raze/source/core/gamefuncs.h

313 lines
7.9 KiB
C
Raw Normal View History

#pragma once
#include "gamecontrol.h"
#include "binaryangle.h"
#include "build.h"
// breadth first search, this gets used multiple times throughout the engine, mainly for iterating over sectors.
// Only works on indices, this has no knowledge of the actual objects being looked at.
// All objects of this type operate on the same shared store. Interleaved use is not allowed, nested use is fine.
class BFSSearch
{
static inline TArray<unsigned> store;
unsigned bitpos;
unsigned startpos;
unsigned curpos;
public:
2021-11-15 23:19:34 +00:00
enum { EOL = ~0u };
BFSSearch(unsigned datasize, unsigned startnode)
{
bitpos = store.Size();
unsigned bitsize = (datasize + 31) >> 5;
store.Reserve(bitsize);
memset(&store[bitpos], 0, bitsize*4);
startpos = store.Size();
curpos = startpos;
Set(startnode);
store.Push(startnode);
}
// This allows this object to just work as a bit array
// which is useful for using its shared storage.
BFSSearch(unsigned datasize)
{
bitpos = store.Size();
unsigned bitsize = (datasize + 31) >> 5;
store.Reserve(bitsize);
memset(&store[bitpos], 0, bitsize * 4);
}
~BFSSearch()
{
store.Clamp(bitpos);
}
bool Check(unsigned index) const
{
return !!(store[bitpos + (index >> 5)] & (1 << (index & 31)));
}
void Set(unsigned index)
{
store[bitpos + (index >> 5)] |= (1 << (index & 31));
}
private:
public:
unsigned GetNext()
{
curpos++;
if (curpos <= store.Size())
return store[curpos-1];
else
return ~0;
}
void Rewind()
{
curpos = startpos;
}
void Add(unsigned elem)
{
if (!Check(elem))
{
Set(elem);
store.Push(elem);
}
}
};
extern int cameradist, cameraclock;
void loaddefinitionsfile(const char* fn, bool cumulative = false, bool maingrp = false);
2021-04-20 22:46:32 +00:00
bool calcChaseCamPos(int* px, int* py, int* pz, spritetype* pspr, int *psectnum, binangle ang, fixedhoriz horiz, double const smoothratio);
2021-11-18 18:33:32 +00:00
inline bool calcChaseCamPos(int* px, int* py, int* pz, spritetype* pspr, sectortype** psectnum, binangle ang, fixedhoriz horiz, double const smoothratio)
{
int sectnum;
bool res = calcChaseCamPos(px, py, pz, pspr, &sectnum, ang, horiz, smoothratio);
*psectnum = &sector[sectnum];
return res;
}
2021-05-11 23:50:41 +00:00
void PlanesAtPoint(const sectortype* sec, int dax, int day, float* ceilz, float* florz);
2021-05-11 23:55:06 +00:00
inline void PlanesAtPoint(const sectortype* sec, float dax, float day, float* ceilz, float* florz) // this is just for warning evasion.
{
PlanesAtPoint(sec, int(dax), int(day), ceilz, florz);
}
void setWallSectors();
2021-03-27 12:22:34 +00:00
void GetWallSpritePosition(const spritetype* spr, vec2_t pos, vec2_t* out, bool render = false);
2021-03-26 19:28:44 +00:00
void GetFlatSpritePosition(const spritetype* spr, vec2_t pos, vec2_t* out, bool render = false);
2021-03-20 22:01:16 +00:00
void checkRotatedWalls();
// y is negated so that the orientation is the same as in GZDoom, in order to use its utilities.
// The render code should NOT use Build coordinates for anything!
inline double WallStartX(int wallnum)
{
return wall[wallnum].x * (1 / 16.);
}
inline double WallStartY(int wallnum)
{
return wall[wallnum].y * (1 / -16.);
}
inline double WallEndX(int wallnum)
{
return wall[wall[wallnum].point2].x * (1 / 16.);
}
inline double WallEndY(int wallnum)
{
return wall[wall[wallnum].point2].y * (1 / -16.);
}
inline double WallStartX(const walltype* wallnum)
{
return wallnum->x * (1 / 16.);
}
inline double WallStartY(const walltype* wallnum)
{
return wallnum->y * (1 / -16.);
}
inline DVector2 WallStart(const walltype* wallnum)
{
return { WallStartX(wallnum), WallStartY(wallnum) };
}
inline double WallEndX(const walltype* wallnum)
{
return wall[wallnum->point2].x * (1 / 16.);
}
inline double WallEndY(const walltype* wallnum)
{
return wall[wallnum->point2].y * (1 / -16.);
}
inline DVector2 WallEnd(const walltype* wallnum)
{
return { WallEndX(wallnum), WallEndY(wallnum) };
}
inline DVector2 WallDelta(const walltype* wallnum)
{
return WallEnd(wallnum) - WallStart(wallnum);
}
inline double SpriteX(spritetype* spr)
{
return spr->x * (1 / 16.);
}
inline double SpriteY(spritetype* spr)
{
return spr->y * (1 / -16.);
}
inline DVector2 SpritePos(spritetype* spr)
{
return { SpriteX(spr), SpriteY(spr) };
}
inline double PointOnLineSide(double x, double y, double linex, double liney, double deltax, double deltay)
{
return (x - linex) * deltay - (y - liney) * deltax;
}
inline double PointOnLineSide(const DVector2 &pos, const walltype *line)
{
return (pos.X - WallStartX(line)) * WallDelta(line).Y - (pos.Y - WallStartY(line)) * WallDelta(line).X;
}
template<class T>
inline double PointOnLineSide(const TVector2<T>& pos, const TVector2<T>& linestart, const TVector2<T>& lineend)
{
return (pos.X - linestart.X) * (lineend.Y - linestart.Y) - (pos.Y - linestart.Y) * (lineend.X - linestart.X);
}
inline int sectorofwall(int wallNum)
{
if ((unsigned)wallNum < (unsigned)numwalls) return wall[wallNum].sector;
return -1;
}
2021-03-25 08:13:16 +00:00
extern int numshades;
// Return type is int because this gets passed to variadic functions where structs may produce undefined behavior.
