((((size_t)input) & 3)) // Input is aligned, let's leverage the speed advantage
if ((((size_t)input) & 3) == 0) // Input is aligned, let's leverage the speed advantage
{
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
@ -290,6 +319,105 @@ U32 XXH32(const void* input, int len, U32 seed)
#endif
}
FORCE_INLINE U64 XXH64_endian_align(const void* input, unsigned int len, U64 seed, XXH_endianess endian, XXH_alignment align)
{
const BYTE* p = (const BYTE*)input;
const BYTE* bEnd = p + len;
U64 h64;
#define XXH_get64bits(p) XXH_readLE64_align((const U64*)p, endian, align)
#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
if (p==NULL) { len=0; bEnd=p=(const BYTE*)(size_t)32; }
#endif
if (len>=32)
{
const BYTE* const limit = bEnd - 32;
U64 v1 = seed + PRIME64_1 + PRIME64_2;
U64 v2 = seed + PRIME64_2;
U64 v3 = seed + 0;
U64 v4 = seed - PRIME64_1;
do
{
v1 += XXH_get64bits(p) * PRIME64_2; p+=8; v1 = XXH_rotl64(v1, 31); v1 *= PRIME64_1;
v2 += XXH_get64bits(p) * PRIME64_2; p+=8; v2 = XXH_rotl64(v2, 31); v2 *= PRIME64_1;
v3 += XXH_get64bits(p) * PRIME64_2; p+=8; v3 = XXH_rotl64(v3, 31); v3 *= PRIME64_1;
v4 += XXH_get64bits(p) * PRIME64_2; p+=8; v4 = XXH_rotl64(v4, 31); v4 *= PRIME64_1;
} while (p<=limit);
h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
v1 *= PRIME64_2; v1 = XXH_rotl64(v1, 31); v1 *= PRIME64_1; h64 ^= v1;
h64 = h64 * PRIME64_1 + PRIME64_4;
v2 *= PRIME64_2; v2 = XXH_rotl64(v2, 31); v2 *= PRIME64_1; h64 ^= v2;
h64 = h64 * PRIME64_1 + PRIME64_4;
v3 *= PRIME64_2; v3 = XXH_rotl64(v3, 31); v3 *= PRIME64_1; h64 ^= v3;
h64 = h64 * PRIME64_1 + PRIME64_4;
v4 *= PRIME64_2; v4 = XXH_rotl64(v4, 31); v4 *= PRIME64_1; h64 ^= v4;
h64 = h64 * PRIME64_1 + PRIME64_4;
}
else
{
h64 = seed + PRIME64_5;
}
h64 += (U64) len;
while (p+8<=bEnd)
{
U64 k1 = XXH_get64bits(p);
k1 *= PRIME64_2; k1 = XXH_rotl64(k1,31); k1 *= PRIME64_1; h64 ^= k1;
h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4;
p+=8;
}
if (p+4<=bEnd)
{
h64 ^= (U64)(XXH_get32bits(p)) * PRIME64_1;
h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
p+=4;
}
while (p<bEnd)
{
h64 ^= (*p) * PRIME64_5;
h64 = XXH_rotl64(h64, 11) * PRIME64_1;
p++;
}
h64 ^= h64 >> 33;
h64 *= PRIME64_2;
h64 ^= h64 >> 29;
h64 *= PRIME64_3;
h64 ^= h64 >> 32;
return h64;
}
unsigned long long XXH64(const void* input, unsigned int len, unsigned long long seed)
{
XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
# if !defined(XXH_USE_UNALIGNED_ACCESS)
if ((((size_t)input) & 7)==0) // Input is aligned, let's leverage the speed advantage
{
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
else
return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
}
# endif
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
else
return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
}
//****************************
// Advanced Hash Functions
@ -307,13 +435,31 @@ struct XXH_state32_t
char memory[16];
};
struct XXH_state64_t
{
U64 total_len;
U64 seed;
U64 v1;
U64 v2;
U64 v3;
U64 v4;
int memsize;
char memory[32];
};
int XXH32_sizeofState()
