- Backend update from GZDoom.

This is mainly bringing the GLES backend up to date.
This commit is contained in:
Christoph Oelckers 2021-09-22 10:20:39 +02:00
parent 61ba58c529
commit 49e0c461c2
42 changed files with 139 additions and 3007 deletions

View file

@ -51,12 +51,10 @@ enum ETexMode
TM_OPAQUE, // (r, g, b, 1)
TM_INVERSE, // (1-r, 1-g, 1-b, a)
TM_ALPHATEXTURE, // (1, 1, 1, r)
TM_INVERTOPAQUE = 6, // (1-r, 1-g, 1-b, 1)
TM_CLAMPY, // (r, g, b, (t >= 0.0 && t <= 1.0)? a:0)
TM_INVERTOPAQUE, // (1-r, 1-g, 1-b, 1)
TM_FOGLAYER, // (renders a fog layer in the shape of the active texture)
TM_FIXEDCOLORMAP = TM_FOGLAYER, // repurposes the objectcolor uniforms to render a fixed colormap range. (Same constant because they cannot be used in the same context.
TM_CLAMPY = 0x1000, // (r, g, b, (t >= 0.0 && t <= 1.0)? a:0)
};
// Legacy render styles

View file

@ -46,6 +46,8 @@ TArray<FString> I_GetSteamPath();
TArray<FString> I_GetGogPaths();
TArray<FString> I_GetBethesdaPath();
// The ini could not be saved at exit
bool I_WriteIniFailed ();

View file

@ -50,3 +50,9 @@ TArray<FString> I_GetGogPaths()
// GOG's Doom games are Windows only at the moment
return TArray<FString>();
}
TArray<FString> I_GetBethesdaPath()
{
// Bethesda.net Launcher is Windows only at the moment
return TArray<FString>();
}

View file

@ -150,6 +150,8 @@ namespace Priv
{
// Enforce minimum size limit
SDL_SetWindowMinimumSize(Priv::window, VID_MIN_WIDTH, VID_MIN_HEIGHT);
// Tell SDL to start sending text input on Wayland.
if (strncasecmp(SDL_GetCurrentVideoDriver(), "wayland", 7) == 0) SDL_StartTextInput();
}
}

View file

@ -53,6 +53,9 @@ TArray<FString> I_GetSteamPath();
// [GZ] Same deal for GOG paths
TArray<FString> I_GetGogPaths();
// Again for the Bethesda.net Launcher path
TArray<FString> I_GetBethesdaPath();
// Damn Microsoft for doing Get/SetWindowLongPtr half-assed. Instead of
// giving them proper prototypes under Win32, they are just macros for
// Get/SetWindowLong, meaning they take LONGs and not LONG_PTRs.

View file

@ -124,9 +124,7 @@ bool FGLRenderState::ApplyShader()
activeShader->muDesaturation.Set(mStreamData.uDesaturationFactor);
activeShader->muFogEnabled.Set(fogset);
int f = mTextureModeFlags;
if (!mBrightmapEnabled) f &= ~(TEXF_Brightmap | TEXF_Glowmap);
activeShader->muTextureMode.Set((mTextureMode == TM_NORMAL && mTempTM == TM_OPAQUE ? TM_OPAQUE : mTextureMode) | f);
activeShader->muTextureMode.Set(GetTextureModeAndFlags(mTempTM));
activeShader->muLightParms.Set(mLightParms);
activeShader->muFogColor.Set(mStreamData.uFogColor);
activeShader->muObjectColor.Set(mStreamData.uObjectColor);

View file

@ -1,303 +0,0 @@
#ifndef __egl_h_
#define __egl_h_ 1
#ifdef __cplusplus
extern "C" {
#endif
/*
** Copyright (c) 2013-2014 The Khronos Group Inc.
**
** Permission is hereby granted, free of charge, to any person obtaining a
** copy of this software and/or associated documentation files (the
** "Materials"), to deal in the Materials without restriction, including
** without limitation the rights to use, copy, modify, merge, publish,
** distribute, sublicense, and/or sell copies of the Materials, and to
** permit persons to whom the Materials are furnished to do so, subject to
** the following conditions:
**
** The above copyright notice and this permission notice shall be included
** in all copies or substantial portions of the Materials.
**
** THE MATERIALS ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
** EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
** MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
** IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
** CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
** TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
** MATERIALS OR THE USE OR OTHER DEALINGS IN THE MATERIALS.
*/
/*
** This header is generated from the Khronos OpenGL / OpenGL ES XML
** API Registry. The current version of the Registry, generator scripts
** used to make the header, and the header can be found at
** http://www.opengl.org/registry/
**
** Khronos $Revision: 29318 $ on $Date: 2015-01-02 03:16:10 -0800 (Fri, 02 Jan 2015) $
*/
#include <EGL/eglplatform.h>
/* Generated on date 20150102 */
/* Generated C header for:
* API: egl
* Versions considered: .*
* Versions emitted: .*
* Default extensions included: None
* Additional extensions included: _nomatch_^
* Extensions removed: _nomatch_^
*/
#ifndef EGL_VERSION_1_0
#define EGL_VERSION_1_0 1
typedef unsigned int EGLBoolean;
typedef void *EGLDisplay;
#include <KHR/khrplatform.h>
#include <EGL/eglplatform.h>
typedef void *EGLConfig;
typedef void *EGLSurface;
typedef void *EGLContext;
typedef void (*__eglMustCastToProperFunctionPointerType)(void);
#define EGL_ALPHA_SIZE 0x3021
#define EGL_BAD_ACCESS 0x3002
#define EGL_BAD_ALLOC 0x3003
#define EGL_BAD_ATTRIBUTE 0x3004
#define EGL_BAD_CONFIG 0x3005
#define EGL_BAD_CONTEXT 0x3006
#define EGL_BAD_CURRENT_SURFACE 0x3007
#define EGL_BAD_DISPLAY 0x3008
#define EGL_BAD_MATCH 0x3009
#define EGL_BAD_NATIVE_PIXMAP 0x300A
#define EGL_BAD_NATIVE_WINDOW 0x300B
#define EGL_BAD_PARAMETER 0x300C
#define EGL_BAD_SURFACE 0x300D
#define EGL_BLUE_SIZE 0x3022
#define EGL_BUFFER_SIZE 0x3020
#define EGL_CONFIG_CAVEAT 0x3027
#define EGL_CONFIG_ID 0x3028
#define EGL_CORE_NATIVE_ENGINE 0x305B
#define EGL_DEPTH_SIZE 0x3025
#define EGL_DONT_CARE ((EGLint)-1)
#define EGL_DRAW 0x3059
#define EGL_EXTENSIONS 0x3055
#define EGL_FALSE 0
#define EGL_GREEN_SIZE 0x3023
#define EGL_HEIGHT 0x3056
#define EGL_LARGEST_PBUFFER 0x3058
#define EGL_LEVEL 0x3029
#define EGL_MAX_PBUFFER_HEIGHT 0x302A
#define EGL_MAX_PBUFFER_PIXELS 0x302B
#define EGL_MAX_PBUFFER_WIDTH 0x302C
#define EGL_NATIVE_RENDERABLE 0x302D
#define EGL_NATIVE_VISUAL_ID 0x302E
#define EGL_NATIVE_VISUAL_TYPE 0x302F
#define EGL_NONE 0x3038
#define EGL_NON_CONFORMANT_CONFIG 0x3051
#define EGL_NOT_INITIALIZED 0x3001
#define EGL_NO_CONTEXT ((EGLContext)0)
#define EGL_NO_DISPLAY ((EGLDisplay)0)
#define EGL_NO_SURFACE ((EGLSurface)0)
#define EGL_PBUFFER_BIT 0x0001
#define EGL_PIXMAP_BIT 0x0002
#define EGL_READ 0x305A
#define EGL_RED_SIZE 0x3024
#define EGL_SAMPLES 0x3031
#define EGL_SAMPLE_BUFFERS 0x3032
#define EGL_SLOW_CONFIG 0x3050
#define EGL_STENCIL_SIZE 0x3026
#define EGL_SUCCESS 0x3000
#define EGL_SURFACE_TYPE 0x3033
#define EGL_TRANSPARENT_BLUE_VALUE 0x3035
#define EGL_TRANSPARENT_GREEN_VALUE 0x3036
#define EGL_TRANSPARENT_RED_VALUE 0x3037
#define EGL_TRANSPARENT_RGB 0x3052
#define EGL_TRANSPARENT_TYPE 0x3034
#define EGL_TRUE 1
#define EGL_VENDOR 0x3053
#define EGL_VERSION 0x3054
#define EGL_WIDTH 0x3057
#define EGL_WINDOW_BIT 0x0004
EGLAPI EGLBoolean EGLAPIENTRY eglChooseConfig (EGLDisplay dpy, const EGLint *attrib_list, EGLConfig *configs, EGLint config_size, EGLint *num_config);
EGLAPI EGLBoolean EGLAPIENTRY eglCopyBuffers (EGLDisplay dpy, EGLSurface surface, EGLNativePixmapType target);
EGLAPI EGLContext EGLAPIENTRY eglCreateContext (EGLDisplay dpy, EGLConfig config, EGLContext share_context, const EGLint *attrib_list);
EGLAPI EGLSurface EGLAPIENTRY eglCreatePbufferSurface (EGLDisplay dpy, EGLConfig config, const EGLint *attrib_list);
EGLAPI EGLSurface EGLAPIENTRY eglCreatePixmapSurface (EGLDisplay dpy, EGLConfig config, EGLNativePixmapType pixmap, const EGLint *attrib_list);
EGLAPI EGLSurface EGLAPIENTRY eglCreateWindowSurface (EGLDisplay dpy, EGLConfig config, EGLNativeWindowType win, const EGLint *attrib_list);
EGLAPI EGLBoolean EGLAPIENTRY eglDestroyContext (EGLDisplay dpy, EGLContext ctx);
EGLAPI EGLBoolean EGLAPIENTRY eglDestroySurface (EGLDisplay dpy, EGLSurface surface);
EGLAPI EGLBoolean EGLAPIENTRY eglGetConfigAttrib (EGLDisplay dpy, EGLConfig config, EGLint attribute, EGLint *value);
EGLAPI EGLBoolean EGLAPIENTRY eglGetConfigs (EGLDisplay dpy, EGLConfig *configs, EGLint config_size, EGLint *num_config);
EGLAPI EGLDisplay EGLAPIENTRY eglGetCurrentDisplay (void);
EGLAPI EGLSurface EGLAPIENTRY eglGetCurrentSurface (EGLint readdraw);
EGLAPI EGLDisplay EGLAPIENTRY eglGetDisplay (EGLNativeDisplayType display_id);
EGLAPI EGLint EGLAPIENTRY eglGetError (void);
EGLAPI __eglMustCastToProperFunctionPointerType EGLAPIENTRY eglGetProcAddress (const char *procname);
EGLAPI EGLBoolean EGLAPIENTRY eglInitialize (EGLDisplay dpy, EGLint *major, EGLint *minor);
EGLAPI EGLBoolean EGLAPIENTRY eglMakeCurrent (EGLDisplay dpy, EGLSurface draw, EGLSurface read, EGLContext ctx);
EGLAPI EGLBoolean EGLAPIENTRY eglQueryContext (EGLDisplay dpy, EGLContext ctx, EGLint attribute, EGLint *value);
EGLAPI const char *EGLAPIENTRY eglQueryString (EGLDisplay dpy, EGLint name);
EGLAPI EGLBoolean EGLAPIENTRY eglQuerySurface (EGLDisplay dpy, EGLSurface surface, EGLint attribute, EGLint *value);
EGLAPI EGLBoolean EGLAPIENTRY eglSwapBuffers (EGLDisplay dpy, EGLSurface surface);
EGLAPI EGLBoolean EGLAPIENTRY eglTerminate (EGLDisplay dpy);
EGLAPI EGLBoolean EGLAPIENTRY eglWaitGL (void);
EGLAPI EGLBoolean EGLAPIENTRY eglWaitNative (EGLint engine);
#endif /* EGL_VERSION_1_0 */
#ifndef EGL_VERSION_1_1
#define EGL_VERSION_1_1 1
#define EGL_BACK_BUFFER 0x3084
#define EGL_BIND_TO_TEXTURE_RGB 0x3039
#define EGL_BIND_TO_TEXTURE_RGBA 0x303A
#define EGL_CONTEXT_LOST 0x300E
#define EGL_MIN_SWAP_INTERVAL 0x303B
#define EGL_MAX_SWAP_INTERVAL 0x303C
#define EGL_MIPMAP_TEXTURE 0x3082
#define EGL_MIPMAP_LEVEL 0x3083
#define EGL_NO_TEXTURE 0x305C
#define EGL_TEXTURE_2D 0x305F
#define EGL_TEXTURE_FORMAT 0x3080
#define EGL_TEXTURE_RGB 0x305D
#define EGL_TEXTURE_RGBA 0x305E
#define EGL_TEXTURE_TARGET 0x3081
EGLAPI EGLBoolean EGLAPIENTRY eglBindTexImage (EGLDisplay dpy, EGLSurface surface, EGLint buffer);
EGLAPI EGLBoolean EGLAPIENTRY eglReleaseTexImage (EGLDisplay dpy, EGLSurface surface, EGLint buffer);
EGLAPI EGLBoolean EGLAPIENTRY eglSurfaceAttrib (EGLDisplay dpy, EGLSurface surface, EGLint attribute, EGLint value);
EGLAPI EGLBoolean EGLAPIENTRY eglSwapInterval (EGLDisplay dpy, EGLint interval);
#endif /* EGL_VERSION_1_1 */
#ifndef EGL_VERSION_1_2
#define EGL_VERSION_1_2 1
typedef unsigned int EGLenum;
typedef void *EGLClientBuffer;
#define EGL_ALPHA_FORMAT 0x3088
#define EGL_ALPHA_FORMAT_NONPRE 0x308B
#define EGL_ALPHA_FORMAT_PRE 0x308C
#define EGL_ALPHA_MASK_SIZE 0x303E
#define EGL_BUFFER_PRESERVED 0x3094
#define EGL_BUFFER_DESTROYED 0x3095
#define EGL_CLIENT_APIS 0x308D
#define EGL_COLORSPACE 0x3087
#define EGL_COLORSPACE_sRGB 0x3089
#define EGL_COLORSPACE_LINEAR 0x308A
#define EGL_COLOR_BUFFER_TYPE 0x303F
#define EGL_CONTEXT_CLIENT_TYPE 0x3097
#define EGL_DISPLAY_SCALING 10000
#define EGL_HORIZONTAL_RESOLUTION 0x3090
#define EGL_LUMINANCE_BUFFER 0x308F
#define EGL_LUMINANCE_SIZE 0x303D
#define EGL_OPENGL_ES_BIT 0x0001
#define EGL_OPENVG_BIT 0x0002
#define EGL_OPENGL_ES_API 0x30A0
#define EGL_OPENVG_API 0x30A1
#define EGL_OPENVG_IMAGE 0x3096
#define EGL_PIXEL_ASPECT_RATIO 0x3092
#define EGL_RENDERABLE_TYPE 0x3040
#define EGL_RENDER_BUFFER 0x3086
#define EGL_RGB_BUFFER 0x308E
#define EGL_SINGLE_BUFFER 0x3085
#define EGL_SWAP_BEHAVIOR 0x3093
#define EGL_UNKNOWN ((EGLint)-1)
#define EGL_VERTICAL_RESOLUTION 0x3091
EGLAPI EGLBoolean EGLAPIENTRY eglBindAPI (EGLenum api);
EGLAPI EGLenum EGLAPIENTRY eglQueryAPI (void);
EGLAPI EGLSurface EGLAPIENTRY eglCreatePbufferFromClientBuffer (EGLDisplay dpy, EGLenum buftype, EGLClientBuffer buffer, EGLConfig config, const EGLint *attrib_list);
EGLAPI EGLBoolean EGLAPIENTRY eglReleaseThread (void);
EGLAPI EGLBoolean EGLAPIENTRY eglWaitClient (void);
#endif /* EGL_VERSION_1_2 */
#ifndef EGL_VERSION_1_3
#define EGL_VERSION_1_3 1
#define EGL_CONFORMANT 0x3042
#define EGL_CONTEXT_CLIENT_VERSION 0x3098
#define EGL_MATCH_NATIVE_PIXMAP 0x3041
#define EGL_OPENGL_ES2_BIT 0x0004
#define EGL_VG_ALPHA_FORMAT 0x3088
#define EGL_VG_ALPHA_FORMAT_NONPRE 0x308B
#define EGL_VG_ALPHA_FORMAT_PRE 0x308C
#define EGL_VG_ALPHA_FORMAT_PRE_BIT 0x0040
#define EGL_VG_COLORSPACE 0x3087
#define EGL_VG_COLORSPACE_sRGB 0x3089
#define EGL_VG_COLORSPACE_LINEAR 0x308A
#define EGL_VG_COLORSPACE_LINEAR_BIT 0x0020
#endif /* EGL_VERSION_1_3 */
#ifndef EGL_VERSION_1_4
#define EGL_VERSION_1_4 1
#define EGL_DEFAULT_DISPLAY ((EGLNativeDisplayType)0)
#define EGL_MULTISAMPLE_RESOLVE_BOX_BIT 0x0200
#define EGL_MULTISAMPLE_RESOLVE 0x3099
#define EGL_MULTISAMPLE_RESOLVE_DEFAULT 0x309A
#define EGL_MULTISAMPLE_RESOLVE_BOX 0x309B
#define EGL_OPENGL_API 0x30A2
#define EGL_OPENGL_BIT 0x0008
#define EGL_SWAP_BEHAVIOR_PRESERVED_BIT 0x0400
EGLAPI EGLContext EGLAPIENTRY eglGetCurrentContext (void);
#endif /* EGL_VERSION_1_4 */
#ifndef EGL_VERSION_1_5
#define EGL_VERSION_1_5 1
typedef void *EGLSync;
typedef intptr_t EGLAttrib;
typedef khronos_utime_nanoseconds_t EGLTime;
typedef void *EGLImage;
#define EGL_CONTEXT_MAJOR_VERSION 0x3098
#define EGL_CONTEXT_MINOR_VERSION 0x30FB
#define EGL_CONTEXT_OPENGL_PROFILE_MASK 0x30FD
#define EGL_CONTEXT_OPENGL_RESET_NOTIFICATION_STRATEGY 0x31BD
#define EGL_NO_RESET_NOTIFICATION 0x31BE
#define EGL_LOSE_CONTEXT_ON_RESET 0x31BF
#define EGL_CONTEXT_OPENGL_CORE_PROFILE_BIT 0x00000001
#define EGL_CONTEXT_OPENGL_COMPATIBILITY_PROFILE_BIT 0x00000002
#define EGL_CONTEXT_OPENGL_DEBUG 0x31B0
#define EGL_CONTEXT_OPENGL_FORWARD_COMPATIBLE 0x31B1
#define EGL_CONTEXT_OPENGL_ROBUST_ACCESS 0x31B2
#define EGL_OPENGL_ES3_BIT 0x00000040
#define EGL_CL_EVENT_HANDLE 0x309C
#define EGL_SYNC_CL_EVENT 0x30FE
#define EGL_SYNC_CL_EVENT_COMPLETE 0x30FF
#define EGL_SYNC_PRIOR_COMMANDS_COMPLETE 0x30F0
#define EGL_SYNC_TYPE 0x30F7
#define EGL_SYNC_STATUS 0x30F1
#define EGL_SYNC_CONDITION 0x30F8
#define EGL_SIGNALED 0x30F2
#define EGL_UNSIGNALED 0x30F3
#define EGL_SYNC_FLUSH_COMMANDS_BIT 0x0001
#define EGL_FOREVER 0xFFFFFFFFFFFFFFFFull
#define EGL_TIMEOUT_EXPIRED 0x30F5
#define EGL_CONDITION_SATISFIED 0x30F6
#define EGL_NO_SYNC ((EGLSync)0)
#define EGL_SYNC_FENCE 0x30F9
#define EGL_GL_COLORSPACE 0x309D
#define EGL_GL_COLORSPACE_SRGB 0x3089
#define EGL_GL_COLORSPACE_LINEAR 0x308A
#define EGL_GL_RENDERBUFFER 0x30B9
#define EGL_GL_TEXTURE_2D 0x30B1
#define EGL_GL_TEXTURE_LEVEL 0x30BC
#define EGL_GL_TEXTURE_3D 0x30B2
#define EGL_GL_TEXTURE_ZOFFSET 0x30BD
#define EGL_GL_TEXTURE_CUBE_MAP_POSITIVE_X 0x30B3
#define EGL_GL_TEXTURE_CUBE_MAP_NEGATIVE_X 0x30B4
#define EGL_GL_TEXTURE_CUBE_MAP_POSITIVE_Y 0x30B5
#define EGL_GL_TEXTURE_CUBE_MAP_NEGATIVE_Y 0x30B6
#define EGL_GL_TEXTURE_CUBE_MAP_POSITIVE_Z 0x30B7
#define EGL_GL_TEXTURE_CUBE_MAP_NEGATIVE_Z 0x30B8
#define EGL_IMAGE_PRESERVED 0x30D2
#define EGL_NO_IMAGE ((EGLImage)0)
EGLAPI EGLSync EGLAPIENTRY eglCreateSync (EGLDisplay dpy, EGLenum type, const EGLAttrib *attrib_list);
EGLAPI EGLBoolean EGLAPIENTRY eglDestroySync (EGLDisplay dpy, EGLSync sync);
EGLAPI EGLint EGLAPIENTRY eglClientWaitSync (EGLDisplay dpy, EGLSync sync, EGLint flags, EGLTime timeout);
EGLAPI EGLBoolean EGLAPIENTRY eglGetSyncAttrib (EGLDisplay dpy, EGLSync sync, EGLint attribute, EGLAttrib *value);
EGLAPI EGLImage EGLAPIENTRY eglCreateImage (EGLDisplay dpy, EGLContext ctx, EGLenum target, EGLClientBuffer buffer, const EGLAttrib *attrib_list);
EGLAPI EGLBoolean EGLAPIENTRY eglDestroyImage (EGLDisplay dpy, EGLImage image);
EGLAPI EGLDisplay EGLAPIENTRY eglGetPlatformDisplay (EGLenum platform, void *native_display, const EGLAttrib *attrib_list);
EGLAPI EGLSurface EGLAPIENTRY eglCreatePlatformWindowSurface (EGLDisplay dpy, EGLConfig config, void *native_window, const EGLAttrib *attrib_list);
EGLAPI EGLSurface EGLAPIENTRY eglCreatePlatformPixmapSurface (EGLDisplay dpy, EGLConfig config, void *native_pixmap, const EGLAttrib *attrib_list);
EGLAPI EGLBoolean EGLAPIENTRY eglWaitSync (EGLDisplay dpy, EGLSync sync, EGLint flags);
#endif /* EGL_VERSION_1_5 */
#ifdef __cplusplus
}
#endif
#endif

