#include "quakedef.h" #include "cl_collision.h" #include "dpsoftrast.h" #include "glquake.h" #include // on GLES we have to use some proper #define's #ifndef GL_FRAMEBUFFER #define GL_FRAMEBUFFER 0x8D40 #define GL_DEPTH_ATTACHMENT 0x8D00 #define GL_COLOR_ATTACHMENT0 0x8CE0 #define GL_INVALID_FRAMEBUFFER_OPERATION 0x0506 #endif #ifndef GL_COLOR_ATTACHMENT1 #define GL_COLOR_ATTACHMENT1 0x8CE1 #define GL_COLOR_ATTACHMENT2 0x8CE2 #define GL_COLOR_ATTACHMENT3 0x8CE3 #define GL_COLOR_ATTACHMENT4 0x8CE4 #define GL_COLOR_ATTACHMENT5 0x8CE5 #define GL_COLOR_ATTACHMENT6 0x8CE6 #define GL_COLOR_ATTACHMENT7 0x8CE7 #define GL_COLOR_ATTACHMENT8 0x8CE8 #define GL_COLOR_ATTACHMENT9 0x8CE9 #define GL_COLOR_ATTACHMENT10 0x8CEA #define GL_COLOR_ATTACHMENT11 0x8CEB #define GL_COLOR_ATTACHMENT12 0x8CEC #define GL_COLOR_ATTACHMENT13 0x8CED #define GL_COLOR_ATTACHMENT14 0x8CEE #define GL_COLOR_ATTACHMENT15 0x8CEF #endif #ifndef GL_ARRAY_BUFFER #define GL_ARRAY_BUFFER 0x8892 #define GL_ELEMENT_ARRAY_BUFFER 0x8893 #endif //#ifndef GL_VERTEX_ARRAY //#define GL_VERTEX_ARRAY 0x8074 //#define GL_COLOR_ARRAY 0x8076 //#define GL_TEXTURE_COORD_ARRAY 0x8078 //#endif #ifndef GL_TEXTURE0 #define GL_TEXTURE0 0x84C0 #define GL_TEXTURE1 0x84C1 #define GL_TEXTURE2 0x84C2 #define GL_TEXTURE3 0x84C3 #define GL_TEXTURE4 0x84C4 #define GL_TEXTURE5 0x84C5 #define GL_TEXTURE6 0x84C6 #define GL_TEXTURE7 0x84C7 #define GL_TEXTURE8 0x84C8 #define GL_TEXTURE9 0x84C9 #define GL_TEXTURE10 0x84CA #define GL_TEXTURE11 0x84CB #define GL_TEXTURE12 0x84CC #define GL_TEXTURE13 0x84CD #define GL_TEXTURE14 0x84CE #define GL_TEXTURE15 0x84CF #define GL_TEXTURE16 0x84D0 #define GL_TEXTURE17 0x84D1 #define GL_TEXTURE18 0x84D2 #define GL_TEXTURE19 0x84D3 #define GL_TEXTURE20 0x84D4 #define GL_TEXTURE21 0x84D5 #define GL_TEXTURE22 0x84D6 #define GL_TEXTURE23 0x84D7 #define GL_TEXTURE24 0x84D8 #define GL_TEXTURE25 0x84D9 #define GL_TEXTURE26 0x84DA #define GL_TEXTURE27 0x84DB #define GL_TEXTURE28 0x84DC #define GL_TEXTURE29 0x84DD #define GL_TEXTURE30 0x84DE #define GL_TEXTURE31 0x84DF #endif #ifndef GL_TEXTURE_3D #define GL_TEXTURE_3D 0x806F #endif #ifndef GL_TEXTURE_CUBE_MAP #define GL_TEXTURE_CUBE_MAP 0x8513 #endif //#ifndef GL_MODELVIEW //#define GL_MODELVIEW 0x1700 //#endif //#ifndef GL_PROJECTION //#define GL_PROJECTION 0x1701 //#endif //#ifndef GL_DECAL //#define GL_DECAL 0x2101 //#endif //#ifndef GL_INTERPOLATE //#define GL_INTERPOLATE 0x8575 //#endif #define MAX_RENDERTARGETS 4 cvar_t gl_mesh_drawrangeelements = {0, "gl_mesh_drawrangeelements", "1", "use glDrawRangeElements function if available instead of glDrawElements (for performance comparisons or bug testing)"}; cvar_t gl_mesh_testmanualfeeding = {0, "gl_mesh_testmanualfeeding", "0", "use glBegin(GL_TRIANGLES);glTexCoord2f();glVertex3f();glEnd(); primitives instead of glDrawElements (useful to test for driver bugs with glDrawElements)"}; cvar_t gl_paranoid = {0, "gl_paranoid", "0", "enables OpenGL error checking and other tests"}; cvar_t gl_printcheckerror = {0, "gl_printcheckerror", "0", "prints all OpenGL error checks, useful to identify location of driver crashes"}; cvar_t r_render = {0, "r_render", "1", "enables rendering 3D views (you want this on!)"}; cvar_t r_renderview = {0, "r_renderview", "1", "enables rendering 3D views (you want this on!)"}; cvar_t r_waterwarp = {CVAR_SAVE, "r_waterwarp", "1", "warp view while underwater"}; cvar_t gl_polyblend = {CVAR_SAVE, "gl_polyblend", "1", "tints view while underwater, hurt, etc"}; cvar_t gl_dither = {CVAR_SAVE, "gl_dither", "1", "enables OpenGL dithering (16bit looks bad with this off)"}; cvar_t gl_vbo = {CVAR_SAVE, "gl_vbo", "3", "make use of GL_ARB_vertex_buffer_object extension to store static geometry in video memory for faster rendering, 0 disables VBO allocation or use, 1 enables VBOs for vertex and triangle data, 2 only for vertex data, 3 for vertex data and triangle data of simple meshes (ones with only one surface)"}; cvar_t gl_vbo_dynamicvertex = {CVAR_SAVE, "gl_vbo_dynamicvertex", "0", "make use of GL_ARB_vertex_buffer_object extension when rendering dynamic (animated/procedural) geometry such as text and particles"}; cvar_t gl_vbo_dynamicindex = {CVAR_SAVE, "gl_vbo_dynamicindex", "0", "make use of GL_ARB_vertex_buffer_object extension when rendering dynamic (animated/procedural) geometry such as text and particles"}; cvar_t gl_fbo = {CVAR_SAVE, "gl_fbo", "1", "make use of GL_ARB_framebuffer_object extension to enable shadowmaps and other features using pixel formats different from the framebuffer"}; cvar_t v_flipped = {0, "v_flipped", "0", "mirror the screen (poor man's left handed mode)"}; qboolean v_flipped_state = false; r_viewport_t gl_viewport; matrix4x4_t gl_modelmatrix; matrix4x4_t gl_viewmatrix; matrix4x4_t gl_modelviewmatrix; matrix4x4_t gl_projectionmatrix; matrix4x4_t gl_modelviewprojectionmatrix; float gl_modelview16f[16]; float gl_modelviewprojection16f[16]; qboolean gl_modelmatrixchanged; int gl_maxdrawrangeelementsvertices; int gl_maxdrawrangeelementsindices; #ifdef DEBUGGL int errornumber = 0; void GL_PrintError(int errornumber, const char *filename, int linenumber) { switch(errornumber) { #ifdef GL_INVALID_ENUM case GL_INVALID_ENUM: Con_Printf("GL_INVALID_ENUM at %s:%i\n", filename, linenumber); break; #endif #ifdef GL_INVALID_VALUE case GL_INVALID_VALUE: Con_Printf("GL_INVALID_VALUE at %s:%i\n", filename, linenumber); break; #endif #ifdef GL_INVALID_OPERATION case GL_INVALID_OPERATION: Con_Printf("GL_INVALID_OPERATION at %s:%i\n", filename, linenumber); break; #endif #ifdef GL_STACK_OVERFLOW case GL_STACK_OVERFLOW: Con_Printf("GL_STACK_OVERFLOW at %s:%i\n", filename, linenumber); break; #endif #ifdef GL_STACK_UNDERFLOW case GL_STACK_UNDERFLOW: Con_Printf("GL_STACK_UNDERFLOW at %s:%i\n", filename, linenumber); break; #endif #ifdef GL_OUT_OF_MEMORY case GL_OUT_OF_MEMORY: Con_Printf("GL_OUT_OF_MEMORY at %s:%i\n", filename, linenumber); break; #endif #ifdef GL_TABLE_TOO_LARGE case GL_TABLE_TOO_LARGE: Con_Printf("GL_TABLE_TOO_LARGE at %s:%i\n", filename, linenumber); break; #endif #ifdef GL_INVALID_FRAMEBUFFER_OPERATION case GL_INVALID_FRAMEBUFFER_OPERATION: Con_Printf("GL_INVALID_FRAMEBUFFER_OPERATION at %s:%i\n", filename, linenumber); break; #endif default: Con_Printf("GL UNKNOWN (%i) at %s:%i\n", errornumber, filename, linenumber); break; } } #endif #define BACKENDACTIVECHECK if (!gl_state.active) Sys_Error("GL backend function called when backend is not active"); void SCR_ScreenShot_f (void); typedef struct gltextureunit_s { int pointer_texcoord_components; int pointer_texcoord_gltype; size_t pointer_texcoord_stride; const void *pointer_texcoord_pointer; const r_meshbuffer_t *pointer_texcoord_vertexbuffer; size_t pointer_texcoord_offset; rtexture_t *texture; int t2d, t3d, tcubemap; int arrayenabled; int rgbscale, alphascale; int combine; int combinergb, combinealpha; // texmatrixenabled exists only to avoid unnecessary texmatrix compares int texmatrixenabled; matrix4x4_t matrix; } gltextureunit_t; typedef struct gl_state_s { int cullface; int cullfaceenable; int blendfunc1; int blendfunc2; qboolean blend; GLboolean depthmask; int colormask; // stored as bottom 4 bits: r g b a (3 2 1 0 order) int depthtest; int depthfunc; float depthrange[2]; float polygonoffset[2]; int alphatest; int alphafunc; float alphafuncvalue; qboolean alphatocoverage; int scissortest; unsigned int unit; unsigned int clientunit; gltextureunit_t units[MAX_TEXTUREUNITS]; float color4f[4]; int lockrange_first; int lockrange_count; int vertexbufferobject; int elementbufferobject; int uniformbufferobject; int framebufferobject; int defaultframebufferobject; // deal with platforms that use a non-zero default fbo qboolean pointer_color_enabled; int pointer_vertex_components; int pointer_vertex_gltype; size_t pointer_vertex_stride; const void *pointer_vertex_pointer; const r_meshbuffer_t *pointer_vertex_vertexbuffer; size_t pointer_vertex_offset; int pointer_color_components; int pointer_color_gltype; size_t pointer_color_stride; const void *pointer_color_pointer; const r_meshbuffer_t *pointer_color_vertexbuffer; size_t pointer_color_offset; void *preparevertices_tempdata; size_t preparevertices_tempdatamaxsize; r_vertexgeneric_t *preparevertices_vertexgeneric; r_vertexmesh_t *preparevertices_vertexmesh; int preparevertices_numvertices; qboolean usevbo_staticvertex; qboolean usevbo_staticindex; qboolean usevbo_dynamicvertex; qboolean usevbo_dynamicindex; memexpandablearray_t meshbufferarray; qboolean active; #ifdef SUPPORTD3D // rtexture_t *d3drt_depthtexture; // rtexture_t *d3drt_colortextures[MAX_RENDERTARGETS]; IDirect3DSurface9 *d3drt_depthsurface; IDirect3DSurface9 *d3drt_colorsurfaces[MAX_RENDERTARGETS]; IDirect3DSurface9 *d3drt_backbufferdepthsurface; IDirect3DSurface9 *d3drt_backbuffercolorsurface; void *d3dvertexbuffer; void *d3dvertexdata; size_t d3dvertexsize; #endif } gl_state_t; static gl_state_t gl_state; void android_kostyl() { gl_state.pointer_vertex_pointer=0; gl_state.pointer_color_pointer=0; } /* note: here's strip order for a terrain row: 0--1--2--3--4 |\ |\ |\ |\ | | \| \| \| \| A--B--C--D--E clockwise A0B, 01B, B1C, 12C, C2D, 23D, D3E, 34E *elements++ = i + row; *elements++ = i; *elements++ = i + row + 1; *elements++ = i; *elements++ = i + 1; *elements++ = i + row + 1; for (y = 0;y < rows - 1;y++) { for (x = 0;x < columns - 1;x++) { i = y * rows + x; *elements++ = i + columns; *elements++ = i; *elements++ = i + columns + 1; *elements++ = i; *elements++ = i + 1; *elements++ = i + columns + 1; } } alternative: 0--1--2--3--4 | /| /|\ | /| |/ |/ | \|/ | A--B--C--D--E counterclockwise for (y = 0;y < rows - 1;y++) { for (x = 0;x < columns - 1;x++) { i = y * rows + x; *elements++ = i; *elements++ = i + columns; *elements++ = i + columns + 1; *elements++ = i + columns; *elements++ = i + columns + 1; *elements++ = i + 1; } } */ int polygonelement3i[(POLYGONELEMENTS_MAXPOINTS-2)*3]; unsigned short polygonelement3s[(POLYGONELEMENTS_MAXPOINTS-2)*3]; int quadelement3i[QUADELEMENTS_MAXQUADS*6]; unsigned short