inline int shadeToLight(int shade)
{
shade = clamp(shade, 0, numshades - 1);
int light = Scale(numshades - 1 - shade, 255, numshades - 1);
return PalEntry(255, light, light, light);
}
2021-04-13 18:33:21 +00:00
inline void copyfloorpal(spritetype* spr, const sectortype* sect)
{
if (!lookups.noFloorPal(sect->floorpal)) spr->pal = sect->floorpal;
}
2021-06-02 19:00:39 +00:00
inline void spriteSetSlope(spritetype* spr, int heinum)
2021-06-02 19:00:39 +00:00
{
if (spr->cstat & CSTAT_SPRITE_ALIGNMENT_FLOOR)
{
spr->xoffset = heinum & 255;
spr->yoffset = (heinum >> 8) & 255;
spr->cstat = (spr->cstat & ~CSTAT_SPRITE_ALIGNMENT_MASK) | (heinum != 0 ? CSTAT_SPRITE_ALIGNMENT_SLOPE : CSTAT_SPRITE_ALIGNMENT_FLOOR);
}
}
inline int spriteGetSlope(spritetype* spr)
2021-06-02 19:00:39 +00:00
{
return ((spr->cstat & CSTAT_SPRITE_ALIGNMENT_MASK) != CSTAT_SPRITE_ALIGNMENT_SLOPE) ? 0 : uint8_t(spr->xoffset) + (uint8_t(spr->yoffset) << 8);
}
inline int I_GetBuildTime()
{
return I_GetTime(120);
}
inline int32_t getangle(walltype* wal)
{
return getangle(
wall[wal->point2].x - wal->x,
wall[wal->point2].y - wal->y);
}
inline TArrayView<sectortype> sectors()
{
return TArrayView<sectortype>(&sector[0], numsectors);
}
inline TArrayView<walltype> walls()
{
return TArrayView<walltype>(&wall[0], numwalls);
}
inline TArrayView<walltype> wallsofsector(sectortype* sec)
{
return TArrayView<walltype>(sec->firstWall(), sec->wallnum);
}
inline TArrayView<walltype> wallsofsector(int sec)
{
return wallsofsector(&sector[sec]);
}
// these are mainly meant as refactoring aids to mark function calls to work on.
inline int wallnum(const walltype* wal)
{
return int(wal - wall);
}
inline int sectnum(const sectortype* sect)
{
return int(sect - sector);
}
inline double SquareDist(double lx1, double ly1, double lx2, double ly2)
{
double dx = lx2 - lx1;
double dy = ly2 - ly1;
return dx * dx + dy * dy;
}
inline double SquareDistToWall(double px, double py, const walltype* wal)
{
double lx1 = wal->x;
double ly1 = wal->y;
double lx2 = wal->point2Wall()->x;
double ly2 = wal->point2Wall()->y;
double wall_length = SquareDist(lx1, ly1, lx2, ly2);
if (wall_length == 0) return SquareDist(px, py, lx1, ly1);
double t = ((px - lx1) * (lx2 - lx1) + (py - ly1) * (ly2 - ly1)) / wall_length;
t = clamp(t, 0., 1.);
return SquareDist(px, py, lx1 + t * (lx2 - lx1), ly1 + t * (ly2 - ly1));
}
inline int inside(int x, int y, sectortype* sect)
{
return inside(x, y, sectnum(sect));
}
inline void dragpoint(walltype* pointhighlight, int32_t dax, int32_t day)
{
dragpoint(wallnum(pointhighlight), dax, day);
}
inline int findwallbetweensectors(sectortype* sect1, sectortype* sect2)
{
return findwallbetweensectors(sectnum(sect1), sectnum(sect2));
}