View file

@ -1,826 +0,0 @@
#ifndef __eglext_h_
#define __eglext_h_ 1
#ifdef __cplusplus
extern "C" {
#endif
/*
** Copyright (c) 2013-2014 The Khronos Group Inc.
**
** Permission is hereby granted, free of charge, to any person obtaining a
** copy of this software and/or associated documentation files (the
** "Materials"), to deal in the Materials without restriction, including
** without limitation the rights to use, copy, modify, merge, publish,
** distribute, sublicense, and/or sell copies of the Materials, and to
** permit persons to whom the Materials are furnished to do so, subject to
** the following conditions:
**
** The above copyright notice and this permission notice shall be included
** in all copies or substantial portions of the Materials.
**
** THE MATERIALS ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
** EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
** MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
** IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
** CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
** TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
** MATERIALS OR THE USE OR OTHER DEALINGS IN THE MATERIALS.
*/
/*
** This header is generated from the Khronos OpenGL / OpenGL ES XML
** API Registry. The current version of the Registry, generator scripts
** used to make the header, and the header can be found at
** http://www.opengl.org/registry/
**
** Khronos $Revision: 29318 $ on $Date: 2015-01-02 03:16:10 -0800 (Fri, 02 Jan 2015) $
*/
#include <EGL/eglplatform.h>
#define EGL_EGLEXT_VERSION 20150102
/* Generated C header for:
* API: egl
* Versions considered: .*
* Versions emitted: _nomatch_^
* Default extensions included: egl
* Additional extensions included: _nomatch_^
* Extensions removed: _nomatch_^
*/
#ifndef EGL_KHR_cl_event
#define EGL_KHR_cl_event 1
#define EGL_CL_EVENT_HANDLE_KHR 0x309C
#define EGL_SYNC_CL_EVENT_KHR 0x30FE
#define EGL_SYNC_CL_EVENT_COMPLETE_KHR 0x30FF
#endif /* EGL_KHR_cl_event */
#ifndef EGL_KHR_cl_event2
#define EGL_KHR_cl_event2 1
typedef void *EGLSyncKHR;
typedef intptr_t EGLAttribKHR;
typedef EGLSyncKHR (EGLAPIENTRYP PFNEGLCREATESYNC64KHRPROC) (EGLDisplay dpy, EGLenum type, const EGLAttribKHR *attrib_list);
#ifdef EGL_EGLEXT_PROTOTYPES
EGLAPI EGLSyncKHR EGLAPIENTRY eglCreateSync64KHR (EGLDisplay dpy, EGLenum type, const EGLAttribKHR *attrib_list);
#endif
#endif /* EGL_KHR_cl_event2 */
#ifndef EGL_KHR_client_get_all_proc_addresses
#define EGL_KHR_client_get_all_proc_addresses 1
#endif /* EGL_KHR_client_get_all_proc_addresses */
#ifndef EGL_KHR_config_attribs
#define EGL_KHR_config_attribs 1
#define EGL_CONFORMANT_KHR 0x3042
#define EGL_VG_COLORSPACE_LINEAR_BIT_KHR 0x0020
#define EGL_VG_ALPHA_FORMAT_PRE_BIT_KHR 0x0040
#endif /* EGL_KHR_config_attribs */
#ifndef EGL_KHR_create_context
#define EGL_KHR_create_context 1
#define EGL_CONTEXT_MAJOR_VERSION_KHR 0x3098
#define EGL_CONTEXT_MINOR_VERSION_KHR 0x30FB
#define EGL_CONTEXT_FLAGS_KHR 0x30FC
#define EGL_CONTEXT_OPENGL_PROFILE_MASK_KHR 0x30FD
#define EGL_CONTEXT_OPENGL_RESET_NOTIFICATION_STRATEGY_KHR 0x31BD
#define EGL_NO_RESET_NOTIFICATION_KHR 0x31BE
#define EGL_LOSE_CONTEXT_ON_RESET_KHR 0x31BF
#define EGL_CONTEXT_OPENGL_DEBUG_BIT_KHR 0x00000001
#define EGL_CONTEXT_OPENGL_FORWARD_COMPATIBLE_BIT_KHR 0x00000002
#define EGL_CONTEXT_OPENGL_ROBUST_ACCESS_BIT_KHR 0x00000004
#define EGL_CONTEXT_OPENGL_CORE_PROFILE_BIT_KHR 0x00000001
#define EGL_CONTEXT_OPENGL_COMPATIBILITY_PROFILE_BIT_KHR 0x00000002
#define EGL_OPENGL_ES3_BIT_KHR 0x00000040
#endif /* EGL_KHR_create_context */
#ifndef EGL_KHR_fence_sync
#define EGL_KHR_fence_sync 1
#ifdef KHRONOS_SUPPORT_INT64
#define EGL_SYNC_PRIOR_COMMANDS_COMPLETE_KHR 0x30F0
#define EGL_SYNC_CONDITION_KHR 0x30F8
#define EGL_SYNC_FENCE_KHR 0x30F9
#endif /* KHRONOS_SUPPORT_INT64 */
#endif /* EGL_KHR_fence_sync */
#ifndef EGL_KHR_get_all_proc_addresses
#define EGL_KHR_get_all_proc_addresses 1
#endif /* EGL_KHR_get_all_proc_addresses */
#ifndef EGL_KHR_gl_colorspace
#define EGL_KHR_gl_colorspace 1
#define EGL_GL_COLORSPACE_KHR 0x309D
#define EGL_GL_COLORSPACE_SRGB_KHR 0x3089
#define EGL_GL_COLORSPACE_LINEAR_KHR 0x308A
#endif /* EGL_KHR_gl_colorspace */
#ifndef EGL_KHR_gl_renderbuffer_image
#define EGL_KHR_gl_renderbuffer_image 1
#define EGL_GL_RENDERBUFFER_KHR 0x30B9
#endif /* EGL_KHR_gl_renderbuffer_image */
#ifndef EGL_KHR_gl_texture_2D_image
#define EGL_KHR_gl_texture_2D_image 1
#define EGL_GL_TEXTURE_2D_KHR 0x30B1
#define EGL_GL_TEXTURE_LEVEL_KHR 0x30BC
#endif /* EGL_KHR_gl_texture_2D_image */
#ifndef EGL_KHR_gl_texture_3D_image
#define EGL_KHR_gl_texture_3D_image 1
#define EGL_GL_TEXTURE_3D_KHR 0x30B2
#define EGL_GL_TEXTURE_ZOFFSET_KHR 0x30BD
#endif /* EGL_KHR_gl_texture_3D_image */
#ifndef EGL_KHR_gl_texture_cubemap_image
#define EGL_KHR_gl_texture_cubemap_image 1
#define EGL_GL_TEXTURE_CUBE_MAP_POSITIVE_X_KHR 0x30B3
#define EGL_GL_TEXTURE_CUBE_MAP_NEGATIVE_X_KHR 0x30B4
#define EGL_GL_TEXTURE_CUBE_MAP_POSITIVE_Y_KHR 0x30B5
#define EGL_GL_TEXTURE_CUBE_MAP_NEGATIVE_Y_KHR 0x30B6
#define EGL_GL_TEXTURE_CUBE_MAP_POSITIVE_Z_KHR 0x30B7
#define EGL_GL_TEXTURE_CUBE_MAP_NEGATIVE_Z_KHR 0x30B8
#endif /* EGL_KHR_gl_texture_cubemap_image */
#ifndef EGL_KHR_image
#define EGL_KHR_image 1
typedef void *EGLImageKHR;
#define EGL_NATIVE_PIXMAP_KHR 0x30B0
#define EGL_NO_IMAGE_KHR ((EGLImageKHR)0)
typedef EGLImageKHR (EGLAPIENTRYP PFNEGLCREATEIMAGEKHRPROC) (EGLDisplay dpy, EGLContext ctx, EGLenum target, EGLClientBuffer buffer, const EGLint *attrib_list);
typedef EGLBoolean (EGLAPIENTRYP PFNEGLDESTROYIMAGEKHRPROC) (EGLDisplay dpy, EGLImageKHR image);
#ifdef EGL_EGLEXT_PROTOTYPES
EGLAPI EGLImageKHR EGLAPIENTRY eglCreateImageKHR (EGLDisplay dpy, EGLContext ctx, EGLenum target, EGLClientBuffer buffer, const EGLint *attrib_list);
EGLAPI EGLBoolean EGLAPIENTRY eglDestroyImageKHR (EGLDisplay dpy, EGLImageKHR image);
#endif
#endif /* EGL_KHR_image */
#ifndef EGL_KHR_image_base
#define EGL_KHR_image_base 1
#define EGL_IMAGE_PRESERVED_KHR 0x30D2
#endif /* EGL_KHR_image_base */
#ifndef EGL_KHR_image_pixmap
#define EGL_KHR_image_pixmap 1
#endif /* EGL_KHR_image_pixmap */
#ifndef EGL_KHR_lock_surface
#define EGL_KHR_lock_surface 1
#define EGL_READ_SURFACE_BIT_KHR 0x0001
#define EGL_WRITE_SURFACE_BIT_KHR 0x0002
#define EGL_LOCK_SURFACE_BIT_KHR 0x0080
#define EGL_OPTIMAL_FORMAT_BIT_KHR 0x0100
#define EGL_MATCH_FORMAT_KHR 0x3043
#define EGL_FORMAT_RGB_565_EXACT_KHR 0x30C0
#define EGL_FORMAT_RGB_565_KHR 0x30C1
#define EGL_FORMAT_RGBA_8888_EXACT_KHR 0x30C2
#define EGL_FORMAT_RGBA_8888_KHR 0x30C3
#define EGL_MAP_PRESERVE_PIXELS_KHR 0x30C4
#define EGL_LOCK_USAGE_HINT_KHR 0x30C5
#define EGL_BITMAP_POINTER_KHR 0x30C6
#define EGL_BITMAP_PITCH_KHR 0x30C7
#define EGL_BITMAP_ORIGIN_KHR 0x30C8
#define EGL_BITMAP_PIXEL_RED_OFFSET_KHR 0x30C9
#define EGL_BITMAP_PIXEL_GREEN_OFFSET_KHR 0x30CA
#define EGL_BITMAP_PIXEL_BLUE_OFFSET_KHR 0x30CB
#define EGL_BITMAP_PIXEL_ALPHA_OFFSET_KHR 0x30CC
#define EGL_BITMAP_PIXEL_LUMINANCE_OFFSET_KHR 0x30CD
#define EGL_LOWER_LEFT_KHR 0x30CE
#define EGL_UPPER_LEFT_KHR 0x30CF
typedef EGLBoolean (EGLAPIENTRYP PFNEGLLOCKSURFACEKHRPROC) (EGLDisplay dpy, EGLSurface surface, const EGLint *attrib_list);
typedef EGLBoolean (EGLAPIENTRYP PFNEGLUNLOCKSURFACEKHRPROC) (EGLDisplay dpy, EGLSurface surface);
#ifdef EGL_EGLEXT_PROTOTYPES
EGLAPI EGLBoolean EGLAPIENTRY eglLockSurfaceKHR (EGLDisplay dpy, EGLSurface surface, const EGLint *attrib_list);
EGLAPI EGLBoolean EGLAPIENTRY eglUnlockSurfaceKHR (EGLDisplay dpy, EGLSurface surface);
#endif
#endif /* EGL_KHR_lock_surface */
#ifndef EGL_KHR_lock_surface2
#define EGL_KHR_lock_surface2 1
#define EGL_BITMAP_PIXEL_SIZE_KHR 0x3110
#endif /* EGL_KHR_lock_surface2 */
#ifndef EGL_KHR_lock_surface3
#define EGL_KHR_lock_surface3 1
typedef EGLBoolean (EGLAPIENTRYP PFNEGLQUERYSURFACE64KHRPROC) (EGLDisplay dpy, EGLSurface surface, EGLint attribute, EGLAttribKHR *value);
#ifdef EGL_EGLEXT_PROTOTYPES
EGLAPI EGLBoolean EGLAPIENTRY eglQuerySurface64KHR (EGLDisplay dpy, EGLSurface surface, EGLint attribute, EGLAttribKHR *value);
#endif
#endif /* EGL_KHR_lock_surface3 */
#ifndef EGL_KHR_partial_update
#define EGL_KHR_partial_update 1
#define EGL_BUFFER_AGE_KHR 0x313D
typedef EGLBoolean (EGLAPIENTRYP PFNEGLSETDAMAGEREGIONKHRPROC) (EGLDisplay dpy, EGLSurface surface, EGLint *rects, EGLint n_rects);
#ifdef EGL_EGLEXT_PROTOTYPES
EGLAPI EGLBoolean EGLAPIENTRY eglSetDamageRegionKHR (EGLDisplay dpy, EGLSurface surface, EGLint *rects, EGLint n_rects);
#endif
#endif /* EGL_KHR_partial_update */
#ifndef EGL_KHR_platform_android
#define EGL_KHR_platform_android 1
#define EGL_PLATFORM_ANDROID_KHR 0x3141
#endif /* EGL_KHR_platform_android */
#ifndef EGL_KHR_platform_gbm
#define EGL_KHR_platform_gbm 1
#define EGL_PLATFORM_GBM_KHR 0x31D7
#endif /* EGL_KHR_platform_gbm */
#ifndef EGL_KHR_platform_wayland
#define EGL_KHR_platform_wayland 1
#define EGL_PLATFORM_WAYLAND_KHR 0x31D8
#endif /* EGL_KHR_platform_wayland */
#ifndef EGL_KHR_platform_x11
#define EGL_KHR_platform_x11 1
#define EGL_PLATFORM_X11_KHR 0x31D5
#define EGL_PLATFORM_X11_SCREEN_KHR 0x31D6
#endif /* EGL_KHR_platform_x11 */
#ifndef EGL_KHR_reusable_sync
#define EGL_KHR_reusable_sync 1
typedef khronos_utime_nanoseconds_t EGLTimeKHR;
#ifdef KHRONOS_SUPPORT_INT64
#define EGL_SYNC_STATUS_KHR 0x30F1
#define EGL_SIGNALED_KHR 0x30F2
#define EGL_UNSIGNALED_KHR 0x30F3
#define EGL_TIMEOUT_EXPIRED_KHR 0x30F5
#define EGL_CONDITION_SATISFIED_KHR 0x30F6
#define EGL_SYNC_TYPE_KHR 0x30F7
#define EGL_SYNC_REUSABLE_KHR 0x30FA
#define EGL_SYNC_FLUSH_COMMANDS_BIT_KHR 0x0001
#define EGL_FOREVER_KHR 0xFFFFFFFFFFFFFFFFull
#define EGL_NO_SYNC_KHR ((EGLSyncKHR)0)
typedef EGLSyncKHR (EGLAPIENTRYP PFNEGLCREATESYNCKHRPROC) (EGLDisplay dpy, EGLenum type, const EGLint *attrib_list);
typedef EGLBoolean (EGLAPIENTRYP PFNEGLDESTROYSYNCKHRPROC) (EGLDisplay dpy, EGLSyncKHR sync);
typedef EGLint (EGLAPIENTRYP PFNEGLCLIENTWAITSYNCKHRPROC) (EGLDisplay dpy, EGLSyncKHR sync, EGLint flags, EGLTimeKHR timeout);
typedef EGLBoolean (EGLAPIENTRYP PFNEGLSIGNALSYNCKHRPROC) (EGLDisplay dpy, EGLSyncKHR sync, EGLenum mode);
typedef EGLBoolean (EGLAPIENTRYP PFNEGLGETSYNCATTRIBKHRPROC) (EGLDisplay dpy, EGLSyncKHR sync, EGLint attribute, EGLint *value);
#ifdef EGL_EGLEXT_PROTOTYPES
EGLAPI EGLSyncKHR EGLAPIENTRY eglCreateSyncKHR (EGLDisplay dpy, EGLenum type, const EGLint *attrib_list);
EGLAPI EGLBoolean EGLAPIENTRY eglDestroySyncKHR (EGLDisplay dpy, EGLSyncKHR sync);
EGLAPI EGLint EGLAPIENTRY eglClientWaitSyncKHR (EGLDisplay dpy, EGLSyncKHR sync, EGLint flags, EGLTimeKHR timeout);
EGLAPI EGLBoolean EGLAPIENTRY eglSignalSyncKHR (EGLDisplay dpy, EGLSyncKHR sync, EGLenum mode);
EGLAPI EGLBoolean EGLAPIENTRY eglGetSyncAttribKHR (EGLDisplay dpy, EGLSyncKHR sync, EGLint attribute, EGLint *value);
#endif
#endif /* KHRONOS_SUPPORT_INT64 */
#endif /* EGL_KHR_reusable_sync */
#ifndef EGL_KHR_stream
#define EGL_KHR_stream 1
typedef void *EGLStreamKHR;
typedef khronos_uint64_t EGLuint64KHR;
#ifdef KHRONOS_SUPPORT_INT64
#define EGL_NO_STREAM_KHR ((EGLStreamKHR)0)
#define EGL_CONSUMER_LATENCY_USEC_KHR 0x3210
#define EGL_PRODUCER_FRAME_KHR 0x3212
#define EGL_CONSUMER_FRAME_KHR 0x3213
#define EGL_STREAM_STATE_KHR 0x3214
#define EGL_STREAM_STATE_CREATED_KHR 0x3215
#define EGL_STREAM_STATE_CONNECTING_KHR 0x3216
#define EGL_STREAM_STATE_EMPTY_KHR 0x3217
#define EGL_STREAM_STATE_NEW_FRAME_AVAILABLE_KHR 0x3218
#define EGL_STREAM_STATE_OLD_FRAME_AVAILABLE_KHR 0x3219
#define EGL_STREAM_STATE_DISCONNECTED_KHR 0x321A
#define EGL_BAD_STREAM_KHR 0x321B
#define EGL_BAD_STATE_KHR 0x321C
typedef EGLStreamKHR (EGLAPIENTRYP PFNEGLCREATESTREAMKHRPROC) (EGLDisplay dpy, const EGLint *attrib_list);
typedef EGLBoolean (EGLAPIENTRYP PFNEGLDESTROYSTREAMKHRPROC) (EGLDisplay dpy, EGLStreamKHR stream);
typedef EGLBoolean (EGLAPIENTRYP PFNEGLSTREAMATTRIBKHRPROC) (EGLDisplay dpy, EGLStreamKHR stream, EGLenum attribute, EGLint value);
typedef EGLBoolean (EGLAPIENTRYP PFNEGLQUERYSTREAMKHRPROC) (EGLDisplay dpy, EGLStreamKHR stream, EGLenum attribute, EGLint *value);
typedef EGLBoolean (EGLAPIENTRYP PFNEGLQUERYSTREAMU64KHRPROC) (EGLDisplay dpy, EGLStreamKHR stream, EGLenum attribute, EGLuint64KHR *value);
#ifdef EGL_EGLEXT_PROTOTYPES
EGLAPI EGLStreamKHR EGLAPIENTRY eglCreateStreamKHR (EGLDisplay dpy, const EGLint *attrib_list);
EGLAPI EGLBoolean EGLAPIENTRY eglDestroyStreamKHR (EGLDisplay dpy, EGLStreamKHR stream);
EGLAPI EGLBoolean EGLAPIENTRY eglStreamAttribKHR (EGLDisplay dpy, EGLStreamKHR stream, EGLenum attribute, EGLint value);
EGLAPI EGLBoolean EGLAPIENTRY eglQueryStreamKHR (EGLDisplay dpy, EGLStreamKHR stream, EGLenum attribute, EGLint *value);
EGLAPI EGLBoolean EGLAPIENTRY eglQueryStreamu64KHR (EGLDisplay dpy, EGLStreamKHR stream, EGLenum attribute, EGLuint64KHR *value);
#endif
#endif /* KHRONOS_SUPPORT_INT64 */
#endif /* EGL_KHR_stream */
#ifndef EGL_KHR_stream_consumer_gltexture
#define EGL_KHR_stream_consumer_gltexture 1
#ifdef EGL_KHR_stream
#define EGL_CONSUMER_ACQUIRE_TIMEOUT_USEC_KHR 0x321E
typedef EGLBoolean (EGLAPIENTRYP PFNEGLSTREAMCONSUMERGLTEXTUREEXTERNALKHRPROC) (EGLDisplay dpy, EGLStreamKHR stream);
typedef EGLBoolean (EGLAPIENTRYP PFNEGLSTREAMCONSUMERACQUIREKHRPROC) (EGLDisplay dpy, EGLStreamKHR stream);
typedef EGLBoolean (EGLAPIENTRYP PFNEGLSTREAMCONSUMERRELEASEKHRPROC) (EGLDisplay dpy, EGLStreamKHR stream);
#ifdef EGL_EGLEXT_PROTOTYPES
EGLAPI EGLBoolean EGLAPIENTRY eglStreamConsumerGLTextureExternalKHR (EGLDisplay dpy, EGLStreamKHR stream);
EGLAPI EGLBoolean EGLAPIENTRY eglStreamConsumerAcquireKHR (EGLDisplay dpy, EGLStreamKHR stream);
EGLAPI EGLBoolean EGLAPIENTRY eglStreamConsumerReleaseKHR (EGLDisplay dpy, EGLStreamKHR stream);
#endif
#endif /* EGL_KHR_stream */
#endif /* EGL_KHR_stream_consumer_gltexture */
#ifndef EGL_KHR_stream_cross_process_fd
#define EGL_KHR_stream_cross_process_fd 1
typedef int EGLNativeFileDescriptorKHR;
#ifdef EGL_KHR_stream
#define EGL_NO_FILE_DESCRIPTOR_KHR ((EGLNativeFileDescriptorKHR)(-1))
typedef EGLNativeFileDescriptorKHR (EGLAPIENTRYP PFNEGLGETSTREAMFILEDESCRIPTORKHRPROC) (EGLDisplay dpy, EGLStreamKHR stream);
typedef EGLStreamKHR (EGLAPIENTRYP PFNEGLCREATESTREAMFROMFILEDESCRIPTORKHRPROC) (EGLDisplay dpy, EGLNativeFileDescriptorKHR file_descriptor);
#ifdef EGL_EGLEXT_PROTOTYPES
EGLAPI EGLNativeFileDescriptorKHR EGLAPIENTRY eglGetStreamFileDescriptorKHR (EGLDisplay dpy, EGLStreamKHR stream);
EGLAPI EGLStreamKHR EGLAPIENTRY eglCreateStreamFromFileDescriptorKHR (EGLDisplay dpy, EGLNativeFileDescriptorKHR file_descriptor);
#endif
#endif /* EGL_KHR_stream */
#endif /* EGL_KHR_stream_cross_process_fd */
#ifndef EGL_KHR_stream_fifo
#define EGL_KHR_stream_fifo 1
#ifdef EGL_KHR_stream
#define EGL_STREAM_FIFO_LENGTH_KHR 0x31FC
#define EGL_STREAM_TIME_NOW_KHR 0x31FD
#define EGL_STREAM_TIME_CONSUMER_KHR 0x31FE
#define EGL_STREAM_TIME_PRODUCER_KHR 0x31FF
typedef EGLBoolean (EGLAPIENTRYP PFNEGLQUERYSTREAMTIMEKHRPROC) (EGLDisplay dpy, EGLStreamKHR stream, EGLenum attribute, EGLTimeKHR *value);
#ifdef EGL_EGLEXT_PROTOTYPES
EGLAPI EGLBoolean EGLAPIENTRY eglQueryStreamTimeKHR (EGLDisplay dpy, EGLStreamKHR stream, EGLenum attribute, EGLTimeKHR *value);
#endif
#endif /* EGL_KHR_stream */
#endif /* EGL_KHR_stream_fifo */
#ifndef EGL_KHR_stream_producer_aldatalocator
#define EGL_KHR_stream_producer_aldatalocator 1
#ifdef EGL_KHR_stream
#endif /* EGL_KHR_stream */
#endif /* EGL_KHR_stream_producer_aldatalocator */
#ifndef EGL_KHR_stream_producer_eglsurface
#define EGL_KHR_stream_producer_eglsurface 1
#ifdef EGL_KHR_stream
#define EGL_STREAM_BIT_KHR 0x0800
typedef EGLSurface (EGLAPIENTRYP PFNEGLCREATESTREAMPRODUCERSURFACEKHRPROC) (EGLDisplay dpy, EGLConfig config, EGLStreamKHR stream, const EGLint *attrib_list);
#ifdef EGL_EGLEXT_PROTOTYPES
EGLAPI EGLSurface EGLAPIENTRY eglCreateStreamProducerSurfaceKHR (EGLDisplay dpy, EGLConfig config, EGLStreamKHR stream, const EGLint *attrib_list);
#endif
#endif /* EGL_KHR_stream */
#endif /* EGL_KHR_stream_producer_eglsurface */
#ifndef EGL_KHR_surfaceless_context
#define EGL_KHR_surfaceless_context 1
#endif /* EGL_KHR_surfaceless_context */
#ifndef EGL_KHR_swap_buffers_with_damage
#define EGL_KHR_swap_buffers_with_damage 1
typedef EGLBoolean (EGLAPIENTRYP PFNEGLSWAPBUFFERSWITHDAMAGEKHRPROC) (EGLDisplay dpy, EGLSurface surface, EGLint *rects, EGLint n_rects);
#ifdef EGL_EGLEXT_PROTOTYPES
EGLAPI EGLBoolean EGLAPIENTRY eglSwapBuffersWithDamageKHR (EGLDisplay dpy, EGLSurface surface, EGLint *rects, EGLint n_rects);
#endif
#endif /* EGL_KHR_swap_buffers_with_damage */
#ifndef EGL_KHR_vg_parent_image
#define EGL_KHR_vg_parent_image 1
#define EGL_VG_PARENT_IMAGE_KHR 0x30BA
#endif /* EGL_KHR_vg_parent_image */
#ifndef EGL_KHR_wait_sync
#define EGL_KHR_wait_sync 1
typedef EGLint (EGLAPIENTRYP PFNEGLWAITSYNCKHRPROC) (EGLDisplay dpy, EGLSyncKHR sync, EGLint flags);
#ifdef EGL_EGLEXT_PROTOTYPES
EGLAPI EGLint EGLAPIENTRY eglWaitSyncKHR (EGLDisplay dpy, EGLSyncKHR sync, EGLint flags);
#endif
#endif /* EGL_KHR_wait_sync */
#ifndef EGL_ANDROID_blob_cache
#define EGL_ANDROID_blob_cache 1
typedef khronos_ssize_t EGLsizeiANDROID;
typedef void (*EGLSetBlobFuncANDROID) (const void *key, EGLsizeiANDROID keySize, const void *value, EGLsizeiANDROID valueSize);
typedef EGLsizeiANDROID (*EGLGetBlobFuncANDROID) (const void *key, EGLsizeiANDROID keySize, void *value, EGLsizeiANDROID valueSize);
typedef void (EGLAPIENTRYP PFNEGLSETBLOBCACHEFUNCSANDROIDPROC) (EGLDisplay dpy, EGLSetBlobFuncANDROID set, EGLGetBlobFuncANDROID get);
#ifdef EGL_EGLEXT_PROTOTYPES
EGLAPI void EGLAPIENTRY eglSetBlobCacheFuncsANDROID (EGLDisplay dpy, EGLSetBlobFuncANDROID set, EGLGetBlobFuncANDROID get);
#endif
#endif /* EGL_ANDROID_blob_cache */
#ifndef EGL_ANDROID_framebuffer_target
#define EGL_ANDROID_framebuffer_target 1
#define EGL_FRAMEBUFFER_TARGET_ANDROID 0x3147
#endif /* EGL_ANDROID_framebuffer_target */
#ifndef EGL_ANDROID_image_native_buffer
#define EGL_ANDROID_image_native_buffer 1
#define EGL_NATIVE_BUFFER_ANDROID 0x3140
#endif /* EGL_ANDROID_image_native_buffer */
#ifndef EGL_ANDROID_native_fence_sync
#define EGL_ANDROID_native_fence_sync 1
#define EGL_SYNC_NATIVE_FENCE_ANDROID 0x3144
#define EGL_SYNC_NATIVE_FENCE_FD_ANDROID 0x3145
#define EGL_SYNC_NATIVE_FENCE_SIGNALED_ANDROID 0x3146
#define EGL_NO_NATIVE_FENCE_FD_ANDROID -1
typedef EGLint (EGLAPIENTRYP PFNEGLDUPNATIVEFENCEFDANDROIDPROC) (EGLDisplay dpy, EGLSyncKHR sync);
#ifdef EGL_EGLEXT_PROTOTYPES
EGLAPI EGLint EGLAPIENTRY eglDupNativeFenceFDANDROID (EGLDisplay dpy, EGLSyncKHR sync);
#endif
#endif /* EGL_ANDROID_native_fence_sync */
#ifndef EGL_ANDROID_recordable
#define EGL_ANDROID_recordable 1
#define EGL_RECORDABLE_ANDROID 0x3142
#endif /* EGL_ANDROID_recordable */