quadelement3s[QUADELEMENTS_MAXQUADS*6]; static void GL_VBOStats_f(void) { GL_Mesh_ListVBOs(true); } static void GL_Backend_ResetState(void); static void R_Mesh_InitVertexDeclarations(void); static void R_Mesh_DestroyVertexDeclarations(void); static void R_Mesh_SetUseVBO(void) { switch(vid.renderpath) { case RENDERPATH_GL11: case RENDERPATH_GL13: case RENDERPATH_GL20: case RENDERPATH_GLES1: gl_state.usevbo_staticvertex = (vid.support.arb_vertex_buffer_object && gl_vbo.integer) || vid.forcevbo; gl_state.usevbo_staticindex = (vid.support.arb_vertex_buffer_object && (gl_vbo.integer == 1 || gl_vbo.integer == 3)) || vid.forcevbo; gl_state.usevbo_dynamicvertex = (vid.support.arb_vertex_buffer_object && gl_vbo_dynamicvertex.integer && gl_vbo.integer) || vid.forcevbo; gl_state.usevbo_dynamicindex = (vid.support.arb_vertex_buffer_object && gl_vbo_dynamicindex.integer && gl_vbo.integer) || vid.forcevbo; break; case RENDERPATH_D3D9: gl_state.usevbo_staticvertex = gl_state.usevbo_staticindex = (vid.support.arb_vertex_buffer_object && gl_vbo.integer) || vid.forcevbo; gl_state.usevbo_dynamicvertex = gl_state.usevbo_dynamicindex = (vid.support.arb_vertex_buffer_object && gl_vbo_dynamicvertex.integer && gl_vbo_dynamicindex.integer && gl_vbo.integer) || vid.forcevbo; break; case RENDERPATH_D3D10: Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_D3D11: Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_SOFT: gl_state.usevbo_staticvertex = false; gl_state.usevbo_staticindex = false; gl_state.usevbo_dynamicvertex = false; gl_state.usevbo_dynamicindex = false; break; case RENDERPATH_GLES2: gl_state.usevbo_staticvertex = (vid.support.arb_vertex_buffer_object && gl_vbo.integer) || vid.forcevbo; gl_state.usevbo_staticindex = (vid.support.arb_vertex_buffer_object && gl_vbo.integer) || vid.forcevbo; gl_state.usevbo_dynamicvertex = (vid.support.arb_vertex_buffer_object && gl_vbo_dynamicvertex.integer) || vid.forcevbo; gl_state.usevbo_dynamicindex = (vid.support.arb_vertex_buffer_object && gl_vbo_dynamicindex.integer) || vid.forcevbo; break; } } static void gl_backend_start(void) { memset(&gl_state, 0, sizeof(gl_state)); R_Mesh_InitVertexDeclarations(); R_Mesh_SetUseVBO(); Mem_ExpandableArray_NewArray(&gl_state.meshbufferarray, r_main_mempool, sizeof(r_meshbuffer_t), 128); Con_DPrintf("OpenGL backend started.\n"); CHECKGLERROR GL_Backend_ResetState(); switch(vid.renderpath) { case RENDERPATH_GL11: case RENDERPATH_GL13: case RENDERPATH_GL20: case RENDERPATH_GLES1: case RENDERPATH_GLES2: // fetch current fbo here (default fbo is not 0 on some GLES devices) if (vid.support.ext_framebuffer_object) qglGetIntegerv(GL_FRAMEBUFFER_BINDING, &gl_state.defaultframebufferobject); break; case RENDERPATH_D3D9: #ifdef SUPPORTD3D IDirect3DDevice9_GetDepthStencilSurface(vid_d3d9dev, &gl_state.d3drt_backbufferdepthsurface); IDirect3DDevice9_GetRenderTarget(vid_d3d9dev, 0, &gl_state.d3drt_backbuffercolorsurface); #endif break; case RENDERPATH_D3D10: Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_D3D11: Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_SOFT: break; } } static void gl_backend_shutdown(void) { Con_DPrint("OpenGL Backend shutting down\n"); switch(vid.renderpath) { case RENDERPATH_GL11: case RENDERPATH_GL13: case RENDERPATH_GL20: case RENDERPATH_SOFT: case RENDERPATH_GLES1: case RENDERPATH_GLES2: break; case RENDERPATH_D3D9: #ifdef SUPPORTD3D IDirect3DSurface9_Release(gl_state.d3drt_backbufferdepthsurface); IDirect3DSurface9_Release(gl_state.d3drt_backbuffercolorsurface); #endif break; case RENDERPATH_D3D10: Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_D3D11: Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; } if (gl_state.preparevertices_tempdata) Mem_Free(gl_state.preparevertices_tempdata); Mem_ExpandableArray_FreeArray(&gl_state.meshbufferarray); R_Mesh_DestroyVertexDeclarations(); memset(&gl_state, 0, sizeof(gl_state)); } static void gl_backend_newmap(void) { } static void gl_backend_devicelost(void) { int i, endindex; r_meshbuffer_t *buffer; #ifdef SUPPORTD3D gl_state.d3dvertexbuffer = NULL; #endif switch(vid.renderpath) { case RENDERPATH_GL11: case RENDERPATH_GL13: case RENDERPATH_GL20: case RENDERPATH_SOFT: case RENDERPATH_GLES1: case RENDERPATH_GLES2: break; case RENDERPATH_D3D9: #ifdef SUPPORTD3D IDirect3DSurface9_Release(gl_state.d3drt_backbufferdepthsurface); IDirect3DSurface9_Release(gl_state.d3drt_backbuffercolorsurface); #endif break; case RENDERPATH_D3D10: Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_D3D11: Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; } endindex = Mem_ExpandableArray_IndexRange(&gl_state.meshbufferarray); for (i = 0;i < endindex;i++) { buffer = (r_meshbuffer_t *) Mem_ExpandableArray_RecordAtIndex(&gl_state.meshbufferarray, i); if (!buffer || !buffer->isdynamic) continue; switch(vid.renderpath) { case RENDERPATH_GL11: case RENDERPATH_GL13: case RENDERPATH_GL20: case RENDERPATH_SOFT: case RENDERPATH_GLES1: case RENDERPATH_GLES2: break; case RENDERPATH_D3D9: #ifdef SUPPORTD3D if (buffer->devicebuffer) { if (buffer->isindexbuffer) IDirect3DIndexBuffer9_Release((IDirect3DIndexBuffer9*)buffer->devicebuffer); else IDirect3DVertexBuffer9_Release((IDirect3DVertexBuffer9*)buffer->devicebuffer); buffer->devicebuffer = NULL; } #endif break; case RENDERPATH_D3D10: Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_D3D11: Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; } } } static void gl_backend_devicerestored(void) { switch(vid.renderpath) { case RENDERPATH_GL11: case RENDERPATH_GL13: case RENDERPATH_GL20: case RENDERPATH_SOFT: case RENDERPATH_GLES1: case RENDERPATH_GLES2: break; case RENDERPATH_D3D9: #ifdef SUPPORTD3D IDirect3DDevice9_GetDepthStencilSurface(vid_d3d9dev, &gl_state.d3drt_backbufferdepthsurface); IDirect3DDevice9_GetRenderTarget(vid_d3d9dev, 0, &gl_state.d3drt_backbuffercolorsurface); #endif break; case RENDERPATH_D3D10: Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_D3D11: Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; } } void gl_backend_init(void) { int i; for (i = 0;i < POLYGONELEMENTS_MAXPOINTS - 2;i++) { polygonelement3s[i * 3 + 0] = 0; polygonelement3s[i * 3 + 1] = i + 1; polygonelement3s[i * 3 + 2] = i + 2; } // elements for rendering a series of quads as triangles for (i = 0;i < QUADELEMENTS_MAXQUADS;i++) { quadelement3s[i * 6 + 0] = i * 4; quadelement3s[i * 6 + 1] = i * 4 + 1; quadelement3s[i * 6 + 2] = i * 4 + 2; quadelement3s[i * 6 + 3] = i * 4; quadelement3s[i * 6 + 4] = i * 4 + 2; quadelement3s[i * 6 + 5] = i * 4 + 3; } for (i = 0;i < (POLYGONELEMENTS_MAXPOINTS - 2)*3;i++) polygonelement3i[i] = polygonelement3s[i]; for (i = 0;i < QUADELEMENTS_MAXQUADS*6;i++) quadelement3i[i] = quadelement3s[i]; Cvar_RegisterVariable(&r_render); Cvar_RegisterVariable(&r_renderview); Cvar_RegisterVariable(&r_waterwarp); Cvar_RegisterVariable(&gl_polyblend); Cvar_RegisterVariable(&v_flipped); Cvar_RegisterVariable(&gl_dither); Cvar_RegisterVariable(&gl_vbo); Cvar_RegisterVariable(&gl_vbo_dynamicvertex); Cvar_RegisterVariable(&gl_vbo_dynamicindex); Cvar_RegisterVariable(&gl_paranoid); Cvar_RegisterVariable(&gl_printcheckerror); Cvar_RegisterVariable(&gl_mesh_drawrangeelements); Cvar_RegisterVariable(&gl_mesh_testmanualfeeding); Cmd_AddCommand("gl_vbostats", GL_VBOStats_f, "prints a list of all buffer objects (vertex data and triangle elements) and total video memory used by them"); R_RegisterModule("GL_Backend", gl_backend_start, gl_backend_shutdown, gl_backend_newmap, gl_backend_devicelost, gl_backend_devicerestored); } void GL_SetMirrorState(qboolean state); void R_Viewport_TransformToScreen(const r_viewport_t *v, const vec4_t in, vec4_t out) { vec4_t temp; float iw; Matrix4x4_Transform4 (&v->viewmatrix, in, temp); Matrix4x4_Transform4 (&v->projectmatrix, temp, out); iw = 1.0f / out[3]; out[0] = v->x + (out[0] * iw + 1.0f) * v->width * 0.5f; // for an odd reason, inverting this is wrong for R_Shadow_ScissorForBBox (we then get badly scissored lights) //out[1] = v->y + v->height - (out[1] * iw + 1.0f) * v->height * 0.5f; out[1] = v->y + (out[1] * iw + 1.0f) * v->height * 0.5f; out[2] = v->z + (out[2] * iw + 1.0f) * v->depth * 0.5f; } void GL_Finish(void) { switch(vid.renderpath) { case RENDERPATH_GL11: case RENDERPATH_GL13: case RENDERPATH_GL20: case RENDERPATH_GLES1: case RENDERPATH_GLES2: qglFinish(); break; case RENDERPATH_D3D9: //Con_DPrintf("FIXME D3D9 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_D3D10: Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_D3D11: Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_SOFT: DPSOFTRAST_Finish(); break; } } static int bboxedges[12][2] = { // top {0, 1}, // +X {0, 2}, // +Y {1, 3}, // Y, +X {2, 3}, // X, +Y // bottom {4, 5}, // +X {4, 6}, // +Y {5, 7}, // Y, +X {6, 7}, // X, +Y // verticals {0, 4}, // +Z {1, 5}, // X, +Z {2, 6}, // Y, +Z {3, 7}, // XY, +Z }; qboolean R_ScissorForBBox(const float *mins, const float *maxs, int *scissor) { int i, ix1, iy1, ix2, iy2; float x1, y1, x2, y2; vec4_t v, v2; float vertex[20][3]; int j, k; vec4_t plane4f; int numvertices; float corner[8][4]; float dist[8]; int sign[8]; float f; scissor[0] = r_refdef.view.viewport.x; scissor[1] = r_refdef.view.viewport.y; scissor[2] = r_refdef.view.viewport.width; scissor[3] = r_refdef.view.viewport.height; // if view is inside the box, just say yes it's visible if (BoxesOverlap(r_refdef.view.origin, r_refdef.view.origin, mins, maxs)) return false; // transform all corners that are infront of the nearclip plane VectorNegate(r_refdef.view.frustum[4].normal, plane4f); plane4f[3] = r_refdef.view.frustum[4].dist; numvertices = 0; for (i = 0;i < 8;i++) { Vector4Set(corner[i], (i & 1) ? maxs[0] : mins[0], (i & 2) ? maxs[1] : mins[1], (i & 4) ? maxs[2] : mins[2], 1); dist[i] = DotProduct4(corner[i], plane4f); sign[i] = dist[i] > 0; if (!sign[i]) { VectorCopy(corner[i], vertex[numvertices]); numvertices++; } } // if some points are behind the nearclip, add clipped edge points to make // sure that the scissor boundary is complete if (numvertices > 0 && numvertices < 8) { // add clipped edge points for (i = 0;i < 12;i++) { j = bboxedges[i][0]; k = bboxedges[i][1]; if (sign[j] != sign[k]) { f = dist[j] / (dist[j] - dist[k]); VectorLerp(corner[j], f, corner[k], vertex[numvertices]); numvertices++; } } } // if we have no points to check, it is behind the view plane if (!numvertices) return true; // if we have some points to transform, check what screen area is covered x1 = y1 = x2 = y2 = 0; v[3] = 1.0f; //Con_Printf("%i vertices to transform...