int XXH32_sizeofState(void)
{
XXH_STATIC_ASSERT(XXH32_SIZEOFSTATE >= sizeof(struct XXH_state32_t)); // A compilation error here means XXH32_SIZEOFSTATE is not large enough
return sizeof(struct XXH_state32_t);
}
int XXH64_sizeofState(void)
{
XXH_STATIC_ASSERT(XXH64_SIZEOFSTATE >= sizeof(struct XXH_state64_t)); // A compilation error here means XXH64_SIZEOFSTATE is not large enough
return sizeof(struct XXH_state64_t);
}
XXH_errorcode XXH32_resetState(void* state_in, U32 seed)
{
@ -328,11 +474,31 @@ XXH_errorcode XXH32_resetState(void* state_in, U32 seed)
return XXH_OK;
}
XXH_errorcode XXH64_resetState(void* state_in, unsigned long long seed)
{
struct XXH_state64_t * state = (struct XXH_state64_t *) state_in;
state->seed = seed;
state->v1 = seed + PRIME64_1 + PRIME64_2;
state->v2 = seed + PRIME64_2;
state->v3 = seed + 0;
state->v4 = seed - PRIME64_1;
state->total_len = 0;
state->memsize = 0;
return XXH_OK;
}
void* XXH32_init (U32 seed)
{
void* state = XXH_malloc (sizeof(struct XXH_state32_t));
XXH32_resetState(state, seed);
if (state != NULL) XXH32_resetState(state, seed);
return state;
}
void* XXH64_init (unsigned long long seed)
{
void* state = XXH_malloc (sizeof(struct XXH_state64_t));
if (state != NULL) XXH64_resetState(state, seed);
return state;
}
@ -401,7 +567,7 @@ FORCE_INLINE XXH_errorcode XXH32_update_endian (void* state_in, const void* inpu
return XXH_OK;
}
XXH_errorcode XXH32_update (void* state_in, const void* input, int len)
XXH_errorcode XXH32_update (void* state_in, const void* input, unsigned int len)
{
XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
@ -431,7 +597,7 @@ FORCE_INLINE U32 XXH32_intermediateDigest_endian (void* state_in, XXH_endianess
h32 += (U32) state->total_len;
while (p<=bEnd-4)
while (p+4<=bEnd)
{
h32 += XXH_readLE32((const U32*)p, endian) * PRIME32_3;
h32 = XXH_rotl32(h32, 17) * PRIME32_4;
@ -474,3 +640,168 @@ U32 XXH32_digest (void* state_in)
return h32;
}
FORCE_INLINE XXH_errorcode XXH64_update_endian (void* state_in, const void* input, int len, XXH_endianess endian)
{
struct XXH_state64_t * state = (struct XXH_state64_t *) state_in;
const BYTE* p = (const BYTE*)input;
const BYTE* const bEnd = p + len;
#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
if (input==NULL) return XXH_ERROR;
#endif
state->total_len += len;
if (state->memsize + len < 32) // fill in tmp buffer
{
XXH_memcpy(state->memory + state->memsize, input, len);
state->memsize += len;
return XXH_OK;
}
if (state->memsize) // some data left from previous update
{
XXH_memcpy(state->memory + state->memsize, input, 32-state->memsize);
{
const U64* p64 = (const U64*)state->memory;
state->v1 += XXH_readLE64(p64, endian) * PRIME64_2; state->v1 = XXH_rotl64(state->v1, 31); state->v1 *= PRIME64_1; p64++;
state->v2 += XXH_readLE64(p64, endian) * PRIME64_2; state->v2 = XXH_rotl64(state->v2, 31); state->v2 *= PRIME64_1; p64++;
state->v3 += XXH_readLE64(p64, endian) * PRIME64_2; state->v3 = XXH_rotl64(state->v3, 31); state->v3 *= PRIME64_1; p64++;