#ifndef EGL_ANGLE_d3d_share_handle_client_buffer
#define EGL_ANGLE_d3d_share_handle_client_buffer 1
#define EGL_D3D_TEXTURE_2D_SHARE_HANDLE_ANGLE 0x3200
#endif /* EGL_ANGLE_d3d_share_handle_client_buffer */
#ifndef EGL_ANGLE_query_surface_pointer
#define EGL_ANGLE_query_surface_pointer 1
typedef EGLBoolean (EGLAPIENTRYP PFNEGLQUERYSURFACEPOINTERANGLEPROC) (EGLDisplay dpy, EGLSurface surface, EGLint attribute, void **value);
#ifdef EGL_EGLEXT_PROTOTYPES
EGLAPI EGLBoolean EGLAPIENTRY eglQuerySurfacePointerANGLE (EGLDisplay dpy, EGLSurface surface, EGLint attribute, void **value);
#endif
#endif /* EGL_ANGLE_query_surface_pointer */
#ifndef EGL_ANGLE_surface_d3d_texture_2d_share_handle
#define EGL_ANGLE_surface_d3d_texture_2d_share_handle 1
#endif /* EGL_ANGLE_surface_d3d_texture_2d_share_handle */
#ifndef EGL_ANGLE_window_fixed_size
#define EGL_ANGLE_window_fixed_size 1
#define EGL_FIXED_SIZE_ANGLE 0x3201
#endif /* EGL_ANGLE_window_fixed_size */
#ifndef EGL_ARM_pixmap_multisample_discard
#define EGL_ARM_pixmap_multisample_discard 1
#define EGL_DISCARD_SAMPLES_ARM 0x3286
#endif /* EGL_ARM_pixmap_multisample_discard */
#ifndef EGL_EXT_buffer_age
#define EGL_EXT_buffer_age 1
#define EGL_BUFFER_AGE_EXT 0x313D
#endif /* EGL_EXT_buffer_age */
#ifndef EGL_EXT_client_extensions
#define EGL_EXT_client_extensions 1
#endif /* EGL_EXT_client_extensions */
#ifndef EGL_EXT_create_context_robustness
#define EGL_EXT_create_context_robustness 1
#define EGL_CONTEXT_OPENGL_ROBUST_ACCESS_EXT 0x30BF
#define EGL_CONTEXT_OPENGL_RESET_NOTIFICATION_STRATEGY_EXT 0x3138
#define EGL_NO_RESET_NOTIFICATION_EXT 0x31BE
#define EGL_LOSE_CONTEXT_ON_RESET_EXT 0x31BF
#endif /* EGL_EXT_create_context_robustness */
#ifndef EGL_EXT_device_base
#define EGL_EXT_device_base 1
typedef void *EGLDeviceEXT;
#define EGL_NO_DEVICE_EXT ((EGLDeviceEXT)(0))
#define EGL_BAD_DEVICE_EXT 0x322B
#define EGL_DEVICE_EXT 0x322C
typedef EGLBoolean (EGLAPIENTRYP PFNEGLQUERYDEVICEATTRIBEXTPROC) (EGLDeviceEXT device, EGLint attribute, EGLAttrib *value);
typedef const char *(EGLAPIENTRYP PFNEGLQUERYDEVICESTRINGEXTPROC) (EGLDeviceEXT device, EGLint name);
typedef EGLBoolean (EGLAPIENTRYP PFNEGLQUERYDEVICESEXTPROC) (EGLint max_devices, EGLDeviceEXT *devices, EGLint *num_devices);
typedef EGLBoolean (EGLAPIENTRYP PFNEGLQUERYDISPLAYATTRIBEXTPROC) (EGLDisplay dpy, EGLint attribute, EGLAttrib *value);
#ifdef EGL_EGLEXT_PROTOTYPES
EGLAPI EGLBoolean EGLAPIENTRY eglQueryDeviceAttribEXT (EGLDeviceEXT device, EGLint attribute, EGLAttrib *value);
EGLAPI const char *EGLAPIENTRY eglQueryDeviceStringEXT (EGLDeviceEXT device, EGLint name);
EGLAPI EGLBoolean EGLAPIENTRY eglQueryDevicesEXT (EGLint max_devices, EGLDeviceEXT *devices, EGLint *num_devices);
EGLAPI EGLBoolean EGLAPIENTRY eglQueryDisplayAttribEXT (EGLDisplay dpy, EGLint attribute, EGLAttrib *value);
#endif
#endif /* EGL_EXT_device_base */
#ifndef EGL_EXT_device_drm
#define EGL_EXT_device_drm 1
#define EGL_DRM_DEVICE_FILE_EXT 0x3233
#endif /* EGL_EXT_device_drm */
#ifndef EGL_EXT_device_openwf
#define EGL_EXT_device_openwf 1
#define EGL_OPENWF_DEVICE_ID_EXT 0x3237
#endif /* EGL_EXT_device_openwf */
#ifndef EGL_EXT_image_dma_buf_import
#define EGL_EXT_image_dma_buf_import 1
#define EGL_LINUX_DMA_BUF_EXT 0x3270
#define EGL_LINUX_DRM_FOURCC_EXT 0x3271
#define EGL_DMA_BUF_PLANE0_FD_EXT 0x3272
#define EGL_DMA_BUF_PLANE0_OFFSET_EXT 0x3273
#define EGL_DMA_BUF_PLANE0_PITCH_EXT 0x3274
#define EGL_DMA_BUF_PLANE1_FD_EXT 0x3275
#define EGL_DMA_BUF_PLANE1_OFFSET_EXT 0x3276
#define EGL_DMA_BUF_PLANE1_PITCH_EXT 0x3277
#define EGL_DMA_BUF_PLANE2_FD_EXT 0x3278
#define EGL_DMA_BUF_PLANE2_OFFSET_EXT 0x3279
#define EGL_DMA_BUF_PLANE2_PITCH_EXT 0x327A
#define EGL_YUV_COLOR_SPACE_HINT_EXT 0x327B
#define EGL_SAMPLE_RANGE_HINT_EXT 0x327C
#define EGL_YUV_CHROMA_HORIZONTAL_SITING_HINT_EXT 0x327D
#define EGL_YUV_CHROMA_VERTICAL_SITING_HINT_EXT 0x327E
#define EGL_ITU_REC601_EXT 0x327F
#define EGL_ITU_REC709_EXT 0x3280
#define EGL_ITU_REC2020_EXT 0x3281
#define EGL_YUV_FULL_RANGE_EXT 0x3282
#define EGL_YUV_NARROW_RANGE_EXT 0x3283
#define EGL_YUV_CHROMA_SITING_0_EXT 0x3284
#define EGL_YUV_CHROMA_SITING_0_5_EXT 0x3285
#endif /* EGL_EXT_image_dma_buf_import */
#ifndef EGL_EXT_multiview_window
#define EGL_EXT_multiview_window 1
#define EGL_MULTIVIEW_VIEW_COUNT_EXT 0x3134
#endif /* EGL_EXT_multiview_window */
#ifndef EGL_EXT_output_base
#define EGL_EXT_output_base 1
typedef void *EGLOutputLayerEXT;
typedef void *EGLOutputPortEXT;
#define EGL_NO_OUTPUT_LAYER_EXT ((EGLOutputLayerEXT)0)
#define EGL_NO_OUTPUT_PORT_EXT ((EGLOutputPortEXT)0)
#define EGL_BAD_OUTPUT_LAYER_EXT 0x322D
#define EGL_BAD_OUTPUT_PORT_EXT 0x322E
#define EGL_SWAP_INTERVAL_EXT 0x322F
typedef EGLBoolean (EGLAPIENTRYP PFNEGLGETOUTPUTLAYERSEXTPROC) (EGLDisplay dpy, const EGLAttrib *attrib_list, EGLOutputLayerEXT *layers, EGLint max_layers, EGLint *num_layers);
typedef EGLBoolean (EGLAPIENTRYP PFNEGLGETOUTPUTPORTSEXTPROC) (EGLDisplay dpy, const EGLAttrib *attrib_list, EGLOutputPortEXT *ports, EGLint max_ports, EGLint *num_ports);
typedef EGLBoolean (EGLAPIENTRYP PFNEGLOUTPUTLAYERATTRIBEXTPROC) (EGLDisplay dpy, EGLOutputLayerEXT layer, EGLint attribute, EGLAttrib value);
typedef EGLBoolean (EGLAPIENTRYP PFNEGLQUERYOUTPUTLAYERATTRIBEXTPROC) (EGLDisplay dpy, EGLOutputLayerEXT layer, EGLint attribute, EGLAttrib *value);
typedef const char *(EGLAPIENTRYP PFNEGLQUERYOUTPUTLAYERSTRINGEXTPROC) (EGLDisplay dpy, EGLOutputLayerEXT layer, EGLint name);
typedef EGLBoolean (EGLAPIENTRYP PFNEGLOUTPUTPORTATTRIBEXTPROC) (EGLDisplay dpy, EGLOutputPortEXT port, EGLint attribute, EGLAttrib value);
typedef EGLBoolean (EGLAPIENTRYP PFNEGLQUERYOUTPUTPORTATTRIBEXTPROC) (EGLDisplay dpy, EGLOutputPortEXT port, EGLint attribute, EGLAttrib *value);
typedef const char *(EGLAPIENTRYP PFNEGLQUERYOUTPUTPORTSTRINGEXTPROC) (EGLDisplay dpy, EGLOutputPortEXT port, EGLint name);
#ifdef EGL_EGLEXT_PROTOTYPES
EGLAPI EGLBoolean EGLAPIENTRY eglGetOutputLayersEXT (EGLDisplay dpy, const EGLAttrib *attrib_list, EGLOutputLayerEXT *layers, EGLint max_layers, EGLint *num_layers);
EGLAPI EGLBoolean EGLAPIENTRY eglGetOutputPortsEXT (EGLDisplay dpy, const EGLAttrib *attrib_list, EGLOutputPortEXT *ports, EGLint max_ports, EGLint *num_ports);
EGLAPI EGLBoolean EGLAPIENTRY eglOutputLayerAttribEXT (EGLDisplay dpy, EGLOutputLayerEXT layer, EGLint attribute, EGLAttrib value);
EGLAPI EGLBoolean EGLAPIENTRY eglQueryOutputLayerAttribEXT (EGLDisplay dpy, EGLOutputLayerEXT layer, EGLint attribute, EGLAttrib *value);
EGLAPI const char *EGLAPIENTRY eglQueryOutputLayerStringEXT (EGLDisplay dpy, EGLOutputLayerEXT layer, EGLint name);
EGLAPI EGLBoolean EGLAPIENTRY eglOutputPortAttribEXT (EGLDisplay dpy, EGLOutputPortEXT port, EGLint attribute, EGLAttrib value);
EGLAPI EGLBoolean EGLAPIENTRY eglQueryOutputPortAttribEXT (EGLDisplay dpy, EGLOutputPortEXT port, EGLint attribute, EGLAttrib *value);
EGLAPI const char *EGLAPIENTRY eglQueryOutputPortStringEXT (EGLDisplay dpy, EGLOutputPortEXT port, EGLint name);
#endif
#endif /* EGL_EXT_output_base */
#ifndef EGL_EXT_output_drm
#define EGL_EXT_output_drm 1
#define EGL_DRM_CRTC_EXT 0x3234
#define EGL_DRM_PLANE_EXT 0x3235
#define EGL_DRM_CONNECTOR_EXT 0x3236
#endif /* EGL_EXT_output_drm */
#ifndef EGL_EXT_output_openwf
#define EGL_EXT_output_openwf 1
#define EGL_OPENWF_PIPELINE_ID_EXT 0x3238
#define EGL_OPENWF_PORT_ID_EXT 0x3239
#endif /* EGL_EXT_output_openwf */
#ifndef EGL_EXT_platform_base
#define EGL_EXT_platform_base 1
typedef EGLDisplay (EGLAPIENTRYP PFNEGLGETPLATFORMDISPLAYEXTPROC) (EGLenum platform, void *native_display, const EGLint *attrib_list);
typedef EGLSurface (EGLAPIENTRYP PFNEGLCREATEPLATFORMWINDOWSURFACEEXTPROC) (EGLDisplay dpy, EGLConfig config, void *native_window, const EGLint *attrib_list);
typedef EGLSurface (EGLAPIENTRYP PFNEGLCREATEPLATFORMPIXMAPSURFACEEXTPROC) (EGLDisplay dpy, EGLConfig config, void *native_pixmap, const EGLint *attrib_list);
#ifdef EGL_EGLEXT_PROTOTYPES
EGLAPI EGLDisplay EGLAPIENTRY eglGetPlatformDisplayEXT (EGLenum platform, void *native_display, const EGLint *attrib_list);
EGLAPI EGLSurface EGLAPIENTRY eglCreatePlatformWindowSurfaceEXT (EGLDisplay dpy, EGLConfig config, void *native_window, const EGLint *attrib_list);
EGLAPI EGLSurface EGLAPIENTRY eglCreatePlatformPixmapSurfaceEXT (EGLDisplay dpy, EGLConfig config, void *native_pixmap, const EGLint *attrib_list);
#endif
#endif /* EGL_EXT_platform_base */
#ifndef EGL_EXT_platform_device
#define EGL_EXT_platform_device 1
#define EGL_PLATFORM_DEVICE_EXT 0x313F
#endif /* EGL_EXT_platform_device */
#ifndef EGL_EXT_platform_wayland
#define EGL_EXT_platform_wayland 1
#define EGL_PLATFORM_WAYLAND_EXT 0x31D8
#endif /* EGL_EXT_platform_wayland */
#ifndef EGL_EXT_platform_x11
#define EGL_EXT_platform_x11 1
#define EGL_PLATFORM_X11_EXT 0x31D5
#define EGL_PLATFORM_X11_SCREEN_EXT 0x31D6
#endif /* EGL_EXT_platform_x11 */
#ifndef EGL_EXT_protected_surface
#define EGL_EXT_protected_surface 1
#define EGL_PROTECTED_CONTENT_EXT 0x32C0
#endif /* EGL_EXT_protected_surface */
#ifndef EGL_EXT_stream_consumer_egloutput
#define EGL_EXT_stream_consumer_egloutput 1
typedef EGLBoolean (EGLAPIENTRYP PFNEGLSTREAMCONSUMEROUTPUTEXTPROC) (EGLDisplay dpy, EGLStreamKHR stream, EGLOutputLayerEXT layer);
#ifdef EGL_EGLEXT_PROTOTYPES
EGLAPI EGLBoolean EGLAPIENTRY eglStreamConsumerOutputEXT (EGLDisplay dpy, EGLStreamKHR stream, EGLOutputLayerEXT layer);
#endif
#endif /* EGL_EXT_stream_consumer_egloutput */
#ifndef EGL_EXT_swap_buffers_with_damage
#define EGL_EXT_swap_buffers_with_damage 1
typedef EGLBoolean (EGLAPIENTRYP PFNEGLSWAPBUFFERSWITHDAMAGEEXTPROC) (EGLDisplay dpy, EGLSurface surface, EGLint *rects, EGLint n_rects);
#ifdef EGL_EGLEXT_PROTOTYPES
EGLAPI EGLBoolean EGLAPIENTRY eglSwapBuffersWithDamageEXT (EGLDisplay dpy, EGLSurface surface, EGLint *rects, EGLint n_rects);
#endif
#endif /* EGL_EXT_swap_buffers_with_damage */
#ifndef EGL_HI_clientpixmap
#define EGL_HI_clientpixmap 1
struct EGLClientPixmapHI {
void *pData;
EGLint iWidth;
EGLint iHeight;
EGLint iStride;
};
#define EGL_CLIENT_PIXMAP_POINTER_HI 0x8F74
typedef EGLSurface (EGLAPIENTRYP PFNEGLCREATEPIXMAPSURFACEHIPROC) (EGLDisplay dpy, EGLConfig config, struct EGLClientPixmapHI *pixmap);
#ifdef EGL_EGLEXT_PROTOTYPES
EGLAPI EGLSurface EGLAPIENTRY eglCreatePixmapSurfaceHI (EGLDisplay dpy, EGLConfig config, struct EGLClientPixmapHI *pixmap);
#endif
#endif /* EGL_HI_clientpixmap */
#ifndef EGL_HI_colorformats
#define EGL_HI_colorformats 1
#define EGL_COLOR_FORMAT_HI 0x8F70
#define EGL_COLOR_RGB_HI 0x8F71
#define EGL_COLOR_RGBA_HI 0x8F72
#define EGL_COLOR_ARGB_HI 0x8F73
#endif /* EGL_HI_colorformats */
#ifndef EGL_IMG_context_priority
#define EGL_IMG_context_priority 1
#define EGL_CONTEXT_PRIORITY_LEVEL_IMG 0x3100
#define EGL_CONTEXT_PRIORITY_HIGH_IMG 0x3101
#define EGL_CONTEXT_PRIORITY_MEDIUM_IMG 0x3102
#define EGL_CONTEXT_PRIORITY_LOW_IMG 0x3103
#endif /* EGL_IMG_context_priority */
#ifndef EGL_MESA_drm_image
#define EGL_MESA_drm_image 1
#define EGL_DRM_BUFFER_FORMAT_MESA 0x31D0
#define EGL_DRM_BUFFER_USE_MESA 0x31D1
#define EGL_DRM_BUFFER_FORMAT_ARGB32_MESA 0x31D2
#define EGL_DRM_BUFFER_MESA 0x31D3
#define EGL_DRM_BUFFER_STRIDE_MESA 0x31D4
#define EGL_DRM_BUFFER_USE_SCANOUT_MESA 0x00000001
#define EGL_DRM_BUFFER_USE_SHARE_MESA 0x00000002
typedef EGLImageKHR (EGLAPIENTRYP PFNEGLCREATEDRMIMAGEMESAPROC) (EGLDisplay dpy, const EGLint *attrib_list);
typedef EGLBoolean (EGLAPIENTRYP PFNEGLEXPORTDRMIMAGEMESAPROC) (EGLDisplay dpy, EGLImageKHR image, EGLint *name, EGLint *handle, EGLint *stride);
#ifdef EGL_EGLEXT_PROTOTYPES
EGLAPI EGLImageKHR EGLAPIENTRY eglCreateDRMImageMESA (EGLDisplay dpy, const EGLint *attrib_list);
EGLAPI EGLBoolean EGLAPIENTRY eglExportDRMImageMESA (EGLDisplay dpy, EGLImageKHR image, EGLint *name, EGLint *handle, EGLint *stride);
#endif
#endif /* EGL_MESA_drm_image */
#ifndef EGL_MESA_platform_gbm
#define EGL_MESA_platform_gbm 1
#define EGL_PLATFORM_GBM_MESA 0x31D7
#endif /* EGL_MESA_platform_gbm */
#ifndef EGL_NOK_swap_region
#define EGL_NOK_swap_region 1
typedef EGLBoolean (EGLAPIENTRYP PFNEGLSWAPBUFFERSREGIONNOKPROC) (EGLDisplay dpy, EGLSurface surface, EGLint numRects, const EGLint *rects);
#ifdef EGL_EGLEXT_PROTOTYPES
EGLAPI EGLBoolean EGLAPIENTRY eglSwapBuffersRegionNOK (EGLDisplay dpy, EGLSurface surface, EGLint numRects, const EGLint *rects);
#endif
#endif /* EGL_NOK_swap_region */
#ifndef EGL_NOK_swap_region2
#define EGL_NOK_swap_region2 1
typedef EGLBoolean (EGLAPIENTRYP PFNEGLSWAPBUFFERSREGION2NOKPROC) (EGLDisplay dpy, EGLSurface surface, EGLint numRects, const EGLint *rects);
#ifdef EGL_EGLEXT_PROTOTYPES
EGLAPI EGLBoolean EGLAPIENTRY eglSwapBuffersRegion2NOK (EGLDisplay dpy, EGLSurface surface, EGLint numRects, const EGLint *rects);
#endif
#endif /* EGL_NOK_swap_region2 */
#ifndef EGL_NOK_texture_from_pixmap
#define EGL_NOK_texture_from_pixmap 1
#define EGL_Y_INVERTED_NOK 0x307F
#endif /* EGL_NOK_texture_from_pixmap */
#ifndef EGL_NV_3dvision_surface
#define EGL_NV_3dvision_surface 1
#define EGL_AUTO_STEREO_NV 0x3136
#endif /* EGL_NV_3dvision_surface */
#ifndef EGL_NV_coverage_sample
#define EGL_NV_coverage_sample 1
#define EGL_COVERAGE_BUFFERS_NV 0x30E0
#define EGL_COVERAGE_SAMPLES_NV 0x30E1
#endif /* EGL_NV_coverage_sample */
#ifndef EGL_NV_coverage_sample_resolve
#define EGL_NV_coverage_sample_resolve 1
#define EGL_COVERAGE_SAMPLE_RESOLVE_NV 0x3131
#define EGL_COVERAGE_SAMPLE_RESOLVE_DEFAULT_NV 0x3132
#define EGL_COVERAGE_SAMPLE_RESOLVE_NONE_NV 0x3133
#endif /* EGL_NV_coverage_sample_resolve */
#ifndef EGL_NV_cuda_event
#define EGL_NV_cuda_event 1
#define EGL_CUDA_EVENT_HANDLE_NV 0x323B
#define EGL_SYNC_CUDA_EVENT_NV 0x323C
#define EGL_SYNC_CUDA_EVENT_COMPLETE_NV 0x323D
#endif /* EGL_NV_cuda_event */
#ifndef EGL_NV_depth_nonlinear
#define EGL_NV_depth_nonlinear 1
#define EGL_DEPTH_ENCODING_NV 0x30E2
#define EGL_DEPTH_ENCODING_NONE_NV 0
#define EGL_DEPTH_ENCODING_NONLINEAR_NV 0x30E3
#endif /* EGL_NV_depth_nonlinear */
#ifndef EGL_NV_device_cuda
#define EGL_NV_device_cuda 1
#define EGL_CUDA_DEVICE_NV 0x323A
#endif /* EGL_NV_device_cuda */
#ifndef EGL_NV_native_query
#define EGL_NV_native_query 1
typedef EGLBoolean (EGLAPIENTRYP PFNEGLQUERYNATIVEDISPLAYNVPROC) (EGLDisplay dpy, EGLNativeDisplayType *display_id);
typedef EGLBoolean (EGLAPIENTRYP PFNEGLQUERYNATIVEWINDOWNVPROC) (EGLDisplay dpy, EGLSurface surf, EGLNativeWindowType *window);
typedef EGLBoolean (EGLAPIENTRYP PFNEGLQUERYNATIVEPIXMAPNVPROC) (EGLDisplay dpy, EGLSurface surf, EGLNativePixmapType *pixmap);
#ifdef EGL_EGLEXT_PROTOTYPES
EGLAPI EGLBoolean EGLAPIENTRY eglQueryNativeDisplayNV (EGLDisplay dpy, EGLNativeDisplayType *display_id);
EGLAPI EGLBoolean EGLAPIENTRY eglQueryNativeWindowNV (EGLDisplay dpy, EGLSurface surf, EGLNativeWindowType *window);
EGLAPI EGLBoolean EGLAPIENTRY eglQueryNativePixmapNV (EGLDisplay dpy, EGLSurface surf, EGLNativePixmapType *pixmap);
#endif
#endif /* EGL_NV_native_query */
#ifndef EGL_NV_post_convert_rounding
#define EGL_NV_post_convert_rounding 1
#endif /* EGL_NV_post_convert_rounding */
#ifndef EGL_NV_post_sub_buffer
#define EGL_NV_post_sub_buffer 1
#define EGL_POST_SUB_BUFFER_SUPPORTED_NV 0x30BE
typedef EGLBoolean (EGLAPIENTRYP PFNEGLPOSTSUBBUFFERNVPROC) (EGLDisplay dpy, EGLSurface surface, EGLint x, EGLint y, EGLint width, EGLint height);
#ifdef EGL_EGLEXT_PROTOTYPES
EGLAPI EGLBoolean EGLAPIENTRY eglPostSubBufferNV (EGLDisplay dpy, EGLSurface surface, EGLint x, EGLint y, EGLint width, EGLint height);
#endif
#endif /* EGL_NV_post_sub_buffer */
#ifndef EGL_NV_stream_sync
#define EGL_NV_stream_sync 1
#define EGL_SYNC_NEW_FRAME_NV 0x321F
typedef EGLSyncKHR (EGLAPIENTRYP PFNEGLCREATESTREAMSYNCNVPROC) (EGLDisplay dpy, EGLStreamKHR stream, EGLenum type, const EGLint *attrib_list);
#ifdef EGL_EGLEXT_PROTOTYPES
EGLAPI EGLSyncKHR EGLAPIENTRY eglCreateStreamSyncNV (EGLDisplay dpy, EGLStreamKHR stream, EGLenum type, const EGLint *attrib_list);
#endif
#endif /* EGL_NV_stream_sync */
#ifndef EGL_NV_sync
#define EGL_NV_sync 1
typedef void *EGLSyncNV;
typedef khronos_utime_nanoseconds_t EGLTimeNV;
#ifdef KHRONOS_SUPPORT_INT64
#define EGL_SYNC_PRIOR_COMMANDS_COMPLETE_NV 0x30E6
#define EGL_SYNC_STATUS_NV 0x30E7
#define EGL_SIGNALED_NV 0x30E8
#define EGL_UNSIGNALED_NV 0x30E9
#define EGL_SYNC_FLUSH_COMMANDS_BIT_NV 0x0001
#define EGL_FOREVER_NV 0xFFFFFFFFFFFFFFFFull
#define EGL_ALREADY_SIGNALED_NV 0x30EA
#define EGL_TIMEOUT_EXPIRED_NV 0x30EB
#define EGL_CONDITION_SATISFIED_NV 0x30EC
#define EGL_SYNC_TYPE_NV 0x30ED
#define EGL_SYNC_CONDITION_NV 0x30EE
#define EGL_SYNC_FENCE_NV 0x30EF
#define EGL_NO_SYNC_NV ((EGLSyncNV)0)
typedef EGLSyncNV (EGLAPIENTRYP PFNEGLCREATEFENCESYNCNVPROC) (EGLDisplay dpy, EGLenum condition, const EGLint *attrib_list);
typedef EGLBoolean (EGLAPIENTRYP PFNEGLDESTROYSYNCNVPROC) (EGLSyncNV sync);
typedef EGLBoolean (EGLAPIENTRYP PFNEGLFENCENVPROC) (EGLSyncNV sync);
typedef EGLint (EGLAPIENTRYP PFNEGLCLIENTWAITSYNCNVPROC) (EGLSyncNV sync, EGLint flags, EGLTimeNV timeout);
typedef EGLBoolean (EGLAPIENTRYP PFNEGLSIGNALSYNCNVPROC) (EGLSyncNV sync, EGLenum mode);
typedef EGLBoolean (EGLAPIENTRYP PFNEGLGETSYNCATTRIBNVPROC) (EGLSyncNV sync, EGLint attribute, EGLint *value);
#ifdef EGL_EGLEXT_PROTOTYPES
EGLAPI EGLSyncNV EGLAPIENTRY eglCreateFenceSyncNV (EGLDisplay dpy, EGLenum condition, const EGLint *attrib_list);
EGLAPI EGLBoolean EGLAPIENTRY eglDestroySyncNV (EGLSyncNV sync);
EGLAPI EGLBoolean EGLAPIENTRY eglFenceNV (EGLSyncNV sync);
EGLAPI EGLint EGLAPIENTRY eglClientWaitSyncNV (EGLSyncNV sync, EGLint flags, EGLTimeNV timeout);
EGLAPI EGLBoolean EGLAPIENTRY eglSignalSyncNV (EGLSyncNV sync, EGLenum mode);
EGLAPI EGLBoolean EGLAPIENTRY eglGetSyncAttribNV (EGLSyncNV sync, EGLint attribute, EGLint *value);
#endif
#endif /* KHRONOS_SUPPORT_INT64 */
#endif /* EGL_NV_sync */
#ifndef EGL_NV_system_time
#define EGL_NV_system_time 1
typedef khronos_utime_nanoseconds_t EGLuint64NV;
#ifdef KHRONOS_SUPPORT_INT64
typedef EGLuint64NV (EGLAPIENTRYP PFNEGLGETSYSTEMTIMEFREQUENCYNVPROC) (void);
typedef EGLuint64NV (EGLAPIENTRYP PFNEGLGETSYSTEMTIMENVPROC) (void);
#ifdef EGL_EGLEXT_PROTOTYPES
EGLAPI EGLuint64NV EGLAPIENTRY eglGetSystemTimeFrequencyNV (void);
EGLAPI EGLuint64NV EGLAPIENTRY eglGetSystemTimeNV (void);
#endif
#endif /* KHRONOS_SUPPORT_INT64 */
#endif /* EGL_NV_system_time */
#ifndef EGL_TIZEN_image_native_buffer
#define EGL_TIZEN_image_native_buffer 1
#define EGL_NATIVE_BUFFER_TIZEN 0x32A0
#endif /* EGL_TIZEN_image_native_buffer */
#ifndef EGL_TIZEN_image_native_surface
#define EGL_TIZEN_image_native_surface 1
#define EGL_NATIVE_SURFACE_TIZEN 0x32A1
#endif /* EGL_TIZEN_image_native_surface */
#ifdef __cplusplus
}
#endif
#endif