\n", numvertices); for (i = 0;i < numvertices;i++) { VectorCopy(vertex[i], v); R_Viewport_TransformToScreen(&r_refdef.view.viewport, v, v2); //Con_Printf("%.3f %.3f %.3f %.3f transformed to %.3f %.3f %.3f %.3f\n", v[0], v[1], v[2], v[3], v2[0], v2[1], v2[2], v2[3]); if (i) { if (x1 > v2[0]) x1 = v2[0]; if (x2 < v2[0]) x2 = v2[0]; if (y1 > v2[1]) y1 = v2[1]; if (y2 < v2[1]) y2 = v2[1]; } else { x1 = x2 = v2[0]; y1 = y2 = v2[1]; } } // now convert the scissor rectangle to integer screen coordinates ix1 = (int)(x1 - 1.0f); //iy1 = vid.height - (int)(y2 - 1.0f); //iy1 = r_refdef.view.viewport.width + 2 * r_refdef.view.viewport.x - (int)(y2 - 1.0f); iy1 = (int)(y1 - 1.0f); ix2 = (int)(x2 + 1.0f); //iy2 = vid.height - (int)(y1 + 1.0f); //iy2 = r_refdef.view.viewport.height + 2 * r_refdef.view.viewport.y - (int)(y1 + 1.0f); iy2 = (int)(y2 + 1.0f); //Con_Printf("%f %f %f %f\n", x1, y1, x2, y2); // clamp it to the screen if (ix1 < r_refdef.view.viewport.x) ix1 = r_refdef.view.viewport.x; if (iy1 < r_refdef.view.viewport.y) iy1 = r_refdef.view.viewport.y; if (ix2 > r_refdef.view.viewport.x + r_refdef.view.viewport.width) ix2 = r_refdef.view.viewport.x + r_refdef.view.viewport.width; if (iy2 > r_refdef.view.viewport.y + r_refdef.view.viewport.height) iy2 = r_refdef.view.viewport.y + r_refdef.view.viewport.height; // if it is inside out, it's not visible if (ix2 <= ix1 || iy2 <= iy1) return true; // the light area is visible, set up the scissor rectangle scissor[0] = ix1; scissor[1] = iy1; scissor[2] = ix2 - ix1; scissor[3] = iy2 - iy1; // D3D Y coordinate is top to bottom, OpenGL is bottom to top, fix the D3D one switch(vid.renderpath) { case RENDERPATH_D3D9: case RENDERPATH_D3D10: case RENDERPATH_D3D11: scissor[1] = vid.height - scissor[1] - scissor[3]; break; case RENDERPATH_GL11: case RENDERPATH_GL13: case RENDERPATH_GL20: case RENDERPATH_SOFT: case RENDERPATH_GLES1: case RENDERPATH_GLES2: break; } return false; } static void R_Viewport_ApplyNearClipPlaneFloatGL(const r_viewport_t *v, float *m, float normalx, float normaly, float normalz, float dist) { float q[4]; float d; float clipPlane[4], v3[3], v4[3]; float normal[3]; // This is inspired by Oblique Depth Projection from http://www.terathon.com/code/oblique.php VectorSet(normal, normalx, normaly, normalz); Matrix4x4_Transform3x3(&v->viewmatrix, normal, clipPlane); VectorScale(normal, -dist, v3); Matrix4x4_Transform(&v->viewmatrix, v3, v4); // FIXME: LordHavoc: I think this can be done more efficiently somehow but I can't remember the technique clipPlane[3] = -DotProduct(v4, clipPlane); #if 0 { // testing code for comparing results float clipPlane2[4]; VectorCopy4(clipPlane, clipPlane2); R_EntityMatrix(&identitymatrix); VectorSet(q, normal[0], normal[1], normal[2], -dist); qglClipPlane(GL_CLIP_PLANE0, q); qglGetClipPlane(GL_CLIP_PLANE0, q); VectorCopy4(q, clipPlane); } #endif // Calculate the clip-space corner point opposite the clipping plane // as (sgn(clipPlane.x), sgn(clipPlane.y), 1, 1) and // transform it into camera space by multiplying it // by the inverse of the projection matrix q[0] = ((clipPlane[0] < 0.0f ? -1.0f : clipPlane[0] > 0.0f ? 1.0f : 0.0f) + m[8]) / m[0]; q[1] = ((clipPlane[1] < 0.0f ? -1.0f : clipPlane[1] > 0.0f ? 1.0f : 0.0f) + m[9]) / m[5]; q[2] = -1.0f; q[3] = (1.0f + m[10]) / m[14]; // Calculate the scaled plane vector d = 2.0f / DotProduct4(clipPlane, q); // Replace the third row of the projection matrix m[2] = clipPlane[0] * d; m[6] = clipPlane[1] * d; m[10] = clipPlane[2] * d + 1.0f; m[14] = clipPlane[3] * d; } void R_Viewport_InitOrtho(r_viewport_t *v, const matrix4x4_t *cameramatrix, int x, int y, int width, int height, float x1, float y1, float x2, float y2, float nearclip, float farclip, const float *nearplane) { float left = x1, right = x2, bottom = y2, top = y1, zNear = nearclip, zFar = farclip; float m[16]; memset(v, 0, sizeof(*v)); v->type = R_VIEWPORTTYPE_ORTHO; v->cameramatrix = *cameramatrix; v->x = x; v->y = y; v->z = 0; v->width = width; v->height = height; v->depth = 1; memset(m, 0, sizeof(m)); m[0] = 2/(right - left); m[5] = 2/(top - bottom); m[10] = -2/(zFar - zNear); m[12] = - (right + left)/(right - left); m[13] = - (top + bottom)/(top - bottom); m[14] = - (zFar + zNear)/(zFar - zNear); m[15] = 1; switch(vid.renderpath) { case RENDERPATH_GL11: case RENDERPATH_GL13: case RENDERPATH_GL20: case RENDERPATH_SOFT: case RENDERPATH_GLES1: case RENDERPATH_GLES2: break; case RENDERPATH_D3D9: case RENDERPATH_D3D10: case RENDERPATH_D3D11: m[10] = -1/(zFar - zNear); m[14] = -zNear/(zFar-zNear); break; } v->screentodepth[0] = -farclip / (farclip - nearclip); v->screentodepth[1] = farclip * nearclip / (farclip - nearclip); Matrix4x4_Invert_Full(&v->viewmatrix, &v->cameramatrix); if (nearplane) R_Viewport_ApplyNearClipPlaneFloatGL(v, m, nearplane[0], nearplane[1], nearplane[2], nearplane[3]); Matrix4x4_FromArrayFloatGL(&v->projectmatrix, m); #if 0 { vec4_t test1; vec4_t test2; Vector4Set(test1, (x1+x2)*0.5f, (y1+y2)*0.5f, 0.0f, 1.0f); R_Viewport_TransformToScreen(v, test1, test2); Con_Printf("%f %f %f -> %f %f %f\n", test1[0], test1[1], test1[2], test2[0], test2[1], test2[2]); } #endif } bool VR_GetVRProjection(int eye, float zNear, float zFar, float* projection); void R_Viewport_InitPerspective(r_viewport_t *v, const matrix4x4_t *cameramatrix, int x, int y, int width, int height, float frustumx, float frustumy, float nearclip, float farclip, const float *nearplane) { matrix4x4_t tempmatrix, basematrix; float m[16]; memset(v, 0, sizeof(*v)); v->type = R_VIEWPORTTYPE_PERSPECTIVE; v->cameramatrix = *cameramatrix; v->x = x; v->y = y; v->z = 0; v->width = width; v->height = height; v->depth = 1; memset(m, 0, sizeof(m)); m[0] = 1.0 / frustumx; m[5] = 1.0 / frustumy; m[10] = -(farclip + nearclip) / (farclip - nearclip); m[11] = -1; m[14] = -2 * nearclip * farclip / (farclip - nearclip); v->screentodepth[0] = -farclip / (farclip - nearclip); v->screentodepth[1] = farclip * nearclip / (farclip - nearclip); Matrix4x4_Invert_Full(&tempmatrix, &v->cameramatrix); Matrix4x4_CreateRotate(&basematrix, -90, 1, 0, 0); Matrix4x4_ConcatRotate(&basematrix, 90, 0, 0, 1); Matrix4x4_Concat(&v->viewmatrix, &basematrix, &tempmatrix); if (nearplane) R_Viewport_ApplyNearClipPlaneFloatGL(v, m, nearplane[0], nearplane[1], nearplane[2], nearplane[3]); if(v_flipped.integer) { m[0] = -m[0]; m[4] = -m[4]; m[8] = -m[8]; m[12] = -m[12]; } VR_GetVRProjection(r_stereo_side, nearclip, farclip, m); Matrix4x4_FromArrayFloatGL(&v->projectmatrix, m); } void R_Viewport_InitPerspectiveInfinite(r_viewport_t *v, const matrix4x4_t *cameramatrix, int x, int y, int width, int height, float frustumx, float frustumy, float nearclip, const float *nearplane) { matrix4x4_t tempmatrix, basematrix; const float nudge = 1.0 - 1.0 / (1<<23); float m[16]; memset(v, 0, sizeof(*v)); v->type = R_VIEWPORTTYPE_PERSPECTIVE_INFINITEFARCLIP; v->cameramatrix = *cameramatrix; v->x = x; v->y = y; v->z = 0; v->width = width; v->height = height; v->depth = 1; memset(m, 0, sizeof(m)); m[ 0] = 1.0 / frustumx; m[ 5] = 1.0 / frustumy; m[10] = -nudge; m[11] = -1; m[14] = -2 * nearclip * nudge; v->screentodepth[0] = (m[10] + 1) * 0.5 - 1; v->screentodepth[1] = m[14] * -0.5; Matrix4x4_Invert_Full(&tempmatrix, &v->cameramatrix); Matrix4x4_CreateRotate(&basematrix, -90, 1, 0, 0); Matrix4x4_ConcatRotate(&basematrix, 90, 0, 0, 1); Matrix4x4_Concat(&v->viewmatrix, &basematrix, &tempmatrix); if (nearplane) R_Viewport_ApplyNearClipPlaneFloatGL(v, m, nearplane[0], nearplane[1], nearplane[2], nearplane[3]); if(v_flipped.integer) { m[0] = -m[0]; m[4] = -m[4]; m[8] = -m[8]; m[12] = -m[12]; } VR_GetVRProjection(r_stereo_side, nearclip, (1<<23), m); Matrix4x4_FromArrayFloatGL(&v->projectmatrix, m); } float cubeviewmatrix[6][16] = { // standard cubemap projections { // +X 0, 0,-1, 0, 0,-1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 1, }, { // -X 0, 0, 1, 0, 0,-1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, }, { // +Y 1, 0, 0, 0, 0, 0,-1, 0, 0, 1, 0, 0, 0, 0, 0, 1, }, { // -Y 1, 0, 0, 0, 0, 0, 1, 0, 0,-1, 0, 0, 0, 0, 0, 1, }, { // +Z 1, 0, 0, 0, 0,-1, 0, 0, 0, 0,-1, 0, 0, 0, 0, 1, }, { // -Z -1, 0, 0, 0, 0,-1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, }, }; float rectviewmatrix[6][16] = { // sign-preserving cubemap projections { // +X 0, 0,-1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, }, { // -X 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, }, { // +Y 1, 0, 0, 0, 0, 0,-1, 0, 0, 1, 0, 0, 0, 0, 0, 1, }, { // -Y 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, }, { // +Z 1, 0, 0, 0, 0, 1, 0, 0, 0, 0,-1, 0, 0, 0, 0, 1, }, { // -Z 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, }, }; void R_Viewport_InitCubeSideView(r_viewport_t *v, const matrix4x4_t *cameramatrix, int side, int size, float nearclip, float farclip, const float *nearplane) { matrix4x4_t tempmatrix, basematrix; float m[16]; memset(v, 0, sizeof(*v)); v->type = R_VIEWPORTTYPE_PERSPECTIVECUBESIDE; v->cameramatrix = *cameramatrix; v->width = size; v->height = size; v->depth = 1; memset(m, 0, sizeof(m)); m[0] = m[5] = 1.0f; m[10] = -(farclip + nearclip) / (farclip - nearclip); m[11] = -1; m[14] = -2 * nearclip * farclip / (farclip - nearclip); Matrix4x4_FromArrayFloatGL(&basematrix, cubeviewmatrix[side]); Matrix4x4_Invert_Simple(&tempmatrix, &v->cameramatrix); Matrix4x4_Concat(&v->viewmatrix, &basematrix, &tempmatrix); if (nearplane) R_Viewport_ApplyNearClipPlaneFloatGL(v, m, nearplane[0], nearplane[1], nearplane[2], nearplane[3]); Matrix4x4_FromArrayFloatGL(&v->projectmatrix, m); } void R_Viewport_InitRectSideView(r_viewport_t *v, const matrix4x4_t *cameramatrix, int side, int size, int border, float nearclip, float farclip, const float *nearplane) { matrix4x4_t tempmatrix, basematrix; float m[16]; memset(v, 0, sizeof(*v)); v->type = R_VIEWPORTTYPE_PERSPECTIVECUBESIDE; v->cameramatrix = *cameramatrix; v->x = (side & 1) * size; v->y = (side >> 1) * size; v->width = size; v->height = size; v->depth = 1; memset(m, 0, sizeof(m)); m[0] = m[5] = 1.0f * ((float)size - border) / size; m[10] = -(farclip + nearclip) / (farclip - nearclip); m[11] = -1; m[14] = -2 * nearclip * farclip / (farclip - nearclip); Matrix4x4_FromArrayFloatGL(&basematrix, rectviewmatrix[side]); Matrix4x4_Invert_Simple(&tempmatrix, &v->cameramatrix); Matrix4x4_Concat(&v->viewmatrix, &basematrix, &tempmatrix); switch(vid.renderpath) { case RENDERPATH_GL20: case RENDERPATH_GL13: case RENDERPATH_GL11: case RENDERPATH_SOFT: case RENDERPATH_GLES1: case RENDERPATH_GLES2: break; case RENDERPATH_D3D9: m[5] *= -1; break; case RENDERPATH_D3D10: Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_D3D11: Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; } if (nearplane) R_Viewport_ApplyNearClipPlaneFloatGL(v, m, nearplane[0], nearplane[1], nearplane[2], nearplane[3]); Matrix4x4_FromArrayFloatGL(&v->projectmatrix, m); } void R_SetViewport(const r_viewport_t *v) { float m[16]; gl_viewport = *v; // FIXME: v_flipped_state is evil, this probably breaks somewhere GL_SetMirrorState(v_flipped.integer && (v->type == R_VIEWPORTTYPE_PERSPECTIVE || v->type == R_VIEWPORTTYPE_PERSPECTIVE_INFINITEFARCLIP)); // copy over the matrices to our state gl_viewmatrix = v->viewmatrix; gl_projectionmatrix = v->projectmatrix; switch(vid.renderpath) { case RENDERPATH_GL13: case RENDERPATH_GL11: case RENDERPATH_GLES1: #ifdef GL_PROJECTION CHECKGLERROR qglViewport(v->x, v->y, v->width, v->height);CHECKGLERROR // Load the projection matrix into OpenGL qglMatrixMode(GL_PROJECTION);CHECKGLERROR Matrix4x4_ToArrayFloatGL(&gl_projectionmatrix, m); qglLoadMatrixf(m);CHECKGLERROR qglMatrixMode(GL_MODELVIEW);CHECKGLERROR #endif break; case RENDERPATH_D3D9: #ifdef SUPPORTD3D { D3DVIEWPORT9 d3dviewport; d3dviewport.X = gl_viewport.x; d3dviewport.Y = gl_viewport.y; d3dviewport.Width = gl_viewport.width; d3dviewport.Height = gl_viewport.height; d3dviewport.MinZ = gl_state.depthrange[0]; d3dviewport.MaxZ = gl_state.depthrange[1]; IDirect3DDevice9_SetViewport(vid_d3d9dev, &d3dviewport); } #endif break; case RENDERPATH_D3D10: Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_D3D11: Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_SOFT: DPSOFTRAST_Viewport(v->x, v->y, v->width, v->height); break; case RENDERPATH_GL20: case RENDERPATH_GLES2: CHECKGLERROR qglViewport(v->x, v->y, v->width, v->height);CHECKGLERROR break; } // force an update of the derived matrices gl_modelmatrixchanged = true; R_EntityMatrix(&gl_modelmatrix); } void R_GetViewport(r_viewport_t *v) { *v = gl_viewport; } static void GL_BindVBO(int bufferobject) { if (gl_state.vertexbufferobject != bufferobject) { gl_state.vertexbufferobject = bufferobject; CHECKGLERROR qglBindBufferARB(GL_ARRAY_BUFFER, bufferobject);CHECKGLERROR } } static void GL_BindEBO(int bufferobject) { if (gl_state.elementbufferobject != bufferobject) { gl_state.elementbufferobject = bufferobject; CHECKGLERROR qglBindBufferARB(GL_ELEMENT_ARRAY_BUFFER, bufferobject);CHECKGLERROR } } static void GL_BindUBO(int bufferobject) { if (gl_state.uniformbufferobject != bufferobject) { gl_state.uniformbufferobject = bufferobject; CHECKGLERROR qglBindBufferARB(GL_UNIFORM_BUFFER, bufferobject);CHECKGLERROR } } static const GLuint drawbuffers[4] = {GL_COLOR_ATTACHMENT0, GL_COLOR_ATTACHMENT1, GL_COLOR_ATTACHMENT2, GL_COLOR_ATTACHMENT3}; int R_Mesh_CreateFramebufferObject(rtexture_t *depthtexture, rtexture_t *colortexture, rtexture_t *colortexture2, rtexture_t *colortexture3, rtexture_t *colortexture4) { switch(vid.renderpath) { case RENDERPATH_GL11: case RENDERPATH_GL13: case RENDERPATH_GL20: case RENDERPATH_GLES1: case RENDERPATH_GLES2: if (vid.support.arb_framebuffer_object) { int temp; GLuint status; qglGenFramebuffers(1, (GLuint*)&temp);CHECKGLERROR R_Mesh_SetRenderTargets(temp, NULL, NULL, NULL, NULL, NULL); // GL_ARB_framebuffer_object (GL3-class hardware) - depth stencil attachment #ifdef USE_GLES2 // FIXME: separate stencil attachment on GLES if (depthtexture && depthtexture->texnum ) qglFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT , depthtexture->gltexturetypeenum , depthtexture->texnum , 0);CHECKGLERROR #else if (depthtexture && depthtexture->texnum ) qglFramebufferTexture2D(GL_FRAMEBUFFER, depthtexture->glisdepthstencil ? GL_DEPTH_STENCIL_ATTACHMENT : GL_DEPTH_ATTACHMENT , depthtexture->gltexturetypeenum , depthtexture->texnum , 0);CHECKGLERROR #endif if (depthtexture && depthtexture->renderbuffernum ) qglFramebufferRenderbuffer(GL_FRAMEBUFFER, /*depthtexture->glisdepthstencil ? GL_DEPTH_STENCIL_ATTACHMENT : */GL_DEPTH_ATTACHMENT , GL_RENDERBUFFER, depthtexture->renderbuffernum );CHECKGLERROR if (colortexture && colortexture->texnum ) qglFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0 , colortexture->gltexturetypeenum , colortexture->texnum , 0);CHECKGLERROR if (colortexture2 && colortexture2->texnum) qglFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT1 , colortexture2->gltexturetypeenum, colortexture2->texnum, 0);CHECKGLERROR if (colortexture3 && colortexture3->texnum) qglFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT2 , colortexture3->gltexturetypeenum, colortexture3->texnum, 0);CHECKGLERROR if (colortexture4 && colortexture4->texnum) qglFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT3 , colortexture4->gltexturetypeenum, colortexture4->texnum, 0);CHECKGLERROR if (colortexture && colortexture->renderbuffernum ) qglFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0 , GL_RENDERBUFFER, colortexture->renderbuffernum );CHECKGLERROR if (colortexture2 && colortexture2->renderbuffernum) qglFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT1 , GL_RENDERBUFFER, colortexture2->renderbuffernum);CHECKGLERROR if (colortexture3 && colortexture3->renderbuffernum) qglFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT2 , GL_RENDERBUFFER, colortexture3->renderbuffernum);CHECKGLERROR if (colortexture4 && colortexture4->renderbuffernum) qglFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT3 , GL_RENDERBUFFER, colortexture4->renderbuffernum);CHECKGLERROR #ifndef USE_GLES2 if (colortexture4 && qglDrawBuffersARB) { qglDrawBuffersARB(4, drawbuffers);CHECKGLERROR qglReadBuffer(GL_NONE);CHECKGLERROR } else if (colortexture3 && qglDrawBuffersARB) { qglDrawBuffersARB(3, drawbuffers);CHECKGLERROR qglReadBuffer(GL_NONE);CHECKGLERROR } else if (colortexture2 && qglDrawBuffersARB) { qglDrawBuffersARB(2, drawbuffers);CHECKGLERROR qglReadBuffer(GL_NONE);CHECKGLERROR } else if (colortexture && qglDrawBuffer) { qglDrawBuffer(GL_COLOR_ATTACHMENT0);CHECKGLERROR qglReadBuffer(GL_COLOR_ATTACHMENT0);CHECKGLERROR } else if (qglDrawBuffer) { qglDrawBuffer(GL_NONE);CHECKGLERROR qglReadBuffer(GL_NONE);CHECKGLERROR } #endif status = qglCheckFramebufferStatus(GL_FRAMEBUFFER);CHECKGLERROR if (status != GL_FRAMEBUFFER_COMPLETE) { Con_Printf("R_Mesh_CreateFramebufferObject: glCheckFramebufferStatus returned %i\n", status); gl_state.framebufferobject = 0; // GL unbinds it for us qglDeleteFramebuffers(1, (GLuint*)&temp); temp = 0; } return temp; } else if (vid.support.ext_framebuffer_object) { int temp; GLuint status; qglGenFramebuffers(1, (GLuint*)&temp);CHECKGLERROR R_Mesh_SetRenderTargets(temp, NULL, NULL, NULL, NULL, NULL); // GL_EXT_framebuffer_object (GL2-class hardware) - no depth stencil attachment, let it break stencil if (depthtexture && depthtexture->texnum ) qglFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT , depthtexture->gltexturetypeenum , depthtexture->texnum , 0);CHECKGLERROR if (depthtexture && depthtexture->renderbuffernum ) qglFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT , GL_RENDERBUFFER, depthtexture->renderbuffernum );CHECKGLERROR if (colortexture && colortexture->texnum ) qglFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0 , colortexture->gltexturetypeenum , colortexture->texnum , 0);CHECKGLERROR if (colortexture2 && colortexture2->texnum) qglFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT1 , colortexture2->gltexturetypeenum, colortexture2->texnum, 0);CHECKGLERROR if (colortexture3 && colortexture3->texnum) qglFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT2 , colortexture3->gltexturetypeenum, colortexture3->texnum, 0);CHECKGLERROR if (colortexture4 && colortexture4->texnum) qglFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT3 , colortexture4->gltexturetypeenum, colortexture4->texnum, 0);CHECKGLERROR if (colortexture && colortexture->renderbuffernum ) qglFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0 , GL_RENDERBUFFER, colortexture->renderbuffernum );CHECKGLERROR if (colortexture2 && colortexture2->renderbuffernum) qglFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT1 , GL_RENDERBUFFER, colortexture2->renderbuffernum);CHECKGLERROR if (colortexture3 && colortexture3->renderbuffernum) qglFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT2 , GL_RENDERBUFFER, colortexture3->renderbuffernum);CHECKGLERROR if (colortexture4 && colortexture4->renderbuffernum) qglFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT3 , GL_RENDERBUFFER, colortexture4->renderbuffernum);CHECKGLERROR #ifndef USE_GLES2 if (colortexture4 && qglDrawBuffersARB) { qglDrawBuffersARB(4, drawbuffers);CHECKGLERROR qglReadBuffer(GL_NONE);CHECKGLERROR } else if (colortexture3 && qglDrawBuffersARB) { qglDrawBuffersARB(3, drawbuffers);CHECKGLERROR qglReadBuffer(GL_NONE);CHECKGLERROR } else if (colortexture2 && qglDrawBuffersARB) { qglDrawBuffersARB(2, drawbuffers);CHECKGLERROR qglReadBuffer(GL_NONE);CHECKGLERROR } else if (colortexture && qglDrawBuffer) { qglDrawBuffer(GL_COLOR_ATTACHMENT0);CHECKGLERROR qglReadBuffer(GL_COLOR_ATTACHMENT0);CHECKGLERROR } else if (qglDrawBuffer) { qglDrawBuffer(GL_NONE);CHECKGLERROR qglReadBuffer(GL_NONE);CHECKGLERROR } #endif status = qglCheckFramebufferStatus(GL_FRAMEBUFFER);CHECKGLERROR if (status != GL_FRAMEBUFFER_COMPLETE) { Con_Printf("R_Mesh_CreateFramebufferObject: glCheckFramebufferStatus returned %i\n", status); gl_state.framebufferobject = 0; // GL unbinds it for us qglDeleteFramebuffers(1, (GLuint*)&temp); temp = 0; } return temp; } return 0; case RENDERPATH_D3D9: case RENDERPATH_D3D10: case RENDERPATH_D3D11: return 1; case RENDERPATH_SOFT: return 1; } return 0; } void R_Mesh_DestroyFramebufferObject(int fbo) { switch(vid.renderpath) { case RENDERPATH_GL11: case RENDERPATH_GL13: case RENDERPATH_GL20: case RENDERPATH_GLES1: case RENDERPATH_GLES2: if (fbo) { // GL clears the binding if we delete something bound if (gl_state.framebufferobject == fbo) gl_state.framebufferobject = 0; qglDeleteFramebuffers(1, (GLuint*)&fbo); } break; case RENDERPATH_D3D9: case RENDERPATH_D3D10: case RENDERPATH_D3D11: break; case RENDERPATH_SOFT: break; } } #ifdef SUPPORTD3D void R_Mesh_SetRenderTargetsD3D9(IDirect3DSurface9 *depthsurface, IDirect3DSurface9 *colorsurface0, IDirect3DSurface9 *colorsurface1, IDirect3DSurface9 *colorsurface2, IDirect3DSurface9 *colorsurface3) { gl_state.framebufferobject = depthsurface != gl_state.d3drt_backbufferdepthsurface || colorsurface0 != gl_state.d3drt_backbuffercolorsurface; if (gl_state.d3drt_depthsurface != depthsurface) { gl_state.d3drt_depthsurface = depthsurface; IDirect3DDevice9_SetDepthStencilSurface(vid_d3d9dev, gl_state.d3drt_depthsurface); } if (gl_state.d3drt_colorsurfaces[0] != colorsurface0) { gl_state.d3drt_colorsurfaces[0] = colorsurface0; IDirect3DDevice9_SetRenderTarget(vid_d3d9dev, 0, gl_state.d3drt_colorsurfaces[0]); } if (gl_state.d3drt_colorsurfaces[1] != colorsurface1) { gl_state.d3drt_colorsurfaces[1] = colorsurface1; IDirect3DDevice9_SetRenderTarget(vid_d3d9dev, 1, gl_state.d3drt_colorsurfaces[1]); } if (gl_state.d3drt_colorsurfaces[2] != colorsurface2) { gl_state.d3drt_colorsurfaces[2] = colorsurface2; IDirect3DDevice9_SetRenderTarget(vid_d3d9dev, 2, gl_state.d3drt_colorsurfaces[2]); } if (gl_state.d3drt_colorsurfaces[3] != colorsurface3) { gl_state.d3drt_colorsurfaces[3] = colorsurface3; IDirect3DDevice9_SetRenderTarget(vid_d3d9dev, 3, gl_state.d3drt_colorsurfaces[3]); } } #endif void R_Mesh_SetRenderTargets(int fbo, rtexture_t *depthtexture, rtexture_t *colortexture, rtexture_t *colortexture2, rtexture_t *colortexture3, rtexture_t *colortexture4) { unsigned int i; unsigned int j; rtexture_t *textures[5]; Vector4Set(textures, colortexture, colortexture2, colortexture3, colortexture4); textures[4] = depthtexture; // unbind any matching textures immediately, otherwise D3D will complain about a bound texture being used as a render target for (j = 0;j < 5;j++) if (textures[j]) for (i = 0;i < vid.teximageunits;i++) if (gl_state.units[i].texture == textures[j]) R_Mesh_TexBind(i, NULL); // set up framebuffer object or render targets for the active rendering API switch(vid.renderpath) { case RENDERPATH_GL11: case RENDERPATH_GL13: case RENDERPATH_GL20: case RENDERPATH_GLES1: case RENDERPATH_GLES2: if (gl_state.framebufferobject != fbo) { gl_state.framebufferobject = fbo; qglBindFramebuffer(GL_FRAMEBUFFER, gl_state.framebufferobject ? gl_state.framebufferobject : gl_state.defaultframebufferobject); } break; case RENDERPATH_D3D9: #ifdef SUPPORTD3D // set up the new render targets, a NULL depthtexture intentionally binds nothing // TODO: optimize: keep surface pointer around in rtexture_t until texture is freed or lost if (fbo) { IDirect3DSurface9 *surfaces[5]; for (i = 0;i < 5;i++) { surfaces[i] = NULL; if (textures[i]) { if (textures[i]->d3dsurface) surfaces[i] = (IDirect3DSurface9 *)textures[i]->d3dsurface; else IDirect3DTexture9_GetSurfaceLevel((IDirect3DTexture9 *)textures[i]->d3dtexture, 0, &surfaces[i]); } } // set the render targets for real R_Mesh_SetRenderTargetsD3D9(surfaces[4], surfaces[0], surfaces[1], surfaces[2], surfaces[3]); // release the texture surface levels (they won't be lost while bound...) for (i = 0;i < 5;i++) if (textures[i] && !textures[i]->d3dsurface) IDirect3DSurface9_Release(surfaces[i]); } else R_Mesh_SetRenderTargetsD3D9(gl_state.d3drt_backbufferdepthsurface, gl_state.d3drt_backbuffercolorsurface, NULL, NULL, NULL); #endif break; case RENDERPATH_D3D10: Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_D3D11: Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_SOFT: if (fbo) { int width, height; unsigned int *pointers[5]; memset(pointers, 0, sizeof(pointers)); for (i = 0;i < 5;i++) pointers[i] = textures[i] ? (unsigned int *)DPSOFTRAST_Texture_GetPixelPointer(textures[i]->texnum, 0) : NULL; width = DPSOFTRAST_Texture_GetWidth(textures[0] ? textures[0]->texnum : textures[4]->texnum, 0); height = DPSOFTRAST_Texture_GetHeight(textures[0] ? textures[0]->texnum : textures[4]->texnum, 0); DPSOFTRAST_SetRenderTargets(width, height, pointers[4], pointers[0], pointers[1], pointers[2], pointers[3]); } else DPSOFTRAST_SetRenderTargets(vid.width, vid.height, vid.softdepthpixels, vid.softpixels, NULL, NULL, NULL); break; } } #ifdef SUPPORTD3D static int d3dcmpforglfunc(int f) { switch(f) { case GL_NEVER: return D3DCMP_NEVER; case GL_LESS: return D3DCMP_LESS; case GL_EQUAL: return D3DCMP_EQUAL; case GL_LEQUAL: return D3DCMP_LESSEQUAL; case GL_GREATER: return D3DCMP_GREATER; case GL_NOTEQUAL: return D3DCMP_NOTEQUAL; case GL_GEQUAL: return D3DCMP_GREATEREQUAL; case GL_ALWAYS: return D3DCMP_ALWAYS; default: Con_DPrintf("Unknown GL_DepthFunc\n");return D3DCMP_ALWAYS; } } static int d3dstencilopforglfunc(int f) { switch(f) { case GL_KEEP: return D3DSTENCILOP_KEEP; case GL_INCR: return D3DSTENCILOP_INCR; // note: GL_INCR is clamped, D3DSTENCILOP_INCR wraps case GL_DECR: return D3DSTENCILOP_DECR; // note: GL_DECR is clamped, D3DSTENCILOP_DECR wraps default: Con_DPrintf("Unknown GL_StencilFunc\n");return D3DSTENCILOP_KEEP; } } #endif static void GL_Backend_ResetState(void) { unsigned int i; gl_state.active = true; gl_state.depthtest = true; gl_state.alphatest = false; gl_state.alphafunc = GL_GEQUAL; gl_state.alphafuncvalue = 0.5f; gl_state.alphatocoverage = false; gl_state.blendfunc1 = GL_ONE; gl_state.blendfunc2 = GL_ZERO; gl_state.blend = false; gl_state.depthmask = GL_TRUE; gl_state.colormask = 15; gl_state.color4f[0] = gl_state.color4f[1] = gl_state.color4f[2] = gl_state.color4f[3] = 1; gl_state.lockrange_first = 0; gl_state.lockrange_count = 0; gl_state.cullface = GL_FRONT; gl_state.cullfaceenable = false; gl_state.polygonoffset[0] = 0; gl_state.polygonoffset[1] = 0; gl_state.framebufferobject = 0; gl_state.depthfunc = GL_LEQUAL; switch(vid.renderpath) { case RENDERPATH_D3D9: #ifdef SUPPORTD3D { IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_COLORWRITEENABLE, gl_state.colormask); IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_CULLMODE, D3DCULL_NONE); IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_ZFUNC, d3dcmpforglfunc(gl_state.depthfunc)); IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_ZENABLE, gl_state.depthtest); IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_ZWRITEENABLE, gl_state.depthmask); IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_SLOPESCALEDEPTHBIAS, gl_state.polygonoffset[0]); IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_DEPTHBIAS, gl_state.polygonoffset[1] * (1.0f / 16777216.0f)); } #endif break; case RENDERPATH_D3D10: Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_D3D11: Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_GL11: case RENDERPATH_GL13: case RENDERPATH_GLES1: #ifdef GL_ALPHA_TEST CHECKGLERROR qglColorMask(1, 1, 1, 1);CHECKGLERROR qglAlphaFunc(gl_state.alphafunc, gl_state.alphafuncvalue);CHECKGLERROR qglDisable(GL_ALPHA_TEST);CHECKGLERROR qglBlendFunc(gl_state.blendfunc1, gl_state.blendfunc2);CHECKGLERROR qglDisable(GL_BLEND);CHECKGLERROR qglCullFace(gl_state.cullface);CHECKGLERROR qglDisable(GL_CULL_FACE);CHECKGLERROR qglDepthFunc(GL_LEQUAL);CHECKGLERROR qglEnable(GL_DEPTH_TEST);CHECKGLERROR qglDepthMask(gl_state.depthmask);CHECKGLERROR qglPolygonOffset(gl_state.polygonoffset[0], gl_state.polygonoffset[1]); if (vid.support.arb_vertex_buffer_object) { qglBindBufferARB(GL_ARRAY_BUFFER, 0); qglBindBufferARB(GL_ELEMENT_ARRAY_BUFFER, 0); } if (vid.support.ext_framebuffer_object) { //qglBindRenderbuffer(GL_RENDERBUFFER, 0); qglBindFramebuffer(GL_FRAMEBUFFER, 0); } qglVertexPointer(3, GL_FLOAT, sizeof(float[3]), NULL);CHECKGLERROR qglEnableClientState(GL_VERTEX_ARRAY);CHECKGLERROR qglColorPointer(4, GL_FLOAT, sizeof(float[4]), NULL);CHECKGLERROR qglDisableClientState(GL_COLOR_ARRAY);CHECKGLERROR qglColor4f(1, 1, 1, 1);CHECKGLERROR if (vid.support.ext_framebuffer_object) qglBindFramebuffer(GL_FRAMEBUFFER, gl_state.framebufferobject); gl_state.unit = MAX_TEXTUREUNITS; gl_state.clientunit = MAX_TEXTUREUNITS; for (i = 0;i < vid.texunits;i++) { GL_ActiveTexture(i); GL_ClientActiveTexture(i); qglDisable(GL_TEXTURE_2D);CHECKGLERROR qglBindTexture(GL_TEXTURE_2D, 0);CHECKGLERROR if (vid.support.ext_texture_3d) { qglDisable(GL_TEXTURE_3D);CHECKGLERROR qglBindTexture(GL_TEXTURE_3D, 0);CHECKGLERROR } if (vid.support.arb_texture_cube_map) { qglDisable(GL_TEXTURE_CUBE_MAP);CHECKGLERROR qglBindTexture(GL_TEXTURE_CUBE_MAP, 0);CHECKGLERROR } GL_BindVBO(0); qglTexCoordPointer(2, GL_FLOAT, sizeof(float[2]), NULL);CHECKGLERROR qglDisableClientState(GL_TEXTURE_COORD_ARRAY);CHECKGLERROR qglMatrixMode(GL_TEXTURE);CHECKGLERROR qglLoadIdentity();CHECKGLERROR qglMatrixMode(GL_MODELVIEW);CHECKGLERROR qglTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);CHECKGLERROR } CHECKGLERROR #endif break; case RENDERPATH_SOFT: DPSOFTRAST_ColorMask(1,1,1,1); DPSOFTRAST_BlendFunc(gl_state.blendfunc1, gl_state.blendfunc2); DPSOFTRAST_CullFace(gl_state.cullface); DPSOFTRAST_DepthFunc(gl_state.depthfunc); DPSOFTRAST_DepthMask(gl_state.depthmask); DPSOFTRAST_PolygonOffset(gl_state.polygonoffset[0], gl_state.polygonoffset[1]); DPSOFTRAST_SetRenderTargets(vid.width, vid.height, vid.softdepthpixels, vid.softpixels, NULL, NULL, NULL); DPSOFTRAST_Viewport(0, 