state->v4 += XXH_readLE64(p64, endian) * PRIME64_2; state->v4 = XXH_rotl64(state->v4, 31); state->v4 *= PRIME64_1; p64++;
}
p += 32-state->memsize;
state->memsize = 0;
}
if (p+32 <= bEnd)
{
const BYTE* const limit = bEnd - 32;
U64 v1 = state->v1;
U64 v2 = state->v2;
U64 v3 = state->v3;
U64 v4 = state->v4;
do
{
v1 += XXH_readLE64((const U64*)p, endian) * PRIME64_2; v1 = XXH_rotl64(v1, 31); v1 *= PRIME64_1; p+=8;
v2 += XXH_readLE64((const U64*)p, endian) * PRIME64_2; v2 = XXH_rotl64(v2, 31); v2 *= PRIME64_1; p+=8;
v3 += XXH_readLE64((const U64*)p, endian) * PRIME64_2; v3 = XXH_rotl64(v3, 31); v3 *= PRIME64_1; p+=8;
v4 += XXH_readLE64((const U64*)p, endian) * PRIME64_2; v4 = XXH_rotl64(v4, 31); v4 *= PRIME64_1; p+=8;
} while (p<=limit);
state->v1 = v1;
state->v2 = v2;
state->v3 = v3;
state->v4 = v4;
}
if (p < bEnd)
{
XXH_memcpy(state->memory, p, bEnd-p);
state->memsize = (int)(bEnd-p);
}
return XXH_OK;
}
XXH_errorcode XXH64_update (void* state_in, const void* input, unsigned int len)
{
XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
return XXH64_update_endian(state_in, input, len, XXH_littleEndian);
else
return XXH64_update_endian(state_in, input, len, XXH_bigEndian);
}
FORCE_INLINE U64 XXH64_intermediateDigest_endian (void* state_in, XXH_endianess endian)
{
struct XXH_state64_t * state = (struct XXH_state64_t *) state_in;
const BYTE * p = (const BYTE*)state->memory;
BYTE* bEnd = (BYTE*)state->memory + state->memsize;
U64 h64;
if (state->total_len >= 32)
{
U64 v1 = state->v1;
U64 v2 = state->v2;
U64 v3 = state->v3;
U64 v4 = state->v4;
h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
v1 *= PRIME64_2; v1 = XXH_rotl64(v1, 31); v1 *= PRIME64_1; h64 ^= v1;
h64 = h64*PRIME64_1 + PRIME64_4;
v2 *= PRIME64_2; v2 = XXH_rotl64(v2, 31); v2 *= PRIME64_1; h64 ^= v2;
h64 = h64*PRIME64_1 + PRIME64_4;
v3 *= PRIME64_2; v3 = XXH_rotl64(v3, 31); v3 *= PRIME64_1; h64 ^= v3;
h64 = h64*PRIME64_1 + PRIME64_4;
v4 *= PRIME64_2; v4 = XXH_rotl64(v4, 31); v4 *= PRIME64_1; h64 ^= v4;
h64 = h64*PRIME64_1 + PRIME64_4;
}
else
{
h64 = state->seed + PRIME64_5;
}
h64 += (U64) state->total_len;
while (p+8<=bEnd)
{
U64 k1 = XXH_readLE64((const U64*)p, endian);
k1 *= PRIME64_2; k1 = XXH_rotl64(k1,31); k1 *= PRIME64_1; h64 ^= k1;
h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4;
p+=8;
}
if (p+4<=bEnd)
{
h64 ^= (U64)(XXH_readLE32((const U32*)p, endian)) * PRIME64_1;
h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
p+=4;
}
while (p<bEnd)
{
h64 ^= (*p) * PRIME64_5;
h64 = XXH_rotl64(h64, 11) * PRIME64_1;
p++;
}
h64 ^= h64 >> 33;
h64 *= PRIME64_2;
h64 ^= h64 >> 29;
h64 *= PRIME64_3;
h64 ^= h64 >> 32;
return h64;
}
unsigned long long XXH64_intermediateDigest (void* state_in)
{
XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
return XXH64_intermediateDigest_endian(state_in, XXH_littleEndian);
else
return XXH64_intermediateDigest_endian(state_in, XXH_bigEndian);
}
unsigned long long XXH64_digest (void* state_in)
{
U64 h64 = XXH64_intermediateDigest(state_in);
XXH_free(state_in);
return h64;
}