View file

@ -1,125 +0,0 @@
#ifndef __eglplatform_h_
#define __eglplatform_h_
/*
** Copyright (c) 2007-2013 The Khronos Group Inc.
**
** Permission is hereby granted, free of charge, to any person obtaining a
** copy of this software and/or associated documentation files (the
** "Materials"), to deal in the Materials without restriction, including
** without limitation the rights to use, copy, modify, merge, publish,
** distribute, sublicense, and/or sell copies of the Materials, and to
** permit persons to whom the Materials are furnished to do so, subject to
** the following conditions:
**
** The above copyright notice and this permission notice shall be included
** in all copies or substantial portions of the Materials.
**
** THE MATERIALS ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
** EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
** MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
** IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
** CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
** TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
** MATERIALS OR THE USE OR OTHER DEALINGS IN THE MATERIALS.
*/
/* Platform-specific types and definitions for egl.h
* $Revision: 23432 $ on $Date: 2013-10-09 00:57:24 -0700 (Wed, 09 Oct 2013) $
*
* Adopters may modify khrplatform.h and this file to suit their platform.
* You are encouraged to submit all modifications to the Khronos group so that
* they can be included in future versions of this file. Please submit changes
* by sending them to the public Khronos Bugzilla (http://khronos.org/bugzilla)
* by filing a bug against product "EGL" component "Registry".
*/
#include <KHR/khrplatform.h>
/* Macros used in EGL function prototype declarations.
*
* EGL functions should be prototyped as:
*
* EGLAPI return-type EGLAPIENTRY eglFunction(arguments);
* typedef return-type (EXPAPIENTRYP PFNEGLFUNCTIONPROC) (arguments);
*
* KHRONOS_APICALL and KHRONOS_APIENTRY are defined in KHR/khrplatform.h
*/
#ifndef EGLAPI
#define EGLAPI KHRONOS_APICALL
#endif
#ifndef EGLAPIENTRY
#define EGLAPIENTRY KHRONOS_APIENTRY
#endif
#define EGLAPIENTRYP EGLAPIENTRY*
/* The types NativeDisplayType, NativeWindowType, and NativePixmapType
* are aliases of window-system-dependent types, such as X Display * or
* Windows Device Context. They must be defined in platform-specific
* code below. The EGL-prefixed versions of Native*Type are the same
* types, renamed in EGL 1.3 so all types in the API start with "EGL".
*
* Khronos STRONGLY RECOMMENDS that you use the default definitions
* provided below, since these changes affect both binary and source
* portability of applications using EGL running on different EGL
* implementations.
*/
#if defined(_WIN32) || defined(__VC32__) && !defined(__CYGWIN__) && !defined(__SCITECH_SNAP__) /* Win32 and WinCE */
#ifndef WIN32_LEAN_AND_MEAN
#define WIN32_LEAN_AND_MEAN 1
#endif
#include <windows.h>
typedef HDC EGLNativeDisplayType;
typedef HBITMAP EGLNativePixmapType;
typedef HWND EGLNativeWindowType;
#elif defined(__WINSCW__) || defined(__SYMBIAN32__) /* Symbian */
typedef int EGLNativeDisplayType;
typedef void *EGLNativeWindowType;
typedef void *EGLNativePixmapType;
#elif defined(__ANDROID__) || defined(ANDROID)
#include <android/native_window.h>
struct egl_native_pixmap_t;
typedef struct ANativeWindow* EGLNativeWindowType;
typedef struct egl_native_pixmap_t* EGLNativePixmapType;
typedef void* EGLNativeDisplayType;
#elif defined(__unix__) || defined(__APPLE__)
/* X11 (tentative) */
#include <X11/Xlib.h>
#include <X11/Xutil.h>
typedef Display *EGLNativeDisplayType;
typedef Pixmap EGLNativePixmapType;
typedef Window EGLNativeWindowType;
#else
#error "Platform not recognized"
#endif
/* EGL 1.2 types, renamed for consistency in EGL 1.3 */
typedef EGLNativeDisplayType NativeDisplayType;
typedef EGLNativePixmapType NativePixmapType;
typedef EGLNativeWindowType NativeWindowType;
/* Define EGLint. This must be a signed integral type large enough to contain
* all legal attribute names and values passed into and out of EGL, whether
* their type is boolean, bitmask, enumerant (symbolic constant), integer,
* handle, or other. While in general a 32-bit integer will suffice, if
* handles are 64 bit types, then EGLint should be defined as a signed 64-bit
* integer type.
*/
typedef khronos_int32_t EGLint;
#endif /* __eglplatform_h */

View file

@ -232,6 +232,40 @@ void GLBuffer::Resize(size_t newsize)
}
}
void GLBuffer::GPUDropSync()
{
#if !(USE_GLES2) // Only applicable when running on desktop for now
if (gles.useMappedBuffers && glFenceSync && glClientWaitSync)
{
if (mGLSync != NULL)
{
glDeleteSync(mGLSync);
}
mGLSync = glFenceSync(GL_SYNC_GPU_COMMANDS_COMPLETE, 0);
}
#endif
}
void GLBuffer::GPUWaitSync()
{
#if !(USE_GLES2) // Only applicable when running on desktop for now
if (gles.useMappedBuffers && glFenceSync && glClientWaitSync)
{
GLenum status = glClientWaitSync(mGLSync, GL_SYNC_FLUSH_COMMANDS_BIT, 1000 * 1000 * 50); // Wait for a max of 50ms...
if (status != GL_ALREADY_SIGNALED && status != GL_CONDITION_SATISFIED)
{
//Printf("Error on glClientWaitSync: %d\n", status);
}
glDeleteSync(mGLSync);
mGLSync = NULL;
}
#endif
}
//===========================================================================
//
@ -288,15 +322,11 @@ void GLDataBuffer::BindRange(FRenderState *state, size_t start, size_t length)
{
static_cast<FGLRenderState*>(state)->ApplyViewport(memory + start);
}
else
{
//glBindBufferRange(mUseType, mBindingPoint, mBufferId, start, length);
}
}
void GLDataBuffer::BindBase()
{
//glBindBufferBase(mUseType, mBindingPoint, mBufferId);
}