0, vid.width, vid.height); break; case RENDERPATH_GL20: case RENDERPATH_GLES2: CHECKGLERROR qglColorMask(1, 1, 1, 1);CHECKGLERROR qglBlendFunc(gl_state.blendfunc1, gl_state.blendfunc2);CHECKGLERROR qglDisable(GL_BLEND);CHECKGLERROR qglCullFace(gl_state.cullface);CHECKGLERROR qglDisable(GL_CULL_FACE);CHECKGLERROR qglDepthFunc(GL_LEQUAL);CHECKGLERROR qglEnable(GL_DEPTH_TEST);CHECKGLERROR qglDepthMask(gl_state.depthmask);CHECKGLERROR qglPolygonOffset(gl_state.polygonoffset[0], gl_state.polygonoffset[1]); if (vid.support.arb_vertex_buffer_object) { qglBindBufferARB(GL_ARRAY_BUFFER, 0); qglBindBufferARB(GL_ELEMENT_ARRAY_BUFFER, 0); } if (vid.support.ext_framebuffer_object) qglBindFramebuffer(GL_FRAMEBUFFER, gl_state.defaultframebufferobject); qglEnableVertexAttribArray(GLSLATTRIB_POSITION); qglVertexAttribPointer(GLSLATTRIB_POSITION, 3, GL_FLOAT, false, sizeof(float[3]), NULL);CHECKGLERROR qglDisableVertexAttribArray(GLSLATTRIB_COLOR); qglVertexAttribPointer(GLSLATTRIB_COLOR, 4, GL_FLOAT, false, sizeof(float[4]), NULL);CHECKGLERROR qglVertexAttrib4f(GLSLATTRIB_COLOR, 1, 1, 1, 1); gl_state.unit = MAX_TEXTUREUNITS; gl_state.clientunit = MAX_TEXTUREUNITS; for (i = 0;i < vid.teximageunits;i++) { GL_ActiveTexture(i); qglBindTexture(GL_TEXTURE_2D, 0);CHECKGLERROR if (vid.support.ext_texture_3d) { qglBindTexture(GL_TEXTURE_3D, 0);CHECKGLERROR } if (vid.support.arb_texture_cube_map) { qglBindTexture(GL_TEXTURE_CUBE_MAP, 0);CHECKGLERROR } } for (i = 0;i < vid.texarrayunits;i++) { GL_BindVBO(0); qglVertexAttribPointer(i+GLSLATTRIB_TEXCOORD0, 2, GL_FLOAT, false, sizeof(float[2]), NULL);CHECKGLERROR qglDisableVertexAttribArray(i+GLSLATTRIB_TEXCOORD0);CHECKGLERROR } CHECKGLERROR break; } } void GL_ActiveTexture(unsigned int num) { if (gl_state.unit != num) { gl_state.unit = num; switch(vid.renderpath) { case RENDERPATH_GL11: case RENDERPATH_GL13: case RENDERPATH_GL20: case RENDERPATH_GLES1: case RENDERPATH_GLES2: if (1) { CHECKGLERROR glActiveTexture(GL_TEXTURE0 + gl_state.unit); CHECKGLERROR } break; case RENDERPATH_D3D9: case RENDERPATH_D3D10: case RENDERPATH_D3D11: break; case RENDERPATH_SOFT: break; } } } void GL_ClientActiveTexture(unsigned int num) { if (gl_state.clientunit != num) { gl_state.clientunit = num; switch(vid.renderpath) { case RENDERPATH_GL11: case RENDERPATH_GL13: case RENDERPATH_GLES1: if (1) { CHECKGLERROR qglClientActiveTexture(GL_TEXTURE0 + gl_state.clientunit); CHECKGLERROR } break; case RENDERPATH_D3D9: case RENDERPATH_D3D10: case RENDERPATH_D3D11: break; case RENDERPATH_SOFT: break; case RENDERPATH_GL20: case RENDERPATH_GLES2: break; } } } void GL_BlendFunc(int blendfunc1, int blendfunc2) { if (gl_state.blendfunc1 != blendfunc1 || gl_state.blendfunc2 != blendfunc2) { qboolean blendenable; gl_state.blendfunc1 = blendfunc1; gl_state.blendfunc2 = blendfunc2; blendenable = (gl_state.blendfunc1 != GL_ONE || gl_state.blendfunc2 != GL_ZERO); switch(vid.renderpath) { case RENDERPATH_GL11: case RENDERPATH_GL13: case RENDERPATH_GL20: case RENDERPATH_GLES1: case RENDERPATH_GLES2: CHECKGLERROR qglBlendFunc(gl_state.blendfunc1, gl_state.blendfunc2);CHECKGLERROR if (gl_state.blend != blendenable) { gl_state.blend = blendenable; if (!gl_state.blend) { qglDisable(GL_BLEND);CHECKGLERROR } else { qglEnable(GL_BLEND);CHECKGLERROR } } break; case RENDERPATH_D3D9: #ifdef SUPPORTD3D { int i; int glblendfunc[2]; D3DBLEND d3dblendfunc[2]; glblendfunc[0] = gl_state.blendfunc1; glblendfunc[1] = gl_state.blendfunc2; for (i = 0;i < 2;i++) { switch(glblendfunc[i]) { case GL_ZERO: d3dblendfunc[i] = D3DBLEND_ZERO;break; case GL_ONE: d3dblendfunc[i] = D3DBLEND_ONE;break; case GL_SRC_COLOR: d3dblendfunc[i] = D3DBLEND_SRCCOLOR;break; case GL_ONE_MINUS_SRC_COLOR: d3dblendfunc[i] = D3DBLEND_INVSRCCOLOR;break; case GL_SRC_ALPHA: d3dblendfunc[i] = D3DBLEND_SRCALPHA;break; case GL_ONE_MINUS_SRC_ALPHA: d3dblendfunc[i] = D3DBLEND_INVSRCALPHA;break; case GL_DST_ALPHA: d3dblendfunc[i] = D3DBLEND_DESTALPHA;break; case GL_ONE_MINUS_DST_ALPHA: d3dblendfunc[i] = D3DBLEND_INVDESTALPHA;break; case GL_DST_COLOR: d3dblendfunc[i] = D3DBLEND_DESTCOLOR;break; case GL_ONE_MINUS_DST_COLOR: d3dblendfunc[i] = D3DBLEND_INVDESTCOLOR;break; } } IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_SRCBLEND, d3dblendfunc[0]); IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_DESTBLEND, d3dblendfunc[1]); if (gl_state.blend != blendenable) { gl_state.blend = blendenable; IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_ALPHABLENDENABLE, gl_state.blend); } } #endif break; case RENDERPATH_D3D10: Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_D3D11: Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_SOFT: DPSOFTRAST_BlendFunc(gl_state.blendfunc1, gl_state.blendfunc2); break; } } } void GL_DepthMask(int state) { if (gl_state.depthmask != state) { gl_state.depthmask = state; switch(vid.renderpath) { case RENDERPATH_GL11: case RENDERPATH_GL13: case RENDERPATH_GL20: case RENDERPATH_GLES1: case RENDERPATH_GLES2: CHECKGLERROR qglDepthMask(gl_state.depthmask);CHECKGLERROR break; case RENDERPATH_D3D9: #ifdef SUPPORTD3D IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_ZWRITEENABLE, gl_state.depthmask); #endif break; case RENDERPATH_D3D10: Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_D3D11: Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_SOFT: DPSOFTRAST_DepthMask(gl_state.depthmask); break; } } } void GL_DepthTest(int state) { if (gl_state.depthtest != state) { gl_state.depthtest = state; switch(vid.renderpath) { case RENDERPATH_GL11: case RENDERPATH_GL13: case RENDERPATH_GL20: case RENDERPATH_GLES1: case RENDERPATH_GLES2: CHECKGLERROR if (gl_state.depthtest) { qglEnable(GL_DEPTH_TEST);CHECKGLERROR } else { qglDisable(GL_DEPTH_TEST);CHECKGLERROR } break; case RENDERPATH_D3D9: #ifdef SUPPORTD3D IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_ZENABLE, gl_state.depthtest); #endif break; case RENDERPATH_D3D10: Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_D3D11: Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_SOFT: DPSOFTRAST_DepthTest(gl_state.depthtest); break; } } } void GL_DepthFunc(int state) { if (gl_state.depthfunc != state) { gl_state.depthfunc = state; switch(vid.renderpath) { case RENDERPATH_GL11: case RENDERPATH_GL13: case RENDERPATH_GL20: case RENDERPATH_GLES1: case RENDERPATH_GLES2: CHECKGLERROR qglDepthFunc(gl_state.depthfunc);CHECKGLERROR break; case RENDERPATH_D3D9: #ifdef SUPPORTD3D IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_ZFUNC, d3dcmpforglfunc(gl_state.depthfunc)); #endif break; case RENDERPATH_D3D10: Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_D3D11: Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_SOFT: DPSOFTRAST_DepthFunc(gl_state.depthfunc); break; } } } void GL_DepthRange(float nearfrac, float farfrac) { if (gl_state.depthrange[0] != nearfrac || gl_state.depthrange[1] != farfrac) { gl_state.depthrange[0] = nearfrac; gl_state.depthrange[1] = farfrac; switch(vid.renderpath) { case RENDERPATH_GL11: case RENDERPATH_GL13: case RENDERPATH_GL20: case RENDERPATH_GLES1: case RENDERPATH_GLES2: #ifdef USE_GLES2 qglDepthRangef(gl_state.depthrange[0], gl_state.depthrange[1]); #else qglDepthRange(gl_state.depthrange[0], gl_state.depthrange[1]); #endif break; case RENDERPATH_D3D9: #ifdef SUPPORTD3D { D3DVIEWPORT9 d3dviewport; d3dviewport.X = gl_viewport.x; d3dviewport.Y = gl_viewport.y; d3dviewport.Width = gl_viewport.width; d3dviewport.Height = gl_viewport.height; d3dviewport.MinZ = gl_state.depthrange[0]; d3dviewport.MaxZ = gl_state.depthrange[1]; IDirect3DDevice9_SetViewport(vid_d3d9dev, &d3dviewport); } #endif break; case RENDERPATH_D3D10: Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_D3D11: Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_SOFT: DPSOFTRAST_DepthRange(gl_state.depthrange[0], gl_state.depthrange[1]); break; } } } void R_SetStencilSeparate(qboolean enable, int writemask, int frontfail, int frontzfail, int frontzpass, int backfail, int backzfail, int backzpass, int frontcompare, int backcompare, int comparereference, int comparemask) { switch (vid.renderpath) { case RENDERPATH_GL11: case RENDERPATH_GL13: case RENDERPATH_GL20: case RENDERPATH_GLES1: case RENDERPATH_GLES2: CHECKGLERROR if (enable) { qglEnable(GL_STENCIL_TEST);CHECKGLERROR } else { qglDisable(GL_STENCIL_TEST);CHECKGLERROR } if (vid.support.ati_separate_stencil) { qglStencilMask(writemask);CHECKGLERROR qglStencilOpSeparate(GL_FRONT, frontfail, frontzfail, frontzpass);CHECKGLERROR qglStencilOpSeparate(GL_BACK, backfail, backzfail, backzpass);CHECKGLERROR qglStencilFuncSeparate(GL_FRONT, frontcompare, comparereference, comparereference);CHECKGLERROR qglStencilFuncSeparate(GL_BACK, backcompare, comparereference, comparereference);CHECKGLERROR } else if (vid.support.ext_stencil_two_side) { #ifdef GL_STENCIL_TEST_TWO_SIDE_EXT qglEnable(GL_STENCIL_TEST_TWO_SIDE_EXT);CHECKGLERROR qglActiveStencilFaceEXT(GL_FRONT);CHECKGLERROR qglStencilMask(writemask);CHECKGLERROR qglStencilOp(frontfail, frontzfail, frontzpass);CHECKGLERROR qglStencilFunc(frontcompare, comparereference, comparemask);CHECKGLERROR qglActiveStencilFaceEXT(GL_BACK);CHECKGLERROR qglStencilMask(writemask);CHECKGLERROR qglStencilOp(backfail, backzfail, backzpass);CHECKGLERROR qglStencilFunc(backcompare, comparereference, comparemask);CHECKGLERROR #endif } break; case RENDERPATH_D3D9: #ifdef SUPPORTD3D IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_TWOSIDEDSTENCILMODE, true); IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_STENCILENABLE, enable); IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_STENCILWRITEMASK, writemask); IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_STENCILFAIL, d3dstencilopforglfunc(frontfail)); IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_STENCILZFAIL, d3dstencilopforglfunc(frontzfail)); IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_STENCILPASS, d3dstencilopforglfunc(frontzpass)); IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_STENCILFUNC, d3dcmpforglfunc(frontcompare)); IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_CCW_STENCILFAIL, d3dstencilopforglfunc(backfail)); IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_CCW_STENCILZFAIL, d3dstencilopforglfunc(backzfail)); IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_CCW_STENCILPASS, d3dstencilopforglfunc(backzpass)); IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_CCW_STENCILFUNC, d3dcmpforglfunc(backcompare)); IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_STENCILREF, comparereference); IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_STENCILMASK, comparemask); #endif