View file

@ -19,6 +19,7 @@ protected:
int mAllocationSize = 0;
bool mPersistent = false;
bool nomap = true;
GLsync mGLSync = 0;
bool isData = false;
char *memory = nullptr;
@ -32,6 +33,9 @@ protected:
void Resize(size_t newsize) override;
void *Lock(unsigned int size) override;
void Unlock() override;
void GPUDropSync();
void GPUWaitSync();
public:
void Bind();
void Upload(size_t start, size_t end);

View file

@ -240,11 +240,13 @@ void OpenGLFrameBuffer::Swap()
Finish.Reset();
Finish.Clock();
mVertexData->DropSync();
FPSLimit();
SwapBuffers();
mVertexData->NextPipelineBuffer();
mVertexData->WaitSync();
RenderState()->SetVertexBuffer(screen->mVertexData); // Needed for Raze because it does not reset it

View file

@ -92,11 +92,16 @@ bool FGLRenderState::ApplyShader()
{
static const float nulvec[] = { 0.f, 0.f, 0.f, 0.f };
ShaderFlavourData flavour;
// Need to calc light data now in order to select correct shader
float* lightPtr = NULL;
int modLights = 0;
int subLights = 0;
int addLights = 0;
int totalLights = 0;
flavour.hasSpotLight = false;
if (mLightIndex >= 0)
{
@ -120,20 +125,34 @@ bool FGLRenderState::ApplyShader()
if (modLights + subLights + addLights > gles.maxlights)
addLights = gles.maxlights - modLights - subLights;
totalLights = modLights + subLights + addLights;
// Skip passed the first 4 floats so the upload below only contains light data
lightPtr += 4;
float* findSpotsPtr = lightPtr + 11; // The 11th float contains '1' if the light is a spot light, see hw_dynlightdata.cpp
for (int n = 0; n < totalLights; n++)
{
if (*findSpotsPtr > 0) // This is a spot light
{
flavour.hasSpotLight = true;
break;
}
findSpotsPtr += LIGHT_VEC4_NUM * 4;
}
}
ShaderFlavourData flavour;
flavour.textureMode = (mTextureMode == TM_NORMAL && mTempTM == TM_OPAQUE ? TM_OPAQUE : mTextureMode);
int tm = GetTextureModeAndFlags(mTempTM);
flavour.textureMode = tm & 0xffff;
flavour.texFlags = tm >> 16; //Move flags to start of word
if (mTextureClamp && flavour.textureMode == TM_NORMAL) flavour.textureMode = TM_CLAMPY; // fixme. Clamp can now be combined with all modes.
if (flavour.textureMode == -1)
flavour.textureMode = 0;
flavour.texFlags = mTextureModeFlags; if (!mBrightmapEnabled) flavour.texFlags &= ~(TEXF_Brightmap | TEXF_Glowmap);
flavour.texFlags >>= 16; //Move flags to start of word
flavour.blendFlags = (int)(mStreamData.uTextureAddColor.a + 0.01);
@ -198,14 +217,10 @@ bool FGLRenderState::ApplyShader()
if (mHwUniforms)
{
//matrixToGL(mHwUniforms->mProjectionMatrix, activeShader->cur->ProjectionMatrix_index);
activeShader->cur->muProjectionMatrix.Set(&mHwUniforms->mProjectionMatrix);
activeShader->cur->muViewMatrix.Set(&mHwUniforms->mViewMatrix);
activeShader->cur->muNormalViewMatrix.Set(&mHwUniforms->mNormalViewMatrix);
//matrixToGL(mHwUniforms->mViewMatrix, activeShader->cur->ViewMatrix_index);
//matrixToGL(mHwUniforms->mNormalViewMatrix, activeShader->cur->NormalViewMatrix_index);
activeShader->cur->muCameraPos.Set(&mHwUniforms->mCameraPos.X);
activeShader->cur->muClipLine.Set(&mHwUniforms->mClipLine.X);
@ -224,9 +239,6 @@ bool FGLRenderState::ApplyShader()
activeShader->cur->muDesaturation.Set(mStreamData.uDesaturationFactor);
//activeShader->cur->muFogEnabled.Set(fogset);
int f = mTextureModeFlags;
if (!mBrightmapEnabled) f &= ~(TEXF_Brightmap | TEXF_Glowmap);
//activeShader->cur->muTextureMode.Set((mTextureMode == TM_NORMAL && mTempTM == TM_OPAQUE ? TM_OPAQUE : mTextureMode) | f);
activeShader->cur->muLightParms.Set(mLightParms);
activeShader->cur->muFogColor.Set(mStreamData.uFogColor);
activeShader->cur->muObjectColor.Set(mStreamData.uObjectColor);
@ -317,13 +329,9 @@ bool FGLRenderState::ApplyShader()
// Upload the light data
if (mLightIndex >= 0)
{
int totalLights = modLights + subLights + addLights;
// Calculate the total number of vec4s we need
int totalVectors = totalLights * LIGHT_VEC4_NUM;
// TODO!!! If there are too many lights we need to remove some of the lights and modify the data
// At the moment the shader will just try to read off the end of the array...
if (totalVectors > gles.numlightvectors)
totalVectors = gles.numlightvectors;

View file

@ -633,11 +633,11 @@ bool FShader::Load(const char * name, const char * vert_prog_lump_, const char *
char stringbuf[20];
mysnprintf(stringbuf, 20, "texture%d", i);
int tempindex = glGetUniformLocation(shaderData->hShader, stringbuf);
if (tempindex > 0) glUniform1i(tempindex, i - 1);
if (tempindex >= 0) glUniform1i(tempindex, i - 1);
}
int shadowmapindex = glGetUniformLocation(shaderData->hShader, "ShadowMap");
if (shadowmapindex > 0) glUniform1i(shadowmapindex, 16);
if (shadowmapindex >= 0) glUniform1i(shadowmapindex, 16);
glUseProgram(0);
@ -654,13 +654,17 @@ bool FShader::Load(const char * name, const char * vert_prog_lump_, const char *
FShader::~FShader()
{
/*
glDeleteProgram(hShader);
if (hVertProg != 0)
glDeleteShader(hVertProg);
if (hFragProg != 0)
glDeleteShader(hFragProg);
*/
std::map<uint32_t, ShaderVariantData*>::iterator it = variants.begin();
while (it != variants.end())
{
glDeleteProgram(it->second->hShader);
if (it->second->hVertProg != 0)
glDeleteShader(it->second->hVertProg);
if (it->second->hFragProg != 0)
glDeleteShader(it->second->hFragProg);
it++;
}
}
@ -710,14 +714,13 @@ bool FShader::Bind(ShaderFlavourData& flavour)
variantConfig.AppendFormat("#define DEF_NPOT_EMULATION %d\n", flavour.npotEmulation);
#endif
// Printf("Shader: %s, %08x %s", mFragProg2.GetChars(), tag, variantConfig.GetChars());
variantConfig.AppendFormat("#define DEF_HAS_SPOTLIGHT %d\n", flavour.hasSpotLight);
//Printf("Shader: %s, %08x %s", mFragProg2.GetChars(), tag, variantConfig.GetChars());
Load(mName.GetChars(), mVertProg, mFragProg, mFragProg2, mLightProg, mDefinesBase + variantConfig);
if (variants.insert(std::make_pair(tag, cur)).second == false)
{
Printf("ERROR INSERTING");
}
variants.insert(std::make_pair(tag, cur));
}
else
{

View file

@ -275,6 +275,8 @@ public:
#ifdef NPOT_EMULATION
bool npotEmulation;
#endif
bool hasSpotLight;
};
class FShader
@ -417,6 +419,9 @@ public:
#ifdef NPOT_EMULATION
tag |= (flavour.npotEmulation & 1) << 22;
#endif
tag |= (flavour.hasSpotLight & 1) << 23;
return tag;
}

View file

@ -15,6 +15,7 @@ EXTERN_CVAR(Bool, gl_customshader);
PFNGLMAPBUFFERRANGEEXTPROC glMapBufferRange = NULL;
PFNGLUNMAPBUFFEROESPROC glUnmapBuffer = NULL;
#ifdef __ANDROID__
#include <dlfcn.h>
@ -149,7 +150,7 @@ namespace OpenGLESRenderer
Printf("GL_RENDERER: %s\n", glGetString(GL_RENDERER));
Printf("GL_VERSION: %s\n", glGetString(GL_VERSION));
Printf("GL_SHADING_LANGUAGE_VERSION: %s\n", glGetString(GL_SHADING_LANGUAGE_VERSION));
Printf("GL_EXTENSIONS:\n");
Printf(PRINT_LOG, "GL_EXTENSIONS:\n");
for (unsigned i = 0; i < m_Extensions.Size(); i++)
{
Printf(" %s\n", m_Extensions[i].GetChars());

View file

@ -6,7 +6,7 @@
class FRenderState;
#ifdef __ANDROID__
#define HW_MAX_PIPELINE_BUFFERS 8
#define HW_MAX_PIPELINE_BUFFERS 4
#define HW_BLOCK_SSBO 1
#else
// On desktop this is only useful fpr letting the GPU run in parallel with the playsim and for that 2 buffers are enough.

View file

@ -219,6 +219,7 @@ protected:
int mLightIndex;
int mSpecialEffect;
int mTextureMode;
int mTextureClamp;
int mTextureModeFlags;
int mSoftLight;
float mLightParms[4];
@ -259,6 +260,7 @@ public:
mFogColor = 0xffffffff;
mStreamData.uFogColor = mFogColor;
mTextureMode = -1;
mTextureClamp = 0;
mTextureModeFlags = 0;
mStreamData.uDesaturationFactor = 0.0f;
mAlphaThreshold = 0.5f;
@ -344,12 +346,18 @@ public:
mStreamData.uDesaturationFactor = 0.0f;
}
void SetTextureClamp(bool on)
{
if (on) mTextureClamp = TM_CLAMPY;
else mTextureClamp = 0;
}
void SetTextureMode(int mode)
{
mTextureMode = mode;
}
void SetTextureMode(FRenderStyle style, bool clampy = false)
void SetTextureMode(FRenderStyle style)
{
if (style.Flags & STYLEF_RedIsAlpha)
{
@ -363,7 +371,6 @@ public:
{
SetTextureMode(TM_INVERSE);
}
if (clampy) mTextureMode |= TM_CLAMPY;
}
int GetTextureMode()
@ -371,6 +378,14 @@ public:
return mTextureMode;
}
int GetTextureModeAndFlags(int tempTM)
{
int f = mTextureModeFlags;
if (!mBrightmapEnabled) f &= ~(TEXF_Brightmap | TEXF_Glowmap);
if (mTextureClamp) f |= TEXF_ClampY;
return (mTextureMode == TM_NORMAL && tempTM == TM_OPAQUE ? TM_OPAQUE : mTextureMode) | f;
}
void EnableTexture(bool on)
{
mTextureEnabled = on;

View file

@ -287,7 +287,7 @@ void PolyRenderState::Apply()
PolyPushConstants constants;
constants.uFogEnabled = fogset;
constants.uTextureMode = (mTextureMode == TM_NORMAL && mTempTM == TM_OPAQUE ? TM_OPAQUE : mTextureMode);
constants.uTextureMode = GetTextureModeAndFlags(mTempTM);
constants.uLightDist = mLightParms[0];
constants.uLightFactor = mLightParms[1];
constants.uFogDensity = mLightParms[2];

View file

@ -371,9 +371,7 @@ void VkRenderState::ApplyPushConstants()
tempTM = TM_OPAQUE;
mPushConstants.uFogEnabled = fogset;
int f = mTextureModeFlags;
if (!mBrightmapEnabled) f &= ~(TEXF_Brightmap|TEXF_Glowmap);
mPushConstants.uTextureMode = (mTextureMode == TM_NORMAL && tempTM == TM_OPAQUE ? TM_OPAQUE : mTextureMode) | f;
mPushConstants.uTextureMode = GetTextureModeAndFlags(tempTM);
mPushConstants.uLightDist = mLightParms[0];
mPushConstants.uLightFactor = mLightParms[1];
mPushConstants.uFogDensity = mLightParms[2];

View file

@ -92,6 +92,7 @@ enum texflags
TEXF_Brightmap = 0x10000,
TEXF_Detailmap = 0x20000,
TEXF_Glowmap = 0x40000,
TEXF_ClampY = 0x80000,
};

View file

@ -1,4 +1,5 @@
layout(location = 0) in vec4 vTexCoord;
layout(location = 1) in vec4 vColor;
layout(location = 2) in vec4 pixelpos;
@ -44,6 +45,7 @@ vec2 GetTexCoord();
const int TEXF_Brightmap = 0x10000;
const int TEXF_Detailmap = 0x20000;
const int TEXF_Glowmap = 0x40000;
const int TEXF_ClampY = 0x80000;
//===========================================================================
//
@ -165,7 +167,7 @@ vec4 getTexel(vec2 st)
//
// Apply texture modes
//
switch (uTextureMode & 0xfff)
switch (uTextureMode & 0xffff)
{
case 1: // TM_STENCIL
texel.rgb = vec3(1.0,1.0,1.0);
@ -186,6 +188,13 @@ vec4 getTexel(vec2 st)
break;
}
case 5: // TM_CLAMPY
if (st.t < 0.0 || st.t > 1.0)
{
texel.a = 0.0;
}
break;
case 6: // TM_OPAQUEINVERSE
texel = vec4(1.0-texel.r, 1.0-texel.b, 1.0-texel.g, 1.0);
break;
@ -194,7 +203,8 @@ vec4 getTexel(vec2 st)
return texel;
}
if ((uTextureMode & 0x1000) != 0) // TM_CLAMPY
if ((uTextureMode & TEXF_ClampY) != 0)
{
if (st.t < 0.0 || st.t > 1.0)
{

View file

@ -1,195 +0,0 @@
const float PI = 3.14159265359;
float DistributionGGX(vec3 N, vec3 H, float roughness)
{
float a = roughness * roughness;
float a2 = a * a;
float NdotH = max(dot(N, H), 0.0);
float NdotH2 = NdotH*NdotH;
float nom = a2;
float denom = (NdotH2 * (a2 - 1.0) + 1.0);
denom = PI * denom * denom;
return nom / denom;
}
float GeometrySchlickGGX(float NdotV, float roughness)
{
float r = (roughness + 1.0);
float k = (r * r) / 8.0;
float nom = NdotV;
float denom = NdotV * (1.0 - k) + k;
return nom / denom;
}
float GeometrySmith(vec3 N, vec3 V, vec3 L, float roughness)
{
float NdotV = max(dot(N, V), 0.0);
float NdotL = max(dot(N, L), 0.0);
float ggx2 = GeometrySchlickGGX(NdotV, roughness);
float ggx1 = GeometrySchlickGGX(NdotL, roughness);
return ggx1 * ggx2;
}
vec3 fresnelSchlick(float cosTheta, vec3 F0)
{
return F0 + (1.0 - F0) * pow(1.0 - cosTheta, 5.0);
}
vec3 fresnelSchlickRoughness(float cosTheta, vec3 F0, float roughness)
{
return F0 + (max(vec3(1.0 - roughness), F0) - F0) * pow(1.0 - cosTheta, 5.0);
}
float quadraticDistanceAttenuation(vec4 lightpos)
{
float strength = (1.0 + lightpos.w * lightpos.w * 0.25) * 0.5;
vec3 distVec = lightpos.xyz - pixelpos.xyz;
float attenuation = strength / (1.0 + dot(distVec, distVec));
if (attenuation <= 1.0 / 256.0) return 0.0;
return attenuation;
}
float linearDistanceAttenuation(vec4 lightpos)
{
float lightdistance = distance(lightpos.xyz, pixelpos.xyz);
return clamp((lightpos.w - lightdistance) / lightpos.w, 0.0, 1.0);
}
vec3 ProcessMaterialLight(Material material, vec3 ambientLight)
{
vec3 worldpos = pixelpos.xyz;
vec3 albedo = pow(material.Base.rgb, vec3(2.2)); // sRGB to linear
ambientLight = pow(ambientLight, vec3(2.2));
float metallic = material.Metallic;
float roughness = material.Roughness;
float ao = material.AO;
vec3 N = material.Normal;
vec3 V = normalize(uCameraPos.xyz - worldpos);
vec3 F0 = mix(vec3(0.04), albedo, metallic);
vec3 Lo = uDynLightColor.rgb;
if (uLightIndex >= 0)
{
ivec4 lightRange = ivec4(lights[uLightIndex]) + ivec4(uLightIndex + 1);
if (lightRange.z > lightRange.x)
{
//
// modulated lights
//
for(int i=lightRange.x; i<lightRange.y; i+=4)
{
vec4 lightpos = lights[i];
vec4 lightcolor = lights[i+1];
vec4 lightspot1 = lights[i+2];
vec4 lightspot2 = lights[i+3];
vec3 L = normalize(lightpos.xyz - worldpos);
vec3 H = normalize(V + L);
float attenuation = linearDistanceAttenuation(lightpos);
if (lightspot1.w == 1.0)
attenuation *= spotLightAttenuation(lightpos, lightspot1.xyz, lightspot2.x, lightspot2.y);
if (lightcolor.a < 0.0)
attenuation *= clamp(dot(N, L), 0.0, 1.0); // Sign bit is the attenuated light flag
if (attenuation > 0.0)
{
attenuation *= shadowAttenuation(lightpos, lightcolor.a);
vec3 radiance = lightcolor.rgb * attenuation;
// cook-torrance brdf
float NDF = DistributionGGX(N, H, roughness);
float G = GeometrySmith(N, V, L, roughness);
vec3 F = fresnelSchlick(clamp(dot(H, V), 0.0, 1.0), F0);
vec3 kS = F;
vec3 kD = (vec3(1.0) - kS) * (1.0 - metallic);
vec3 nominator = NDF * G * F;
float denominator = 4.0 * clamp(dot(N, V), 0.0, 1.0) * clamp(dot(N, L), 0.0, 1.0);
vec3 specular = nominator / max(denominator, 0.001);
Lo += (kD * albedo / PI + specular) * radiance;
}
}
//
// subtractive lights
//
for(int i=lightRange.y; i<lightRange.z; i+=4)
{
vec4 lightpos = lights[i];
vec4 lightcolor = lights[i+1];
vec4 lightspot1 = lights[i+2];
vec4 lightspot2 = lights[i+3];
vec3 L = normalize(lightpos.xyz - worldpos);
vec3 H = normalize(V + L);
float attenuation = linearDistanceAttenuation(lightpos);
if (lightspot1.w == 1.0)
attenuation *= spotLightAttenuation(lightpos, lightspot1.xyz, lightspot2.x, lightspot2.y);
if (lightcolor.a < 0.0)
attenuation *= clamp(dot(N, L), 0.0, 1.0); // Sign bit is the attenuated light flag
if (attenuation > 0.0)
{
attenuation *= shadowAttenuation(lightpos, lightcolor.a);
vec3 radiance = lightcolor.rgb * attenuation;
// cook-torrance brdf
float NDF = DistributionGGX(N, H, roughness);
float G = GeometrySmith(N, V, L, roughness);
vec3 F = fresnelSchlick(clamp(dot(H, V), 0.0, 1.0), F0);
vec3 kS = F;
vec3 kD = (vec3(1.0) - kS) * (1.0 - metallic);
vec3 nominator = NDF * G * F;
float denominator = 4.0 * clamp(dot(N, V), 0.0, 1.0) * clamp(dot(N, L), 0.0, 1.0);
vec3 specular = nominator / max(denominator, 0.001);
Lo -= (kD * albedo / PI + specular) * radiance;
}
}
}
}
// Pretend we sampled the sector light level from an irradiance map
vec3 F = fresnelSchlickRoughness(clamp(dot(N, V), 0.0, 1.0), F0, roughness);
vec3 kS = F;
vec3 kD = 1.0 - kS;
vec3 irradiance = ambientLight; // texture(irradianceMap, N).rgb
vec3 diffuse = irradiance * albedo;
//kD *= 1.0 - metallic;
//const float MAX_REFLECTION_LOD = 4.0;
//vec3 prefilteredColor = textureLod(prefilterMap, R, roughness * MAX_REFLECTION_LOD).rgb;
//vec2 envBRDF = texture(brdfLUT, vec2(clamp(dot(N, V), 0.0, 1.0), roughness)).rg;
//vec3 specular = prefilteredColor * (F * envBRDF.x + envBRDF.y);
//vec3 ambient = (kD * diffuse + specular) * ao;
vec3 ambient = (kD * diffuse) * ao;
vec3 color = max(ambient + Lo, vec3(0.0));
// Tonemap (reinhard) and apply sRGB gamma
//color = color / (color + vec3(1.0));
return pow(color, vec3(1.0 / 2.2));
}

View file

@ -1,95 +0,0 @@
vec2 lightAttenuation(int i, vec3 normal, vec3 viewdir, float lightcolorA)
{
vec4 lightpos = lights[i];
vec4 lightspot1 = lights[i+2];
vec4 lightspot2 = lights[i+3];
float lightdistance = distance(lightpos.xyz, pixelpos.xyz);
if (lightpos.w < lightdistance)
return vec2(0.0); // Early out lights touching surface but not this fragment
float attenuation = clamp((lightpos.w - lightdistance) / lightpos.w, 0.0, 1.0);
if (lightspot1.w == 1.0)
attenuation *= spotLightAttenuation(lightpos, lightspot1.xyz, lightspot2.x, lightspot2.y);
vec3 lightdir = normalize(lightpos.xyz - pixelpos.xyz);
if (lightcolorA < 0.0) // Sign bit is the attenuated light flag
attenuation *= clamp(dot(normal, lightdir), 0.0, 1.0);
if (attenuation > 0.0) // Skip shadow map test if possible
attenuation *= shadowAttenuation(lightpos, lightcolorA);
if (attenuation <= 0.0)
return vec2(0.0);
float glossiness = uSpecularMaterial.x;
float specularLevel = uSpecularMaterial.y;
vec3 halfdir = normalize(viewdir + lightdir);
float specAngle = clamp(dot(halfdir, normal), 0.0, 1.0);
float phExp = glossiness * 4.0;
return vec2(attenuation, attenuation * specularLevel * pow(specAngle, phExp));
}
vec3 ProcessMaterialLight(Material material, vec3 color)
{
vec4 dynlight = uDynLightColor;
vec4 specular = vec4(0.0, 0.0, 0.0, 1.0);
vec3 normal = material.Normal;
vec3 viewdir = normalize(uCameraPos.xyz - pixelpos.xyz);
if (uLightIndex >= 0)
{
ivec4 lightRange = ivec4(lights[uLightIndex]) + ivec4(uLightIndex + 1);
if (lightRange.z > lightRange.x)
{
// modulated lights
for(int i=lightRange.x; i<lightRange.y; i+=4)
{
vec4 lightcolor = lights[i+1];
vec2 attenuation = lightAttenuation(i, normal, viewdir, lightcolor.a);
dynlight.rgb += lightcolor.rgb * attenuation.x;
specular.rgb += lightcolor.rgb * attenuation.y;
}
// subtractive lights
for(int i=lightRange.y; i<lightRange.z; i+=4)
{
vec4 lightcolor = lights[i+1];
vec2 attenuation = lightAttenuation(i, normal, viewdir, lightcolor.a);
dynlight.rgb -= lightcolor.rgb * attenuation.x;
specular.rgb -= lightcolor.rgb * attenuation.y;
}
}
}
dynlight.rgb = clamp(color + desaturate(dynlight).rgb, 0.0, 1.4);
specular.rgb = clamp(desaturate(specular).rgb, 0.0, 1.4);
vec3 frag = material.Base.rgb * dynlight.rgb + material.Specular * specular.rgb;
if (uLightIndex >= 0)
{
ivec4 lightRange = ivec4(lights[uLightIndex]) + ivec4(uLightIndex + 1);
if (lightRange.w > lightRange.z)
{
vec4 addlight = vec4(0.0,0.0,0.0,0.0);
// additive lights
for(int i=lightRange.z; i<lightRange.w; i+=4)
{
vec4 lightcolor = lights[i+1];
vec2 attenuation = lightAttenuation(i, normal, viewdir, lightcolor.a);
addlight.rgb += lightcolor.rgb * attenuation.x;
}
frag = clamp(frag + desaturate(addlight).rgb, 0.0, 1.0);
}
}
return frag;
}

View file

@ -1,10 +0,0 @@
layout(location=0) in vec2 TexCoord;
layout(location=0) out vec4 FragColor;
layout(binding=0) uniform sampler2D Bloom;
void main()
{
FragColor = vec4(texture(Bloom, TexCoord).rgb, 0.0);
}

View file

@ -1,12 +0,0 @@
layout(location=0) in vec2 TexCoord;
layout(location=0) out vec4 FragColor;
layout(binding=0) uniform sampler2D SceneTexture;
layout(binding=1) uniform sampler2D ExposureTexture;
void main()
{
float exposureAdjustment = texture(ExposureTexture, vec2(0.5)).x;
vec4 color = texture(SceneTexture, Offset + TexCoord * Scale);
FragColor = max(vec4((color.rgb + vec3(0.001)) * exposureAdjustment - 1.0, 1.0), vec4(0));
}

View file

@ -1,28 +0,0 @@
layout(location=0) in vec2 TexCoord;
layout(location=0) out vec4 FragColor;
layout(binding=0) uniform sampler2D SourceTexture;
void main()
{
#if defined(BLUR_HORIZONTAL)
FragColor =
textureOffset(SourceTexture, TexCoord, ivec2( 0, 0)) * SampleWeights0 +
textureOffset(SourceTexture, TexCoord, ivec2( 1, 0)) * SampleWeights1 +
textureOffset(SourceTexture, TexCoord, ivec2(-1, 0)) * SampleWeights2 +
textureOffset(SourceTexture, TexCoord, ivec2( 2, 0)) * SampleWeights3 +
textureOffset(SourceTexture, TexCoord, ivec2(-2, 0)) * SampleWeights4 +
textureOffset(SourceTexture, TexCoord, ivec2( 3, 0)) * SampleWeights5 +
textureOffset(SourceTexture, TexCoord, ivec2(-3, 0)) * SampleWeights6;
#else
FragColor =
textureOffset(SourceTexture, TexCoord, ivec2(0, 0)) * SampleWeights0 +
textureOffset(SourceTexture, TexCoord, ivec2(0, 1)) * SampleWeights1 +
textureOffset(SourceTexture, TexCoord, ivec2(0,-1)) * SampleWeights2 +
textureOffset(SourceTexture, TexCoord, ivec2(0, 2)) * SampleWeights3 +
textureOffset(SourceTexture, TexCoord, ivec2(0,-2)) * SampleWeights4 +
textureOffset(SourceTexture, TexCoord, ivec2(0, 3)) * SampleWeights5 +
textureOffset(SourceTexture, TexCoord, ivec2(0,-3)) * SampleWeights6;
#endif
}

View file

@ -1,18 +0,0 @@
layout(location=0) in vec2 TexCoord;
layout(location=0) out vec4 FragColor;
layout(binding=0) uniform sampler2D SceneTexture;
void main()
{
vec4 frag = texture(SceneTexture, TexCoord);
frag.rgb = clamp(pow(frag.rgb, vec3(uFixedColormapStart.a)), 0.0, 1.0);
if (uFixedColormapRange.a == 0.0)
{
float gray = (frag.r * 0.3 + frag.g * 0.56 + frag.b * 0.14);
vec4 cm = uFixedColormapStart + gray * uFixedColormapRange;
frag.rgb = clamp(cm.rgb, 0.0, 1.0);
}
FragColor = frag;
}

View file

@ -1,54 +0,0 @@
layout(location=0) in vec2 TexCoord;
layout(location=0) out vec4 FragColor;
layout(binding=0) uniform sampler2D AODepthTexture;
#define KERNEL_RADIUS 3.0
void AddSample(vec2 blurSample, float r, float centerDepth, inout float totalAO, inout float totalW)
{
const float blurSigma = KERNEL_RADIUS * 0.5;
const float blurFalloff = 1.0 / (2.0 * blurSigma * blurSigma);
float ao = blurSample.x;
float z = blurSample.y;
float deltaZ = (z - centerDepth) * BlurSharpness;
float w = exp2(-r * r * blurFalloff - deltaZ * deltaZ);
totalAO += w * ao;
totalW += w;
}
void main()
{
vec2 centerSample = textureOffset(AODepthTexture, TexCoord, ivec2( 0, 0)).xy;
float centerDepth = centerSample.y;
float totalAO = centerSample.x;
float totalW = 1.0;
#if defined(BLUR_HORIZONTAL)
AddSample(textureOffset(AODepthTexture, TexCoord, ivec2(-3, 0)).xy, 3.0, centerDepth, totalAO, totalW);
AddSample(textureOffset(AODepthTexture, TexCoord, ivec2(-2, 0)).xy, 2.0, centerDepth, totalAO, totalW);
AddSample(textureOffset(AODepthTexture, TexCoord, ivec2(-1, 0)).xy, 1.0, centerDepth, totalAO, totalW);
AddSample(textureOffset(AODepthTexture, TexCoord, ivec2( 1, 0)).xy, 1.0, centerDepth, totalAO, totalW);
AddSample(textureOffset(AODepthTexture, TexCoord, ivec2( 2, 0)).xy, 2.0, centerDepth, totalAO, totalW);
AddSample(textureOffset(AODepthTexture, TexCoord, ivec2( 3, 0)).xy, 3.0, centerDepth, totalAO, totalW);
#else
AddSample(textureOffset(AODepthTexture, TexCoord, ivec2(0, -3)).xy, 3.0, centerDepth, totalAO, totalW);
AddSample(textureOffset(AODepthTexture, TexCoord, ivec2(0, -2)).xy, 2.0, centerDepth, totalAO, totalW);
AddSample(textureOffset(AODepthTexture, TexCoord, ivec2(0, -1)).xy, 1.0, centerDepth, totalAO, totalW);
AddSample(textureOffset(AODepthTexture, TexCoord, ivec2(0, 1)).xy, 1.0, centerDepth, totalAO, totalW);
AddSample(textureOffset(AODepthTexture, TexCoord, ivec2(0, 2)).xy, 2.0, centerDepth, totalAO, totalW);
AddSample(textureOffset(AODepthTexture, TexCoord, ivec2(0, 3)).xy, 3.0, centerDepth, totalAO, totalW);
#endif
float fragAO = totalAO / totalW;
#if defined(BLUR_HORIZONTAL)
FragColor = vec4(fragAO, centerDepth, 0.0, 1.0);
#else
FragColor = vec4(pow(clamp(fragAO, 0.0, 1.0), PowExponent), 0.0, 0.0, 1.0);
#endif
}

View file

@ -1,22 +0,0 @@
layout(location=0) in vec2 TexCoord;
layout(location=0) out vec4 FragColor;
layout(binding=0) uniform sampler2D ExposureTexture;
void main()
{
#if __VERSION__ < 400
ivec2 size = textureSize(ExposureTexture, 0);
ivec2 tl = max(ivec2(TexCoord * vec2(size) - 0.5), ivec2(0));
ivec2 br = min(tl + ivec2(1), size - ivec2(1));
vec4 values = vec4(
texelFetch(ExposureTexture, tl, 0).x,
texelFetch(ExposureTexture, ivec2(tl.x, br.y), 0).x,
texelFetch(ExposureTexture, ivec2(br.x, tl.y), 0).x,
texelFetch(ExposureTexture, br, 0).x);
#else
vec4 values = textureGather(ExposureTexture, TexCoord);
#endif
FragColor = vec4((values.x + values.y + values.z + values.w) * 0.25, 0.0, 0.0, 1.0);
}

View file

@ -1,12 +0,0 @@
layout(location=0) in vec2 TexCoord;
layout(location=0) out vec4 FragColor;
layout(binding=0) uniform sampler2D ExposureTexture;
void main()
{
float light = texture(ExposureTexture, TexCoord).x;
float exposureAdjustment = 1.0 / max(ExposureBase + light * ExposureScale, ExposureMin);
FragColor = vec4(exposureAdjustment, 0.0, 0.0, ExposureSpeed);
}

View file

@ -1,11 +0,0 @@
layout(location=0) in vec2 TexCoord;
layout(location=0) out vec4 FragColor;
layout(binding=0) uniform sampler2D SceneTexture;
void main()
{
vec4 color = texture(SceneTexture, Offset + TexCoord * Scale);
FragColor = vec4(max(max(color.r, color.g), color.b), 0.0, 0.0, 1.0);
}

View file

@ -1,613 +0,0 @@
//----------------------------------------------------------------------------------
// File: es3-kepler\FXAA/FXAA3_11.h
// SDK Version: v3.00
// Email: gameworks@nvidia.com
// Site: http://developer.nvidia.com/
//
// Copyright (c) 2014-2015, NVIDIA CORPORATION. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of NVIDIA CORPORATION nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
//----------------------------------------------------------------------------------
layout(location=0) in vec2 TexCoord;
layout(location=0) out vec4 FragColor;
layout(binding=0) uniform sampler2D InputTexture;
#ifdef FXAA_LUMA_PASS
void main()
{
vec3 tex = texture(InputTexture, TexCoord).rgb;
vec3 luma = vec3(0.299, 0.587, 0.114);
FragColor = vec4(tex, dot(tex, luma));
}
#else // FXAA itself
//============================================================================
// NVIDIA FXAA 3.11 by TIMOTHY LOTTES
//============================================================================
#define FXAA_DISCARD 0
#define FXAA_GREEN_AS_LUMA 0
#define FxaaBool bool
#define FxaaDiscard discard
#define FxaaFloat float
#define FxaaFloat2 vec2
#define FxaaFloat3 vec3
#define FxaaFloat4 vec4
#define FxaaHalf float
#define FxaaHalf2 vec2
#define FxaaHalf3 vec3
#define FxaaHalf4 vec4
#define FxaaInt2 ivec2
#define FxaaSat(x) clamp(x, 0.0, 1.0)
#define FxaaTex sampler2D
#define FxaaTexTop(t, p) textureLod(t, p, 0.0)
#define FxaaTexOff(t, p, o, r) textureLodOffset(t, p, 0.0, o)
#if (FXAA_GATHER4_ALPHA == 1)
#define FxaaTexAlpha4(t, p) textureGather(t, p, 3)
#define FxaaTexOffAlpha4(t, p, o) textureGatherOffset(t, p, o, 3)
#define FxaaTexGreen4(t, p) textureGather(t, p, 1)
#define FxaaTexOffGreen4(t, p, o) textureGatherOffset(t, p, o, 1)
#endif
#if (FXAA_GREEN_AS_LUMA == 0)
FxaaFloat FxaaLuma(FxaaFloat4 rgba) { return rgba.w; }
#else
FxaaFloat FxaaLuma(FxaaFloat4 rgba) { return rgba.y; }
#endif
#if (FXAA_QUALITY__PRESET == 10)
#define FXAA_QUALITY__PS 3
#define FXAA_QUALITY__P0 1.5
#define FXAA_QUALITY__P1 3.0
#define FXAA_QUALITY__P2 12.0
#elif (FXAA_QUALITY__PRESET == 11)
#define FXAA_QUALITY__PS 4
#define FXAA_QUALITY__P0 1.0
#define FXAA_QUALITY__P1 1.5
#define FXAA_QUALITY__P2 3.0
#define FXAA_QUALITY__P3 12.0
#elif (FXAA_QUALITY__PRESET == 12)
#define FXAA_QUALITY__PS 5
#define FXAA_QUALITY__P0 1.0
#define FXAA_QUALITY__P1 1.5
#define FXAA_QUALITY__P2 2.0
#define FXAA_QUALITY__P3 4.0
#define FXAA_QUALITY__P4 12.0
#elif (FXAA_QUALITY__PRESET == 13)
#define FXAA_QUALITY__PS 6
#define FXAA_QUALITY__P0 1.0
#define FXAA_QUALITY__P1 1.5
#define FXAA_QUALITY__P2 2.0
#define FXAA_QUALITY__P3 2.0
#define FXAA_QUALITY__P4 4.0
#define FXAA_QUALITY__P5 12.0
#elif (FXAA_QUALITY__PRESET == 14)
#define FXAA_QUALITY__PS 7
#define FXAA_QUALITY__P0 1.0
#define FXAA_QUALITY__P1 1.5
#define FXAA_QUALITY__P2 2.0
#define FXAA_QUALITY__P3 2.0
#define FXAA_QUALITY__P4 2.0
#define FXAA_QUALITY__P5 4.0
#define FXAA_QUALITY__P6 12.0
#elif (FXAA_QUALITY__PRESET == 15)
#define FXAA_QUALITY__PS 8
#define FXAA_QUALITY__P0 1.0
#define FXAA_QUALITY__P1 1.5
#define FXAA_QUALITY__P2 2.0
#define FXAA_QUALITY__P3 2.0
#define FXAA_QUALITY__P4 2.0
#define FXAA_QUALITY__P5 2.0
#define FXAA_QUALITY__P6 4.0
#define FXAA_QUALITY__P7 12.0
#elif (FXAA_QUALITY__PRESET == 20)
#define FXAA_QUALITY__PS 3
#define FXAA_QUALITY__P0 1.5
#define FXAA_QUALITY__P1 2.0
#define FXAA_QUALITY__P2 8.0
#elif (FXAA_QUALITY__PRESET == 21)
#define FXAA_QUALITY__PS 4
#define FXAA_QUALITY__P0 1.0
#define FXAA_QUALITY__P1 1.5
#define FXAA_QUALITY__P2 2.0
#define FXAA_QUALITY__P3 8.0
#elif (FXAA_QUALITY__PRESET == 22)
#define FXAA_QUALITY__PS 5
#define FXAA_QUALITY__P0 1.0
#define FXAA_QUALITY__P1 1.5
#define FXAA_QUALITY__P2 2.0
#define FXAA_QUALITY__P3 2.0
#define FXAA_QUALITY__P4 8.0
#elif (FXAA_QUALITY__PRESET == 23)
#define FXAA_QUALITY__PS 6
#define FXAA_QUALITY__P0 1.0
#define FXAA_QUALITY__P1 1.5
#define FXAA_QUALITY__P2 2.0
#define FXAA_QUALITY__P3 2.0
#define FXAA_QUALITY__P4 2.0
#define FXAA_QUALITY__P5 8.0
#elif (FXAA_QUALITY__PRESET == 24)
#define FXAA_QUALITY__PS 7
#define FXAA_QUALITY__P0 1.0
#define FXAA_QUALITY__P1 1.5
#define FXAA_QUALITY__P2 2.0
#define FXAA_QUALITY__P3 2.0
#define FXAA_QUALITY__P4 2.0
#define FXAA_QUALITY__P5 3.0
#define FXAA_QUALITY__P6 8.0
#elif (FXAA_QUALITY__PRESET == 25)
#define FXAA_QUALITY__PS 8
#define FXAA_QUALITY__P0 1.0
#define FXAA_QUALITY__P1 1.5
#define FXAA_QUALITY__P2 2.0
#define FXAA_QUALITY__P3 2.0
#define FXAA_QUALITY__P4 2.0
#define FXAA_QUALITY__P5 2.0
#define FXAA_QUALITY__P6 4.0
#define FXAA_QUALITY__P7 8.0
#elif (FXAA_QUALITY__PRESET == 26)
#define FXAA_QUALITY__PS 9
#define FXAA_QUALITY__P0 1.0
#define FXAA_QUALITY__P1 1.5
#define FXAA_QUALITY__P2 2.0
#define FXAA_QUALITY__P3 2.0
#define FXAA_QUALITY__P4 2.0
#define FXAA_QUALITY__P5 2.0
#define FXAA_QUALITY__P6 2.0
#define FXAA_QUALITY__P7 4.0
#define FXAA_QUALITY__P8 8.0
#elif (FXAA_QUALITY__PRESET == 27)
#define FXAA_QUALITY__PS 10
#define FXAA_QUALITY__P0 1.0
#define FXAA_QUALITY__P1 1.5
#define FXAA_QUALITY__P2 2.0
#define FXAA_QUALITY__P3 2.0
#define FXAA_QUALITY__P4 2.0
#define FXAA_QUALITY__P5 2.0
#define FXAA_QUALITY__P6 2.0
#define FXAA_QUALITY__P7 2.0
#define FXAA_QUALITY__P8 4.0
#define FXAA_QUALITY__P9 8.0
#elif (FXAA_QUALITY__PRESET == 28)
#define FXAA_QUALITY__PS 11
#define FXAA_QUALITY__P0 1.0
#define FXAA_QUALITY__P1 1.5
#define FXAA_QUALITY__P2 2.0
#define FXAA_QUALITY__P3 2.0
#define FXAA_QUALITY__P4 2.0
#define FXAA_QUALITY__P5 2.0
#define FXAA_QUALITY__P6 2.0
#define FXAA_QUALITY__P7 2.0
#define FXAA_QUALITY__P8 2.0
#define FXAA_QUALITY__P9 4.0
#define FXAA_QUALITY__P10 8.0
#elif (FXAA_QUALITY__PRESET == 29)
#define FXAA_QUALITY__PS 12
#define FXAA_QUALITY__P0 1.0
#define FXAA_QUALITY__P1 1.5
#define FXAA_QUALITY__P2 2.0
#define FXAA_QUALITY__P3 2.0
#define FXAA_QUALITY__P4 2.0
#define FXAA_QUALITY__P5 2.0
#define FXAA_QUALITY__P6 2.0
#define FXAA_QUALITY__P7 2.0
#define FXAA_QUALITY__P8 2.0
#define FXAA_QUALITY__P9 2.0
#define FXAA_QUALITY__P10 4.0
#define FXAA_QUALITY__P11 8.0
#elif (FXAA_QUALITY__PRESET == 39)
#define FXAA_QUALITY__PS 12
#define FXAA_QUALITY__P0 1.0
#define FXAA_QUALITY__P1 1.0
#define FXAA_QUALITY__P2 1.0
#define FXAA_QUALITY__P3 1.0
#define FXAA_QUALITY__P4 1.0
#define FXAA_QUALITY__P5 1.5
#define FXAA_QUALITY__P6 2.0
#define FXAA_QUALITY__P7 2.0
#define FXAA_QUALITY__P8 2.0
#define FXAA_QUALITY__P9 2.0
#define FXAA_QUALITY__P10 4.0
#define FXAA_QUALITY__P11 8.0
#endif
FxaaFloat4 FxaaPixelShader(FxaaFloat2 pos, FxaaTex tex, FxaaFloat2 fxaaQualityRcpFrame,
FxaaFloat fxaaQualitySubpix, FxaaFloat fxaaQualityEdgeThreshold, FxaaFloat fxaaQualityEdgeThresholdMin)
{
FxaaFloat2 posM;
posM.x = pos.x;
posM.y = pos.y;
#if (FXAA_GATHER4_ALPHA == 1)
#if (FXAA_DISCARD == 0)
FxaaFloat4 rgbyM = FxaaTexTop(tex, posM);
#if (FXAA_GREEN_AS_LUMA == 0)
#define lumaM rgbyM.w
#else
#define lumaM rgbyM.y
#endif
#endif
#if (FXAA_GREEN_AS_LUMA == 0)
FxaaFloat4 luma4A = FxaaTexAlpha4(tex, posM);
FxaaFloat4 luma4B = FxaaTexOffAlpha4(tex, posM, FxaaInt2(-1, -1));
#else
FxaaFloat4 luma4A = FxaaTexGreen4(tex, posM);
FxaaFloat4 luma4B = FxaaTexOffGreen4(tex, posM, FxaaInt2(-1, -1));
#endif
#if (FXAA_DISCARD == 1)
#define lumaM luma4A.w
#endif
#define lumaE luma4A.z
#define lumaS luma4A.x
#define lumaSE luma4A.y
#define lumaNW luma4B.w
#define lumaN luma4B.z
#define lumaW luma4B.x
#else
FxaaFloat4 rgbyM = FxaaTexTop(tex, posM);
#if (FXAA_GREEN_AS_LUMA == 0)
#define lumaM rgbyM.w
#else
#define lumaM rgbyM.y
#endif
FxaaFloat lumaS = FxaaLuma(FxaaTexOff(tex, posM, FxaaInt2( 0, 1), fxaaQualityRcpFrame.xy));
FxaaFloat lumaE = FxaaLuma(FxaaTexOff(tex, posM, FxaaInt2( 1, 0), fxaaQualityRcpFrame.xy));
FxaaFloat lumaN = FxaaLuma(FxaaTexOff(tex, posM, FxaaInt2( 0,-1), fxaaQualityRcpFrame.xy));
FxaaFloat lumaW = FxaaLuma(FxaaTexOff(tex, posM, FxaaInt2(-1, 0), fxaaQualityRcpFrame.xy));
#endif
/*--------------------------------------------------------------------------*/
FxaaFloat maxSM = max(lumaS, lumaM);
FxaaFloat minSM = min(lumaS, lumaM);
FxaaFloat maxESM = max(lumaE, maxSM);
FxaaFloat minESM = min(lumaE, minSM);
FxaaFloat maxWN = max(lumaN, lumaW);
FxaaFloat minWN = min(lumaN, lumaW);
FxaaFloat rangeMax = max(maxWN, maxESM);
FxaaFloat rangeMin = min(minWN, minESM);
FxaaFloat rangeMaxScaled = rangeMax * fxaaQualityEdgeThreshold;
FxaaFloat range = rangeMax - rangeMin;
FxaaFloat rangeMaxClamped = max(fxaaQualityEdgeThresholdMin, rangeMaxScaled);
FxaaBool earlyExit = range < rangeMaxClamped;
/*--------------------------------------------------------------------------*/
if(earlyExit)
#if (FXAA_DISCARD == 1)
FxaaDiscard;
#else
return rgbyM;
#endif
/*--------------------------------------------------------------------------*/
#if (FXAA_GATHER4_ALPHA == 0)
FxaaFloat lumaNW = FxaaLuma(FxaaTexOff(tex, posM, FxaaInt2(-1,-1), fxaaQualityRcpFrame.xy));
FxaaFloat lumaSE = FxaaLuma(FxaaTexOff(tex, posM, FxaaInt2( 1, 1), fxaaQualityRcpFrame.xy));
FxaaFloat lumaNE = FxaaLuma(FxaaTexOff(tex, posM, FxaaInt2( 1,-1), fxaaQualityRcpFrame.xy));
FxaaFloat lumaSW = FxaaLuma(FxaaTexOff(tex, posM, FxaaInt2(-1, 1), fxaaQualityRcpFrame.xy));
#else
FxaaFloat lumaNE = FxaaLuma(FxaaTexOff(tex, posM, FxaaInt2(1, -1), fxaaQualityRcpFrame.xy));
FxaaFloat lumaSW = FxaaLuma(FxaaTexOff(tex, posM, FxaaInt2(-1, 1), fxaaQualityRcpFrame.xy));
#endif
/*--------------------------------------------------------------------------*/
FxaaFloat lumaNS = lumaN + lumaS;
FxaaFloat lumaWE = lumaW + lumaE;
FxaaFloat subpixRcpRange = 1.0/range;
FxaaFloat subpixNSWE = lumaNS + lumaWE;
FxaaFloat edgeHorz1 = (-2.0 * lumaM) + lumaNS;
FxaaFloat edgeVert1 = (-2.0 * lumaM) + lumaWE;
/*--------------------------------------------------------------------------*/
FxaaFloat lumaNESE = lumaNE + lumaSE;
FxaaFloat lumaNWNE = lumaNW + lumaNE;
FxaaFloat edgeHorz2 = (-2.0 * lumaE) + lumaNESE;
FxaaFloat edgeVert2 = (-2.0 * lumaN) + lumaNWNE;
/*--------------------------------------------------------------------------*/
FxaaFloat lumaNWSW = lumaNW + lumaSW;
FxaaFloat lumaSWSE = lumaSW + lumaSE;
FxaaFloat edgeHorz4 = (abs(edgeHorz1) * 2.0) + abs(edgeHorz2);
FxaaFloat edgeVert4 = (abs(edgeVert1) * 2.0) + abs(edgeVert2);
FxaaFloat edgeHorz3 = (-2.0 * lumaW) + lumaNWSW;
FxaaFloat edgeVert3 = (-2.0 * lumaS) + lumaSWSE;
FxaaFloat edgeHorz = abs(edgeHorz3) + edgeHorz4;
FxaaFloat edgeVert = abs(edgeVert3) + edgeVert4;
/*--------------------------------------------------------------------------*/
FxaaFloat subpixNWSWNESE = lumaNWSW + lumaNESE;
FxaaFloat lengthSign = fxaaQualityRcpFrame.x;
FxaaBool horzSpan = edgeHorz >= edgeVert;
FxaaFloat subpixA = subpixNSWE * 2.0 + subpixNWSWNESE;
/*--------------------------------------------------------------------------*/
if(!horzSpan) lumaN = lumaW;
if(!horzSpan) lumaS = lumaE;
if(horzSpan) lengthSign = fxaaQualityRcpFrame.y;
FxaaFloat subpixB = (subpixA * (1.0/12.0)) - lumaM;
/*--------------------------------------------------------------------------*/
FxaaFloat gradientN = lumaN - lumaM;
FxaaFloat gradientS = lumaS - lumaM;
FxaaFloat lumaNN = lumaN + lumaM;
FxaaFloat lumaSS = lumaS + lumaM;
FxaaBool pairN = abs(gradientN) >= abs(gradientS);
FxaaFloat gradient = max(abs(gradientN), abs(gradientS));
if(pairN) lengthSign = -lengthSign;
FxaaFloat subpixC = FxaaSat(abs(subpixB) * subpixRcpRange);
/*--------------------------------------------------------------------------*/
FxaaFloat2 posB;
posB.x = posM.x;
posB.y = posM.y;
FxaaFloat2 offNP;
offNP.x = (!horzSpan) ? 0.0 : fxaaQualityRcpFrame.x;
offNP.y = ( horzSpan) ? 0.0 : fxaaQualityRcpFrame.y;
if(!horzSpan) posB.x += lengthSign * 0.5;
if( horzSpan) posB.y += lengthSign * 0.5;
/*--------------------------------------------------------------------------*/
FxaaFloat2 posN;
posN.x = posB.x - offNP.x * FXAA_QUALITY__P0;
posN.y = posB.y - offNP.y * FXAA_QUALITY__P0;
FxaaFloat2 posP;
posP.x = posB.x + offNP.x * FXAA_QUALITY__P0;
posP.y = posB.y + offNP.y * FXAA_QUALITY__P0;
FxaaFloat subpixD = ((-2.0)*subpixC) + 3.0;
FxaaFloat lumaEndN = FxaaLuma(FxaaTexTop(tex, posN));
FxaaFloat subpixE = subpixC * subpixC;
FxaaFloat lumaEndP = FxaaLuma(FxaaTexTop(tex, posP));
/*--------------------------------------------------------------------------*/
if(!pairN) lumaNN = lumaSS;
FxaaFloat gradientScaled = gradient * 1.0/4.0;
FxaaFloat lumaMM = lumaM - lumaNN * 0.5;
FxaaFloat subpixF = subpixD * subpixE;
FxaaBool lumaMLTZero = lumaMM < 0.0;
/*--------------------------------------------------------------------------*/
lumaEndN -= lumaNN * 0.5;
lumaEndP -= lumaNN * 0.5;
FxaaBool doneN = abs(lumaEndN) >= gradientScaled;
FxaaBool doneP = abs(lumaEndP) >= gradientScaled;
if(!doneN) posN.x -= offNP.x * FXAA_QUALITY__P1;
if(!doneN) posN.y -= offNP.y * FXAA_QUALITY__P1;
FxaaBool doneNP = (!doneN) || (!doneP);
if(!doneP) posP.x += offNP.x * FXAA_QUALITY__P1;
if(!doneP) posP.y += offNP.y * FXAA_QUALITY__P1;
/*--------------------------------------------------------------------------*/
if(doneNP) {
if(!doneN) lumaEndN = FxaaLuma(FxaaTexTop(tex, posN.xy));
if(!doneP) lumaEndP = FxaaLuma(FxaaTexTop(tex, posP.xy));
if(!doneN) lumaEndN = lumaEndN - lumaNN * 0.5;
if(!doneP) lumaEndP = lumaEndP - lumaNN * 0.5;
doneN = abs(lumaEndN) >= gradientScaled;
doneP = abs(lumaEndP) >= gradientScaled;
if(!doneN) posN.x -= offNP.x * FXAA_QUALITY__P2;
if(!doneN) posN.y -= offNP.y * FXAA_QUALITY__P2;
doneNP = (!doneN) || (!doneP);
if(!doneP) posP.x += offNP.x * FXAA_QUALITY__P2;
if(!doneP) posP.y += offNP.y * FXAA_QUALITY__P2;
/*--------------------------------------------------------------------------*/
#if (FXAA_QUALITY__PS > 3)
if(doneNP) {
if(!doneN) lumaEndN = FxaaLuma(FxaaTexTop(tex, posN.xy));
if(!doneP) lumaEndP = FxaaLuma(FxaaTexTop(tex, posP.xy));
if(!doneN) lumaEndN = lumaEndN - lumaNN * 0.5;
if(!doneP) lumaEndP = lumaEndP - lumaNN * 0.5;
doneN = abs(lumaEndN) >= gradientScaled;
doneP = abs(lumaEndP) >= gradientScaled;
if(!doneN) posN.x -= offNP.x * FXAA_QUALITY__P3;
if(!doneN) posN.y -= offNP.y * FXAA_QUALITY__P3;
doneNP = (!doneN) || (!doneP);
if(!doneP) posP.x += offNP.x * FXAA_QUALITY__P3;
if(!doneP) posP.y += offNP.y * FXAA_QUALITY__P3;
/*--------------------------------------------------------------------------*/
#if (FXAA_QUALITY__PS > 4)
if(doneNP) {
if(!doneN) lumaEndN = FxaaLuma(FxaaTexTop(tex, posN.xy));
if(!doneP) lumaEndP = FxaaLuma(FxaaTexTop(tex, posP.xy));
if(!doneN) lumaEndN = lumaEndN - lumaNN * 0.5;
if(!doneP) lumaEndP = lumaEndP - lumaNN * 0.5;
doneN = abs(lumaEndN) >= gradientScaled;
doneP = abs(lumaEndP) >= gradientScaled;
if(!doneN) posN.x -= offNP.x * FXAA_QUALITY__P4;
if(!doneN) posN.y -= offNP.y * FXAA_QUALITY__P4;
doneNP = (!doneN) || (!doneP);
if(!doneP) posP.x += offNP.x * FXAA_QUALITY__P4;
if(!doneP) posP.y += offNP.y * FXAA_QUALITY__P4;
/*--------------------------------------------------------------------------*/
#if (FXAA_QUALITY__PS > 5)
if(doneNP) {
if(!doneN) lumaEndN = FxaaLuma(FxaaTexTop(tex, posN.xy));
if(!doneP) lumaEndP = FxaaLuma(FxaaTexTop(tex, posP.xy));
if(!doneN) lumaEndN = lumaEndN - lumaNN * 0.5;
if(!doneP) lumaEndP = lumaEndP - lumaNN * 0.5;
doneN = abs(lumaEndN) >= gradientScaled;
doneP = abs(lumaEndP) >= gradientScaled;
if(!doneN) posN.x -= offNP.x * FXAA_QUALITY__P5;
if(!doneN) posN.y -= offNP.y * FXAA_QUALITY__P5;
doneNP = (!doneN) || (!doneP);
if(!doneP) posP.x += offNP.x * FXAA_QUALITY__P5;
if(!doneP) posP.y += offNP.y * FXAA_QUALITY__P5;
/*--------------------------------------------------------------------------*/
#if (FXAA_QUALITY__PS > 6)
if(doneNP) {
if(!doneN) lumaEndN = FxaaLuma(FxaaTexTop(tex, posN.xy));
if(!doneP) lumaEndP = FxaaLuma(FxaaTexTop(tex, posP.xy));
if(!doneN) lumaEndN = lumaEndN - lumaNN * 0.5;
if(!doneP) lumaEndP = lumaEndP - lumaNN * 0.5;
doneN = abs(lumaEndN) >= gradientScaled;
doneP = abs(lumaEndP) >= gradientScaled;
if(!doneN) posN.x -= offNP.x * FXAA_QUALITY__P6;
if(!doneN) posN.y -= offNP.y * FXAA_QUALITY__P6;
doneNP = (!doneN) || (!doneP);
if(!doneP) posP.x += offNP.x * FXAA_QUALITY__P6;
if(!doneP) posP.y += offNP.y * FXAA_QUALITY__P6;
/*--------------------------------------------------------------------------*/
#if (FXAA_QUALITY__PS > 7)
if(doneNP) {
if(!doneN) lumaEndN = FxaaLuma(FxaaTexTop(tex, posN.xy));
if(!doneP) lumaEndP = FxaaLuma(FxaaTexTop(tex, posP.xy));
if(!doneN) lumaEndN = lumaEndN - lumaNN * 0.5;
if(!doneP) lumaEndP = lumaEndP - lumaNN * 0.5;
doneN = abs(lumaEndN) >= gradientScaled;
doneP = abs(lumaEndP) >= gradientScaled;
if(!doneN) posN.x -= offNP.x * FXAA_QUALITY__P7;
if(!doneN) posN.y -= offNP.y * FXAA_QUALITY__P7;
doneNP = (!doneN) || (!doneP);
if(!doneP) posP.x += offNP.x * FXAA_QUALITY__P7;
if(!doneP) posP.y += offNP.y * FXAA_QUALITY__P7;
/*--------------------------------------------------------------------------*/
#if (FXAA_QUALITY__PS > 8)
if(doneNP) {
if(!doneN) lumaEndN = FxaaLuma(FxaaTexTop(tex, posN.xy));
if(!doneP) lumaEndP = FxaaLuma(FxaaTexTop(tex, posP.xy));
if(!doneN) lumaEndN = lumaEndN - lumaNN * 0.5;
if(!doneP) lumaEndP = lumaEndP - lumaNN * 0.5;
doneN = abs(lumaEndN) >= gradientScaled;
doneP = abs(lumaEndP) >= gradientScaled;
if(!doneN) posN.x -= offNP.x * FXAA_QUALITY__P8;
if(!doneN) posN.y -= offNP.y * FXAA_QUALITY__P8;
doneNP = (!doneN) || (!doneP);
if(!doneP) posP.x += offNP.x * FXAA_QUALITY__P8;
if(!doneP) posP.y += offNP.y * FXAA_QUALITY__P8;
/*--------------------------------------------------------------------------*/
#if (FXAA_QUALITY__PS > 9)
if(doneNP) {
if(!doneN) lumaEndN = FxaaLuma(FxaaTexTop(tex, posN.xy));
if(!doneP) lumaEndP = FxaaLuma(FxaaTexTop(tex, posP.xy));
if(!doneN) lumaEndN = lumaEndN - lumaNN * 0.5;
if(!doneP) lumaEndP = lumaEndP - lumaNN * 0.5;
doneN = abs(lumaEndN) >= gradientScaled;
doneP = abs(lumaEndP) >= gradientScaled;
if(!doneN) posN.x -= offNP.x * FXAA_QUALITY__P9;
if(!doneN) posN.y -= offNP.y * FXAA_QUALITY__P9;
doneNP = (!doneN) || (!doneP);
if(!doneP) posP.x += offNP.x * FXAA_QUALITY__P9;
if(!doneP) posP.y += offNP.y * FXAA_QUALITY__P9;
/*--------------------------------------------------------------------------*/
#if (FXAA_QUALITY__PS > 10)
if(doneNP) {
if(!doneN) lumaEndN = FxaaLuma(FxaaTexTop(tex, posN.xy));
if(!doneP) lumaEndP = FxaaLuma(FxaaTexTop(tex, posP.xy));
if(!doneN) lumaEndN = lumaEndN - lumaNN * 0.5;
if(!doneP) lumaEndP = lumaEndP - lumaNN * 0.5;
doneN = abs(lumaEndN) >= gradientScaled;
doneP = abs(lumaEndP) >= gradientScaled;
if(!doneN) posN.x -= offNP.x * FXAA_QUALITY__P10;
if(!doneN) posN.y -= offNP.y * FXAA_QUALITY__P10;
doneNP = (!doneN) || (!doneP);
if(!doneP) posP.x += offNP.x * FXAA_QUALITY__P10;
if(!doneP) posP.y += offNP.y * FXAA_QUALITY__P10;
/*--------------------------------------------------------------------------*/
#if (FXAA_QUALITY__PS > 11)
if(doneNP) {
if(!doneN) lumaEndN = FxaaLuma(FxaaTexTop(tex, posN.xy));
if(!doneP) lumaEndP = FxaaLuma(FxaaTexTop(tex, posP.xy));
if(!doneN) lumaEndN = lumaEndN - lumaNN * 0.5;
if(!doneP) lumaEndP = lumaEndP - lumaNN * 0.5;
doneN = abs(lumaEndN) >= gradientScaled;
doneP = abs(lumaEndP) >= gradientScaled;
if(!doneN) posN.x -= offNP.x * FXAA_QUALITY__P11;
if(!doneN) posN.y -= offNP.y * FXAA_QUALITY__P11;
doneNP = (!doneN) || (!doneP);
if(!doneP) posP.x += offNP.x * FXAA_QUALITY__P11;
if(!doneP) posP.y += offNP.y * FXAA_QUALITY__P11;
/*--------------------------------------------------------------------------*/
#if (FXAA_QUALITY__PS > 12)
if(doneNP) {
if(!doneN) lumaEndN = FxaaLuma(FxaaTexTop(tex, posN.xy));
if(!doneP) lumaEndP = FxaaLuma(FxaaTexTop(tex, posP.xy));
if(!doneN) lumaEndN = lumaEndN - lumaNN * 0.5;
if(!doneP) lumaEndP = lumaEndP - lumaNN * 0.5;
doneN = abs(lumaEndN) >= gradientScaled;
doneP = abs(lumaEndP) >= gradientScaled;
if(!doneN) posN.x -= offNP.x * FXAA_QUALITY__P12;
if(!doneN) posN.y -= offNP.y * FXAA_QUALITY__P12;
doneNP = (!doneN) || (!doneP);
if(!doneP) posP.x += offNP.x * FXAA_QUALITY__P12;
if(!doneP) posP.y += offNP.y * FXAA_QUALITY__P12;
/*--------------------------------------------------------------------------*/
}
#endif
/*--------------------------------------------------------------------------*/
}
#endif
/*--------------------------------------------------------------------------*/
}
#endif
/*--------------------------------------------------------------------------*/
}
#endif
/*--------------------------------------------------------------------------*/
}
#endif
/*--------------------------------------------------------------------------*/
}
#endif
/*--------------------------------------------------------------------------*/
}
#endif
/*--------------------------------------------------------------------------*/
}
#endif
/*--------------------------------------------------------------------------*/
}
#endif
/*--------------------------------------------------------------------------*/
}
#endif
/*--------------------------------------------------------------------------*/
}
/*--------------------------------------------------------------------------*/
FxaaFloat dstN = posM.x - posN.x;
FxaaFloat dstP = posP.x - posM.x;
if(!horzSpan) dstN = posM.y - posN.y;
if(!horzSpan) dstP = posP.y - posM.y;
/*--------------------------------------------------------------------------*/
FxaaBool goodSpanN = (lumaEndN < 0.0) != lumaMLTZero;
FxaaFloat spanLength = (dstP + dstN);
FxaaBool goodSpanP = (lumaEndP < 0.0) != lumaMLTZero;
FxaaFloat spanLengthRcp = 1.0/spanLength;
/*--------------------------------------------------------------------------*/
FxaaBool directionN = dstN < dstP;
FxaaFloat dst = min(dstN, dstP);
FxaaBool goodSpan = directionN ? goodSpanN : goodSpanP;
FxaaFloat subpixG = subpixF * subpixF;
FxaaFloat pixelOffset = (dst * (-spanLengthRcp)) + 0.5;
FxaaFloat subpixH = subpixG * fxaaQualitySubpix;
/*--------------------------------------------------------------------------*/
FxaaFloat pixelOffsetGood = goodSpan ? pixelOffset : 0.0;
FxaaFloat pixelOffsetSubpix = max(pixelOffsetGood, subpixH);
if(!horzSpan) posM.x += pixelOffsetSubpix * lengthSign;
if( horzSpan) posM.y += pixelOffsetSubpix * lengthSign;
#if (FXAA_DISCARD == 1)
return FxaaTexTop(tex, posM);
#else
return FxaaFloat4(FxaaTexTop(tex, posM).xyz, lumaM);
#endif
}
void main()
{
FragColor = FxaaPixelShader(TexCoord, InputTexture, ReciprocalResolution, 0.75f, 0.166f, 0.0833f);
}
#endif // FXAA_LUMA_PASS

View file

@ -1,54 +0,0 @@
/*
Original Lens Distortion Algorithm from SSontech
http://www.ssontech.com/content/lensalg.htm
If (u,v) are the coordinates of a feature in the undistorted perfect
image plane, then (u', v') are the coordinates of the feature on the
distorted image plate, ie the scanned or captured image from the
camera. The distortion occurs radially away from the image center,
with correction for the image aspect ratio (image_aspect = physical
image width/height), as follows:
r2 = image_aspect*image_aspect*u*u + v*v
f = 1 + r2*(k + kcube*sqrt(r2))
u' = f*u
v' = f*v
The constant k is the distortion coefficient that appears on the lens
panel and through Sizzle. It is generally a small positive or negative
number under 1%. The constant kcube is the cubic distortion value found
on the image preprocessor's lens panel: it can be used to undistort or
redistort images, but it does not affect or get computed by the solver.
When no cubic distortion is needed, neither is the square root, saving
time.
Chromatic Aberration example,
using red distord channel with green and blue undistord channel:
k = vec3(-0.15, 0.0, 0.0);
kcube = vec3(0.15, 0.0, 0.0);
*/
layout(location=0) in vec2 TexCoord;
layout(location=0) out vec4 FragColor;
layout(binding=0) uniform sampler2D InputTexture;
void main()
{
vec2 position = (TexCoord - vec2(0.5));
vec2 p = vec2(position.x * Aspect, position.y);
float r2 = dot(p, p);
vec3 f = vec3(1.0) + r2 * (k.rgb + kcube.rgb * sqrt(r2));
vec3 x = f * position.x * Scale + 0.5;
vec3 y = f * position.y * Scale + 0.5;
vec3 c;
c.r = texture(InputTexture, vec2(x.r, y.r)).r;
c.g = texture(InputTexture, vec2(x.g, y.g)).g;
c.b = texture(InputTexture, vec2(x.b, y.b)).b;
FragColor = vec4(c, 1.0);
}

View file

@ -1,38 +0,0 @@
layout(location=0) in vec2 TexCoord;
layout(location=0) out vec4 FragColor;
#if defined(MULTISAMPLE)
layout(binding=0) uniform sampler2DMS DepthTexture;
layout(binding=1) uniform sampler2DMS ColorTexture;
#else
layout(binding=0) uniform sampler2D DepthTexture;
layout(binding=1) uniform sampler2D ColorTexture;
#endif
float normalizeDepth(float depth)
{
float normalizedDepth = clamp(InverseDepthRangeA * depth + InverseDepthRangeB, 0.0, 1.0);
return 1.0 / (normalizedDepth * LinearizeDepthA + LinearizeDepthB);
}
void main()
{
vec2 uv = Offset + TexCoord * Scale;
#if defined(MULTISAMPLE)
ivec2 texSize = textureSize(DepthTexture);
#else
ivec2 texSize = textureSize(DepthTexture, 0);
#endif
ivec2 ipos = ivec2(max(uv * vec2(texSize), vec2(0.0)));
#if defined(MULTISAMPLE)
float depth = normalizeDepth(texelFetch(ColorTexture, ipos, SampleIndex).a != 0.0 ? texelFetch(DepthTexture, ipos, SampleIndex).x : 1.0);
#else
float depth = normalizeDepth(texelFetch(ColorTexture, ipos, 0).a != 0.0 ? texelFetch(DepthTexture, ipos, 0).x : 1.0);
#endif
FragColor = vec4(depth, 0.0, 0.0, 1.0);
}

View file

@ -1,33 +0,0 @@
layout(location=0) in vec2 TexCoord;
layout(location=0) out vec4 FragColor;
layout(binding=0) uniform sampler2D LeftEyeTexture;
layout(binding=1) uniform sampler2D RightEyeTexture;
vec4 ApplyGamma(vec4 c)
{
vec3 val = c.rgb * Contrast - (Contrast - 1.0) * 0.5;
val += Brightness * 0.5;
val = pow(max(val, vec3(0.0)), vec3(InvGamma));
return vec4(val, c.a);
}
void main()
{
int thisVerticalPixel = int(gl_FragCoord.y); // Bottom row is typically the right eye, when WindowHeight is even
int thisHorizontalPixel = int(gl_FragCoord.x); // column
bool isLeftEye = (thisVerticalPixel // because we want to alternate eye view on each row
+ thisHorizontalPixel // and each column
+ WindowPositionParity // because the window might not be aligned to the screen
) % 2 == 0;
vec4 inputColor;
if (isLeftEye) {
inputColor = texture(LeftEyeTexture, UVOffset + TexCoord * UVScale);
}
else {
// inputColor = vec4(0, 1, 0, 1);
inputColor = texture(RightEyeTexture, UVOffset + TexCoord * UVScale);
}
FragColor = ApplyGamma(inputColor);
}

View file

@ -1,31 +0,0 @@
layout(location=0) in vec2 TexCoord;
layout(location=0) out vec4 FragColor;
layout(binding=0) uniform sampler2D LeftEyeTexture;
layout(binding=1) uniform sampler2D RightEyeTexture;
vec4 ApplyGamma(vec4 c)
{
vec3 val = c.rgb * Contrast - (Contrast - 1.0) * 0.5;
val += Brightness * 0.5;
val = pow(max(val, vec3(0.0)), vec3(InvGamma));
return vec4(val, c.a);
}
void main()
{
int thisHorizontalPixel = int(gl_FragCoord.x); // zero-based column index from left
bool isLeftEye = (thisHorizontalPixel // because we want to alternate eye view on each column
+ WindowPositionParity // because the window might not be aligned to the screen
) % 2 == 0;
vec4 inputColor;
if (isLeftEye) {
inputColor = texture(LeftEyeTexture, UVOffset + TexCoord * UVScale);
}
else {
// inputColor = vec4(0, 1, 0, 1);
inputColor = texture(RightEyeTexture, UVOffset + TexCoord * UVScale);
}
FragColor = ApplyGamma(inputColor);
}

View file

@ -1,31 +0,0 @@
layout(location=0) in vec2 TexCoord;
layout(location=0) out vec4 FragColor;
layout(binding=0) uniform sampler2D LeftEyeTexture;
layout(binding=1) uniform sampler2D RightEyeTexture;
vec4 ApplyGamma(vec4 c)
{
vec3 val = c.rgb * Contrast - (Contrast - 1.0) * 0.5;
val += Brightness * 0.5;
val = pow(max(val, vec3(0.0)), vec3(InvGamma));
return vec4(val, c.a);
}
void main()
{
int thisVerticalPixel = int(gl_FragCoord.y); // Bottom row is typically the right eye, when WindowHeight is even
bool isLeftEye = (thisVerticalPixel // because we want to alternate eye view on each row
+ WindowPositionParity // because the window might not be aligned to the screen
) % 2 == 0;
vec4 inputColor;
if (isLeftEye) {
inputColor = texture(LeftEyeTexture, UVOffset + TexCoord * UVScale);
}
else {
// inputColor = vec4(0, 1, 0, 1);
inputColor = texture(RightEyeTexture, UVOffset + TexCoord * UVScale);
}
FragColor = ApplyGamma(inputColor);
}

View file

@ -1,190 +0,0 @@
layout(location=0) in vec2 TexCoord;
layout(location=0) out vec4 FragColor;
// A node in an AABB binary tree with lines stored in the leaf nodes
struct GPUNode
{
vec2 aabb_min; // Min xy values for the axis-aligned box containing the node and its subtree
vec2 aabb_max; // Max xy values
int left; // Left subnode index
int right; // Right subnode index
int line_index; // Line index if it is a leaf node, otherwise -1
int padding; // Unused - maintains 16 byte alignment
};
// 2D line segment, referenced by leaf nodes
struct GPULine
{
vec2 pos; // Line start position
vec2 delta; // Line end position - line start position
};
layout(std430, binding = 4) buffer LightNodes
{
GPUNode nodes[];
};
layout(std430, binding = 5) buffer LightLines
{
GPULine lines[];
};
layout(std430, binding = 6) buffer LightList
{
vec4 lights[];
};
// Overlap test between line segment and axis-aligned bounding box. Returns true if they overlap.
bool overlapRayAABB(vec2 ray_start2d, vec2 ray_end2d, vec2 aabb_min2d, vec2 aabb_max2d)
{
// To do: simplify test to use a 2D test
vec3 ray_start = vec3(ray_start2d, 0.0);
vec3 ray_end = vec3(ray_end2d, 0.0);
vec3 aabb_min = vec3(aabb_min2d, -1.0);
vec3 aabb_max = vec3(aabb_max2d, 1.0);
vec3 c = (ray_start + ray_end) * 0.5f;
vec3 w = ray_end - c;
vec3 h = (aabb_max - aabb_min) * 0.5f; // aabb.extents();
c -= (aabb_max + aabb_min) * 0.5f; // aabb.center();
vec3 v = abs(w);
if (abs(c.x) > v.x + h.x || abs(c.y) > v.y + h.y || abs(c.z) > v.z + h.z)
return false; // disjoint;
if (abs(c.y * w.z - c.z * w.y) > h.y * v.z + h.z * v.y ||
abs(c.x * w.z - c.z * w.x) > h.x * v.z + h.z * v.x ||
abs(c.x * w.y - c.y * w.x) > h.x * v.y + h.y * v.x)
return false; // disjoint;
return true; // overlap;
}
// Intersection test between two line segments.
// Returns the intersection point as a value between 0-1 on the ray line segment. 1.0 if there was no hit.
float intersectRayLine(vec2 ray_start, vec2 ray_end, int line_index, vec2 raydelta, float rayd, float raydist2)
{
const float epsilon = 0.0000001;
GPULine line = lines[line_index];
vec2 raynormal = vec2(raydelta.y, -raydelta.x);
float den = dot(raynormal, line.delta);
if (abs(den) > epsilon)
{
float t_line = (rayd - dot(raynormal, line.pos)) / den;
if (t_line >= 0.0 && t_line <= 1.0)
{
vec2 linehitdelta = line.pos + line.delta * t_line - ray_start;
float t = dot(raydelta, linehitdelta) / raydist2;
return t > 0.0 ? t : 1.0;
}
}
return 1.0;
}
// Returns true if an AABB tree node is a leaf node. Leaf nodes contains a line.
bool isLeaf(int node_index)
{
return nodes[node_index].line_index != -1;
}
// Perform ray intersection test between the ray line segment and all the lines in the AABB binary tree.
// Returns the intersection point as a value between 0-1 on the ray line segment. 1.0 if there was no hit.
float rayTest(vec2 ray_start, vec2 ray_end)
{
vec2 raydelta = ray_end - ray_start;
float raydist2 = dot(raydelta, raydelta);
vec2 raynormal = vec2(raydelta.y, -raydelta.x);
float rayd = dot(raynormal, ray_start);
if (raydist2 < 1.0)
return 1.0;
float t = 1.0;
// Walk the AABB binary tree searching for nodes touching the ray line segment's AABB box.
// When it reaches a leaf node, use a line segment intersection test to see if we got a hit.
int stack[32];
int stack_pos = 1;
stack[0] = NodesCount - 1;
while (stack_pos > 0)
{
int node_index = stack[stack_pos - 1];
if (!overlapRayAABB(ray_start, ray_end, nodes[node_index].aabb_min, nodes[node_index].aabb_max))
{
stack_pos--;
}
else if (isLeaf(node_index))
{
t = min(intersectRayLine(ray_start, ray_end, nodes[node_index].line_index, raydelta, rayd, raydist2), t);
stack_pos--;
}
else if (stack_pos == 32)
{
stack_pos--; // stack overflow
}
else
{
stack[stack_pos - 1] = nodes[node_index].left;
stack[stack_pos] = nodes[node_index].right;
stack_pos++;
}
}
return t;
}
void main()
{
// Find the light that belongs to this texel in the shadowmap texture we output to:
int lightIndex = int(gl_FragCoord.y);
vec4 light = lights[lightIndex];
float radius = light.w;
vec2 lightpos = light.xy;
if (radius > 0.0)
{
// We found an active light. Calculate the ray direction for the texel.
//
// The texels are laid out so that there are four projections:
//
// * top-left to top-right
// * top-right to bottom-right
// * bottom-right to bottom-left
// * bottom-left to top-left
//
vec2 raydir;
float u = gl_FragCoord.x / ShadowmapQuality * 4.0;
switch (int(u))
{
case 0: raydir = vec2(u * 2.0 - 1.0, 1.0); break;
case 1: raydir = vec2(1.0, 1.0 - (u - 1.0) * 2.0); break;
case 2: raydir = vec2(1.0 - (u - 2.0) * 2.0, -1.0); break;
case 3: raydir = vec2(-1.0, (u - 3.0) * 2.0 - 1.0); break;
}
// Find the position for the ray starting at the light position and travelling until light contribution is zero:
vec2 pixelpos = lightpos + raydir * radius;
// Check if we hit any line between the light and the end position:
float t = rayTest(lightpos, pixelpos);
// Calculate the square distance for the hit, if any:
vec2 delta = (pixelpos - lightpos) * t;
float dist2 = dot(delta, delta);
FragColor = vec4(dist2, 0.0, 0.0, 1.0);
}
else
{
FragColor = vec4(1.0, 0.0, 0.0, 1.0);
}
}

View file

@ -1,123 +0,0 @@
layout(location=0) in vec2 TexCoord;
layout(location=0) out vec4 FragColor;
layout(binding=0) uniform sampler2D DepthTexture;
#if defined(MULTISAMPLE)
layout(binding=1) uniform sampler2DMS NormalTexture;
#else
layout(binding=1) uniform sampler2D NormalTexture;
#endif
#if defined(USE_RANDOM_TEXTURE)
layout(binding=2) uniform sampler2D RandomTexture;
#endif
#define PI 3.14159265358979323846
// Calculate eye space position for the specified texture coordinate
vec3 FetchViewPos(vec2 uv)
{
float z = texture(DepthTexture, uv).x;
return vec3((UVToViewA * uv + UVToViewB) * z, z);
}
#if defined(MULTISAMPLE)
vec3 SampleNormal(vec2 uv)
{
ivec2 texSize = textureSize(NormalTexture);
ivec2 ipos = ivec2(uv * vec2(texSize));
return texelFetch(NormalTexture, ipos, SampleIndex).xyz * 2.0 - 1.0;
}
#else
vec3 SampleNormal(vec2 uv)
{
ivec2 texSize = textureSize(NormalTexture, 0);
ivec2 ipos = ivec2(uv * vec2(texSize));
return texelFetch(NormalTexture, ipos, 0).xyz * 2.0 - 1.0;
}
#endif
// Look up the eye space normal for the specified texture coordinate
vec3 FetchNormal(vec2 uv)
{
vec3 normal = SampleNormal(Offset + uv * Scale);
if (length(normal) > 0.1)
{
normal = normalize(normal);
normal.z = -normal.z;
return normal;
}
else
{
return vec3(0.0);
}
}
// Compute normalized 2D direction
vec2 RotateDirection(vec2 dir, vec2 cossin)
{
return vec2(dir.x * cossin.x - dir.y * cossin.y, dir.x * cossin.y + dir.y * cossin.x);
}
vec4 GetJitter()
{
#if !defined(USE_RANDOM_TEXTURE)
return vec4(1,0,1,1);
//vec3 rand = noise3(TexCoord.x + TexCoord.y);
//float angle = 2.0 * PI * rand.x / NUM_DIRECTIONS;
//return vec4(cos(angle), sin(angle), rand.y, rand.z);
#else
return texture(RandomTexture, gl_FragCoord.xy / RANDOM_TEXTURE_WIDTH);
#endif
}
// Calculates the ambient occlusion of a sample
float ComputeSampleAO(vec3 kernelPos, vec3 normal, vec3 samplePos)
{
vec3 v = samplePos - kernelPos;
float distanceSquare = dot(v, v);
float nDotV = dot(normal, v) * inversesqrt(distanceSquare);
return clamp(nDotV - NDotVBias, 0.0, 1.0) * clamp(distanceSquare * NegInvR2 + 1.0, 0.0, 1.0);
}
// Calculates the total ambient occlusion for the entire fragment
float ComputeAO(vec3 viewPosition, vec3 viewNormal)
{
vec4 rand = GetJitter();
float radiusPixels = RadiusToScreen / viewPosition.z;
float stepSizePixels = radiusPixels / (NUM_STEPS + 1.0);
const float directionAngleStep = 2.0 * PI / NUM_DIRECTIONS;
float ao = 0.0;
for (float directionIndex = 0.0; directionIndex < NUM_DIRECTIONS; ++directionIndex)
{
float angle = directionAngleStep * directionIndex;
vec2 direction = RotateDirection(vec2(cos(angle), sin(angle)), rand.xy);
float rayPixels = (rand.z * stepSizePixels + 1.0);
for (float StepIndex = 0.0; StepIndex < NUM_STEPS; ++StepIndex)
{
vec2 sampleUV = round(rayPixels * direction) * InvFullResolution + TexCoord;
vec3 samplePos = FetchViewPos(sampleUV);
ao += ComputeSampleAO(viewPosition, viewNormal, samplePos);
rayPixels += stepSizePixels;
}
}
ao *= AOMultiplier / (NUM_DIRECTIONS * NUM_STEPS);
return clamp(1.0 - ao * 2.0, 0.0, 1.0);
}
void main()
{
vec3 viewPosition = FetchViewPos(TexCoord);
vec3 viewNormal = FetchNormal(TexCoord);
float occlusion = viewNormal != vec3(0.0) ? ComputeAO(viewPosition, viewNormal) * AOStrength + (1.0 - AOStrength) : 1.0;
FragColor = vec4(occlusion, viewPosition.z, 0.0, 1.0);
}

View file

@ -1,41 +0,0 @@
layout(location=0) in vec2 TexCoord;
layout(location=0) out vec4 FragColor;
layout(binding=0) uniform sampler2D AODepthTexture;
#if defined(MULTISAMPLE)
layout(binding=1) uniform sampler2DMS SceneFogTexture;
#else
layout(binding=1) uniform sampler2D SceneFogTexture;
#endif
void main()
{
vec2 uv = Offset + TexCoord * Scale;
#if defined(MULTISAMPLE)
ivec2 texSize = textureSize(SceneFogTexture);
#else
ivec2 texSize = textureSize(SceneFogTexture, 0);
#endif
ivec2 ipos = ivec2(uv * vec2(texSize));
#if defined(MULTISAMPLE)
vec3 fogColor = texelFetch(SceneFogTexture, ipos, 0).rgb;
#else
vec3 fogColor = texelFetch(SceneFogTexture, ipos, 0).rgb;
#endif
vec4 ssao = texture(AODepthTexture, TexCoord);
float attenutation = ssao.x;
if (DebugMode == 0)
FragColor = vec4(fogColor, 1.0 - attenutation);
else if (DebugMode < 3)
FragColor = vec4(attenutation, attenutation, attenutation, 1.0);
else if (DebugMode == 3)
FragColor = vec4(ssao.yyy / 1000.0, 1.0);
else
FragColor = vec4(ssao.xyz, 1.0);
}

View file

@ -1,89 +0,0 @@
layout(location=0) in vec2 TexCoord;
layout(location=0) out vec4 FragColor;
layout(binding=0) uniform sampler2D InputTexture;
vec3 Linear(vec3 c)
{
//c = max(c, vec3(0.0));
//return pow(c, 2.2);
return c * c; // cheaper, but assuming gamma of 2.0 instead of 2.2
}
vec3 sRGB(vec3 c)
{
c = max(c, vec3(0.0));
//return pow(c, vec3(1.0 / 2.2));
return sqrt(c); // cheaper, but assuming gamma of 2.0 instead of 2.2
}
#if defined(LINEAR)
vec3 Tonemap(vec3 color)
{
return sRGB(color);
}
#elif defined(REINHARD)
vec3 Tonemap(vec3 color)
{
color = color / (1.0 + color);
return sRGB(color);
}
#elif defined(HEJLDAWSON)
vec3 Tonemap(vec3 color)
{
vec3 x = max(vec3(0.0), color - 0.004);
return (x * (6.2 * x + 0.5)) / (x * (6.2 * x + 1.7) + 0.06); // no sRGB needed
}
#elif defined(UNCHARTED2)
vec3 Uncharted2Tonemap(vec3 x)
{
float A = 0.15;
float B = 0.50;
float C = 0.10;
float D = 0.20;
float E = 0.02;
float F = 0.30;
return ((x * (A * x + C * B) + D * E) / (x * (A * x + B) + D * F)) - E / F;
}
vec3 Tonemap(vec3 color)
{
float W = 11.2;
vec3 curr = Uncharted2Tonemap(color);
vec3 whiteScale = vec3(1) / Uncharted2Tonemap(vec3(W));
return sRGB(curr * whiteScale);
}
#elif defined(PALETTE)
layout(binding=1) uniform sampler2D PaletteLUT;
vec3 Tonemap(vec3 color)
{
ivec3 c = ivec3(clamp(color.rgb, vec3(0.0), vec3(1.0)) * 63.0 + 0.5);
int index = (c.r * 64 + c.g) * 64 + c.b;
int tx = index % 512;
int ty = index / 512;
return texelFetch(PaletteLUT, ivec2(tx, ty), 0).rgb;
}
#else
#error Tonemap mode define is missing
#endif
void main()
{
vec3 color = texture(InputTexture, TexCoord).rgb;
#ifndef PALETTE
color = Linear(color); // needed because gzdoom's scene texture is not linear at the moment
#endif
FragColor = vec4(Tonemap(color), 1.0);
}