break; case RENDERPATH_D3D10: Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_D3D11: Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_SOFT: //Con_DPrintf("FIXME SOFT %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; } } void R_SetStencil(qboolean enable, int writemask, int fail, int zfail, int zpass, int compare, int comparereference, int comparemask) { switch (vid.renderpath) { case RENDERPATH_GL11: case RENDERPATH_GL13: case RENDERPATH_GL20: case RENDERPATH_GLES1: case RENDERPATH_GLES2: CHECKGLERROR if (enable) { qglEnable(GL_STENCIL_TEST);CHECKGLERROR } else { qglDisable(GL_STENCIL_TEST);CHECKGLERROR } if (vid.support.ext_stencil_two_side) { #ifdef GL_STENCIL_TEST_TWO_SIDE_EXT qglDisable(GL_STENCIL_TEST_TWO_SIDE_EXT);CHECKGLERROR #endif } qglStencilMask(writemask);CHECKGLERROR qglStencilOp(fail, zfail, zpass);CHECKGLERROR qglStencilFunc(compare, comparereference, comparemask);CHECKGLERROR CHECKGLERROR break; case RENDERPATH_D3D9: #ifdef SUPPORTD3D if (vid.support.ati_separate_stencil) IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_TWOSIDEDSTENCILMODE, true); IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_STENCILENABLE, enable); IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_STENCILWRITEMASK, writemask); IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_STENCILFAIL, d3dstencilopforglfunc(fail)); IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_STENCILZFAIL, d3dstencilopforglfunc(zfail)); IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_STENCILPASS, d3dstencilopforglfunc(zpass)); IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_STENCILFUNC, d3dcmpforglfunc(compare)); IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_STENCILREF, comparereference); IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_STENCILMASK, comparemask); #endif break; case RENDERPATH_D3D10: Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_D3D11: Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_SOFT: //Con_DPrintf("FIXME SOFT %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; } } void GL_PolygonOffset(float planeoffset, float depthoffset) { if (gl_state.polygonoffset[0] != planeoffset || gl_state.polygonoffset[1] != depthoffset) { gl_state.polygonoffset[0] = planeoffset; gl_state.polygonoffset[1] = depthoffset; switch(vid.renderpath) { case RENDERPATH_GL11: case RENDERPATH_GL13: case RENDERPATH_GL20: case RENDERPATH_GLES1: case RENDERPATH_GLES2: qglPolygonOffset(gl_state.polygonoffset[0], gl_state.polygonoffset[1]); break; case RENDERPATH_D3D9: #ifdef SUPPORTD3D IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_SLOPESCALEDEPTHBIAS, gl_state.polygonoffset[0]); IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_DEPTHBIAS, gl_state.polygonoffset[1] * (1.0f / 16777216.0f)); #endif break; case RENDERPATH_D3D10: Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_D3D11: Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_SOFT: DPSOFTRAST_PolygonOffset(gl_state.polygonoffset[0], gl_state.polygonoffset[1]); break; } } } void GL_SetMirrorState(qboolean state) { if (v_flipped_state != state) { v_flipped_state = state; if (gl_state.cullface == GL_BACK) gl_state.cullface = GL_FRONT; else if (gl_state.cullface == GL_FRONT) gl_state.cullface = GL_BACK; else return; switch(vid.renderpath) { case RENDERPATH_GL11: case RENDERPATH_GL13: case RENDERPATH_GL20: case RENDERPATH_GLES1: case RENDERPATH_GLES2: qglCullFace(gl_state.cullface);CHECKGLERROR break; case RENDERPATH_D3D9: #ifdef SUPPORTD3D IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_CULLMODE, gl_state.cullface == GL_FRONT ? D3DCULL_CCW : D3DCULL_CW); #endif break; case RENDERPATH_D3D10: Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_D3D11: Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_SOFT: DPSOFTRAST_CullFace(gl_state.cullface); break; } } } void GL_CullFace(int state) { if(v_flipped_state) { if(state == GL_FRONT) state = GL_BACK; else if(state == GL_BACK) state = GL_FRONT; } switch(vid.renderpath) { case RENDERPATH_GL11: case RENDERPATH_GL13: case RENDERPATH_GL20: case RENDERPATH_GLES1: case RENDERPATH_GLES2: CHECKGLERROR if (state != GL_NONE) { if (!gl_state.cullfaceenable) { gl_state.cullfaceenable = true; qglEnable(GL_CULL_FACE);CHECKGLERROR } if (gl_state.cullface != state) { gl_state.cullface = state; qglCullFace(gl_state.cullface);CHECKGLERROR } } else { if (gl_state.cullfaceenable) { gl_state.cullfaceenable = false; qglDisable(GL_CULL_FACE);CHECKGLERROR } } break; case RENDERPATH_D3D9: #ifdef SUPPORTD3D if (gl_state.cullface != state) { gl_state.cullface = state; switch(gl_state.cullface) { case GL_NONE: gl_state.cullfaceenable = false; IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_CULLMODE, D3DCULL_NONE); break; case GL_FRONT: gl_state.cullfaceenable = true; IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_CULLMODE, D3DCULL_CCW); break; case GL_BACK: gl_state.cullfaceenable = true; IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_CULLMODE, D3DCULL_CW); break; } } #endif break; case RENDERPATH_D3D10: Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_D3D11: Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_SOFT: if (gl_state.cullface != state) { gl_state.cullface = state; gl_state.cullfaceenable = state != GL_NONE ? true : false; DPSOFTRAST_CullFace(gl_state.cullface); } break; } } void GL_AlphaTest(int state) { if (gl_state.alphatest != state) { gl_state.alphatest = state; switch(vid.renderpath) { case RENDERPATH_GL11: case RENDERPATH_GL13: case RENDERPATH_GLES1: #ifdef GL_ALPHA_TEST // only fixed function uses alpha test, other paths use pixel kill capability in shaders CHECKGLERROR if (gl_state.alphatest) { qglEnable(GL_ALPHA_TEST);CHECKGLERROR } else { qglDisable(GL_ALPHA_TEST);CHECKGLERROR } #endif break; case RENDERPATH_D3D9: case RENDERPATH_D3D10: case RENDERPATH_D3D11: case RENDERPATH_SOFT: case RENDERPATH_GL20: case RENDERPATH_GLES2: break; } } } void GL_AlphaToCoverage(qboolean state) { if (gl_state.alphatocoverage != state) { gl_state.alphatocoverage = state; switch(vid.renderpath) { case RENDERPATH_GL11: case RENDERPATH_GL13: case RENDERPATH_GLES1: case RENDERPATH_GLES2: case RENDERPATH_D3D9: case RENDERPATH_D3D10: case RENDERPATH_D3D11: case RENDERPATH_SOFT: break; case RENDERPATH_GL20: #ifdef GL_SAMPLE_ALPHA_TO_COVERAGE_ARB // alpha to coverage turns the alpha value of the pixel into 0%, 25%, 50%, 75% or 100% by masking the multisample fragments accordingly CHECKGLERROR if (gl_state.alphatocoverage) { qglEnable(GL_SAMPLE_ALPHA_TO_COVERAGE_ARB);CHECKGLERROR // qglEnable(GL_MULTISAMPLE_ARB);CHECKGLERROR } else { qglDisable(GL_SAMPLE_ALPHA_TO_COVERAGE_ARB);CHECKGLERROR // qglDisable(GL_MULTISAMPLE_ARB);CHECKGLERROR } #endif break; } } } void GL_ColorMask(int r, int g, int b, int a) { // NOTE: this matches D3DCOLORWRITEENABLE_RED, GREEN, BLUE, ALPHA int state = (r ? 1 : 0) | (g ? 2 : 0) | (b ? 4 : 0) | (a ? 8 : 0); if (gl_state.colormask != state) { gl_state.colormask = state; switch(vid.renderpath) { case RENDERPATH_GL11: case RENDERPATH_GL13: case RENDERPATH_GL20: case RENDERPATH_GLES1: case RENDERPATH_GLES2: CHECKGLERROR qglColorMask((GLboolean)r, (GLboolean)g, (GLboolean)b, (GLboolean)a);CHECKGLERROR break; case RENDERPATH_D3D9: #ifdef SUPPORTD3D IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_COLORWRITEENABLE, state); #endif break; case RENDERPATH_D3D10: Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_D3D11: Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_SOFT: DPSOFTRAST_ColorMask(r, g, b, a); break; } } } void GL_Color(float cr, float cg, float cb, float ca) { if (gl_state.pointer_color_enabled || gl_state.color4f[0] != cr || gl_state.color4f[1] != cg || gl_state.color4f[2] != cb || gl_state.color4f[3] != ca) { gl_state.color4f[0] = cr; gl_state.color4f[1] = cg; gl_state.color4f[2] = cb; gl_state.color4f[3] = ca; switch(vid.renderpath) { case RENDERPATH_GL11: case RENDERPATH_GL13: case RENDERPATH_GLES1: CHECKGLERROR qglColor4f(gl_state.color4f[0], gl_state.color4f[1], gl_state.color4f[2], gl_state.color4f[3]); CHECKGLERROR break; case RENDERPATH_D3D9: case RENDERPATH_D3D10: case RENDERPATH_D3D11: // no equivalent in D3D break; case RENDERPATH_SOFT: DPSOFTRAST_Color4f(cr, cg, cb, ca); break; case RENDERPATH_GL20: case RENDERPATH_GLES2: qglVertexAttrib4f(GLSLATTRIB_COLOR, cr, cg, cb, ca); break; } } } void GL_Scissor (int x, int y, int width, int height) { switch(vid.renderpath) { case RENDERPATH_GL11: case RENDERPATH_GL13: case RENDERPATH_GL20: case RENDERPATH_GLES1: case RENDERPATH_GLES2: CHECKGLERROR qglScissor(x, y,width,height); CHECKGLERROR break; case RENDERPATH_D3D9: #ifdef SUPPORTD3D { RECT d3drect; d3drect.left = x; d3drect.top = y; d3drect.right = x + width; d3drect.bottom = y + height; IDirect3DDevice9_SetScissorRect(vid_d3d9dev, &d3drect); } #endif break; case RENDERPATH_D3D10: Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_D3D11: Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_SOFT: DPSOFTRAST_Scissor(x, y, width, height); break; } } void GL_ScissorTest(int state) { if (gl_state.scissortest != state) { gl_state.scissortest = state; switch(vid.renderpath) { case RENDERPATH_GL11: case RENDERPATH_GL13: case RENDERPATH_GL20: case RENDERPATH_GLES1: case RENDERPATH_GLES2: CHECKGLERROR if(gl_state.scissortest) qglEnable(GL_SCISSOR_TEST); else qglDisable(GL_SCISSOR_TEST); CHECKGLERROR break; case RENDERPATH_D3D9: #ifdef SUPPORTD3D IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_SCISSORTESTENABLE, gl_state.scissortest); #endif break; case RENDERPATH_D3D10: Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_D3D11: Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_SOFT: DPSOFTRAST_ScissorTest(gl_state.scissortest); break; } } } void GL_Clear(int mask, const float *colorvalue, float depthvalue, int stencilvalue) { static const float blackcolor[4] = {0, 0, 0, 0}; // prevent warnings when trying to clear a buffer that does not exist if (!colorvalue) colorvalue = blackcolor; if (!vid.stencil) { mask &= ~GL_STENCIL_BUFFER_BIT; stencilvalue = 0; } switch(vid.renderpath) { case RENDERPATH_GL11: case RENDERPATH_GL13: case RENDERPATH_GL20: case RENDERPATH_GLES1: case RENDERPATH_GLES2: CHECKGLERROR if (mask & GL_COLOR_BUFFER_BIT) { qglClearColor(colorvalue[0], colorvalue[1], colorvalue[2], colorvalue[3]);CHECKGLERROR } if (mask & GL_DEPTH_BUFFER_BIT) { #ifdef USE_GLES2 qglClearDepthf(depthvalue);CHECKGLERROR #else qglClearDepth(depthvalue);CHECKGLERROR #endif } if (mask & GL_STENCIL_BUFFER_BIT) { qglClearStencil(stencilvalue);CHECKGLERROR } qglClear(mask);CHECKGLERROR break; case RENDERPATH_D3D9: #ifdef SUPPORTD3D IDirect3DDevice9_Clear(vid_d3d9dev, 0, NULL, ((mask & GL_COLOR_BUFFER_BIT) ? D3DCLEAR_TARGET : 0) | ((mask & GL_STENCIL_BUFFER_BIT) ? D3DCLEAR_STENCIL : 0) | ((mask & GL_DEPTH_BUFFER_BIT) ? D3DCLEAR_ZBUFFER : 0), D3DCOLOR_COLORVALUE(colorvalue[0], colorvalue[1], colorvalue[2], colorvalue[3]), depthvalue, stencilvalue); #endif break; case RENDERPATH_D3D10: Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_D3D11: Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_SOFT: if (mask & GL_COLOR_BUFFER_BIT) DPSOFTRAST_ClearColor(colorvalue[0], colorvalue[1], colorvalue[2], colorvalue[3]); if (mask & GL_DEPTH_BUFFER_BIT) DPSOFTRAST_ClearDepth(depthvalue); break; } } void GL_ReadPixelsBGRA(int x, int y, int width, int height, unsigned char *outpixels) { switch(vid.renderpath) { case RENDERPATH_GL11: case RENDERPATH_GL13: case RENDERPATH_GL20: case RENDERPATH_GLES1: case RENDERPATH_GLES2: CHECKGLERROR qglReadPixels(x, y, width, height, GL_BGRA, GL_UNSIGNED_BYTE, outpixels);CHECKGLERROR break; case RENDERPATH_D3D9: #ifdef SUPPORTD3D { // LordHavoc: we can't directly download the backbuffer because it may be // multisampled, and it may not be lockable, so we blit it to a lockable // surface of the same dimensions (but without multisample) to resolve the // multisample buffer to a normal image, and then lock that... IDirect3DSurface9 *stretchsurface = NULL; if (!FAILED(IDirect3DDevice9_CreateRenderTarget(vid_d3d9dev, vid.width, vid.height, D3DFMT_A8R8G8B8, D3DMULTISAMPLE_NONE, 0, TRUE, &stretchsurface, NULL))) { D3DLOCKED_RECT lockedrect; if (!FAILED(IDirect3DDevice9_StretchRect(vid_d3d9dev, gl_state.d3drt_backbuffercolorsurface, NULL, stretchsurface, NULL, D3DTEXF_POINT))) { if (!FAILED(IDirect3DSurface9_LockRect(stretchsurface, &lockedrect, NULL, D3DLOCK_READONLY))) { int line; unsigned char *row = (unsigned char *)lockedrect.pBits + x * 4 + lockedrect.Pitch * (vid.height - 1 - y); for (line = 0;line < height;line++, row -= lockedrect.Pitch) memcpy(outpixels + line * width * 4, row, width * 4); IDirect3DSurface9_UnlockRect(stretchsurface); } } IDirect3DSurface9_Release(stretchsurface); } // code scraps //IDirect3DSurface9 *syssurface = NULL; //if (!FAILED(IDirect3DDevice9_CreateRenderTarget(vid_d3d9dev, vid.width, vid.height, D3DFMT_A8R8G8B8, D3DMULTISAMPLE_NONE, 0, FALSE, &stretchsurface, NULL))) //if (!FAILED(IDirect3DDevice9_CreateOffscreenPlainSurface(vid_d3d9dev, vid.width, vid.height, D3DFMT_A8R8G8B8, D3DPOOL_SCRATCH, &syssurface, NULL))) //IDirect3DDevice9_GetRenderTargetData(vid_d3d9dev, gl_state.d3drt_backbuffercolorsurface, syssurface); //if (!FAILED(IDirect3DDevice9_GetFrontBufferData(vid_d3d9dev, 0, syssurface))) //if (!FAILED(IDirect3DSurface9_LockRect(syssurface, &lockedrect, NULL, D3DLOCK_READONLY))) //IDirect3DSurface9_UnlockRect(syssurface); //IDirect3DSurface9_Release(syssurface); } #endif break; case RENDERPATH_D3D10: Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_D3D11: Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_SOFT: DPSOFTRAST_GetPixelsBGRA(x, y, width, height, outpixels); break; } } // called at beginning of frame void R_Mesh_Start(void) { BACKENDACTIVECHECK //Get the current fbo qglGetIntegerv(GL_FRAMEBUFFER_BINDING, &gl_state.defaultframebufferobject); R_Mesh_SetRenderTargets(0, NULL, NULL, NULL, NULL, NULL); R_Mesh_SetUseVBO(); if (gl_printcheckerror.integer && !gl_paranoid.integer) { Con_Printf("WARNING: gl_printcheckerror is on but gl_paranoid is off, turning it on...\n"); Cvar_SetValueQuick(&gl_paranoid, 1); } } static qboolean GL_Backend_CompileShader(int programobject, GLenum shadertypeenum, const char *shadertype, int numstrings, const char **strings) { int shaderobject; int shadercompiled; char compilelog[MAX_INPUTLINE]; shaderobject = qglCreateShader(shadertypeenum);CHECKGLERROR if (!shaderobject) return false; qglShaderSource(shaderobject, numstrings, strings, NULL);CHECKGLERROR qglCompileShader(shaderobject);CHECKGLERROR qglGetShaderiv(shaderobject, GL_COMPILE_STATUS, &shadercompiled);CHECKGLERROR qglGetShaderInfoLog(shaderobject, sizeof(compilelog), NULL, compilelog);CHECKGLERROR if (compilelog[0] && ((strstr(compilelog, "error") || strstr(compilelog, "ERROR") || strstr(compilelog, "Error")) || ((strstr(compilelog, "WARNING") || strstr(compilelog, "warning") || strstr(compilelog, "Warning")) && developer.integer) || developer_extra.integer)) { int i, j, pretextlines = 0; for (i = 0;i < numstrings - 1;i++) for (j = 0;strings[i][j];j++) if (strings[i][j] == '\n') pretextlines++; Con_Printf("%s shader compile log:\n%s\n(line offset for any above warnings/errors: %i)\n", shadertype, compilelog, pretextlines); } if (!shadercompiled) { qglDeleteShader(shaderobject);CHECKGLERROR return false; } qglAttachShader(programobject, shaderobject);CHECKGLERROR qglDeleteShader(shaderobject);CHECKGLERROR return true; } unsigned int GL_Backend_CompileProgram(int vertexstrings_count, const char **vertexstrings_list, int geometrystrings_count, const char **geometrystrings_list, int fragmentstrings_count, const char **fragmentstrings_list) { GLint programlinked; GLuint programobject = 0; char linklog[MAX_INPUTLINE]; CHECKGLERROR programobject = qglCreateProgram();CHECKGLERROR if (!programobject) return 0; qglBindAttribLocation(programobject, GLSLATTRIB_POSITION , "Attrib_Position" ); qglBindAttribLocation(programobject, GLSLATTRIB_COLOR , "Attrib_Color" ); qglBindAttribLocation(programobject, GLSLATTRIB_TEXCOORD0, "Attrib_TexCoord0"); qglBindAttribLocation(programobject, GLSLATTRIB_TEXCOORD1, "Attrib_TexCoord1"); qglBindAttribLocation(programobject, GLSLATTRIB_TEXCOORD2, "Attrib_TexCoord2"); qglBindAttribLocation(programobject, GLSLATTRIB_TEXCOORD3, "Attrib_TexCoord3"); qglBindAttribLocation(programobject, GLSLATTRIB_TEXCOORD4, "Attrib_TexCoord4"); qglBindAttribLocation(programobject, GLSLATTRIB_TEXCOORD5, "Attrib_TexCoord5"); qglBindAttribLocation(programobject, GLSLATTRIB_TEXCOORD6, "Attrib_SkeletalIndex"); qglBindAttribLocation(programobject, GLSLATTRIB_TEXCOORD7, "Attrib_SkeletalWeight"); #ifndef USE_GLES2 if(vid.support.gl20shaders130) qglBindFragDataLocation(programobject, 0, "dp_FragColor"); #endif if (vertexstrings_count && !GL_Backend_CompileShader(programobject, GL_VERTEX_SHADER, "vertex", vertexstrings_count, vertexstrings_list)) goto cleanup; #ifdef GL_GEOMETRY_SHADER if (geometrystrings_count && !GL_Backend_CompileShader(programobject, GL_GEOMETRY_SHADER, "geometry", geometrystrings_count, geometrystrings_list)) goto cleanup; #endif if (fragmentstrings_count && !GL_Backend_CompileShader(programobject, GL_FRAGMENT_SHADER, "fragment", fragmentstrings_count, fragmentstrings_list)) goto cleanup; qglLinkProgram(programobject);CHECKGLERROR qglGetProgramiv(programobject, GL_LINK_STATUS, &programlinked);CHECKGLERROR qglGetProgramInfoLog(programobject, sizeof(linklog), NULL, linklog);CHECKGLERROR if (linklog[0]) { if (strstr(linklog, "error") || strstr(linklog, "ERROR") || strstr(linklog, "Error") || strstr(linklog, "WARNING") || strstr(linklog, "warning") || strstr(linklog, "Warning") || developer_extra.integer) Con_DPrintf("program link log:\n%s\n", linklog); // software vertex shader is ok but software fragment shader is WAY // too slow, fail program if so. // NOTE: this string might be ATI specific, but that's ok because the // ATI R300 chip (Radeon 9500-9800/X300) is the most likely to use a // software fragment shader due to low instruction and dependent // texture limits. if (strstr(linklog, "fragment shader will run in software")) programlinked = false; } if (!programlinked) goto cleanup; return programobject; cleanup: qglDeleteProgram(programobject);CHECKGLERROR return 0; } void GL_Backend_FreeProgram(unsigned int prog) { CHECKGLERROR qglDeleteProgram(prog); CHECKGLERROR } // renders triangles using vertices from the active arrays int paranoidblah = 0; void R_Mesh_Draw(int firstvertex, int numvertices, int firsttriangle, int numtriangles, const int *element3i, const r_meshbuffer_t *element3i_indexbuffer, int element3i_bufferoffset, const unsigned short *element3s, const r_meshbuffer_t *element3s_indexbuffer, int element3s_bufferoffset) { unsigned int numelements = numtriangles * 3; int bufferobject3i; size_t bufferoffset3i; int bufferobject3s; size_t bufferoffset3s; if (numvertices < 3 || numtriangles < 1) { if (numvertices < 0 || numtriangles < 0 || developer_extra.integer) Con_DPrintf("R_Mesh_Draw(%d, %d, %d, %d, %8p, %8p, %8x, %8p, %8p, %8x);\n", firstvertex, numvertices, firsttriangle, numtriangles, (void *)element3i, (void *)element3i_indexbuffer, (int)element3i_bufferoffset, (void *)element3s, (void *)element3s_indexbuffer, (int)element3s_bufferoffset); return; } // adjust the pointers for firsttriangle if (element3i) element3i += firsttriangle * 3; if (element3i_indexbuffer) element3i_bufferoffset += firsttriangle * 3 * sizeof(*element3i); if (element3s) element3s += firsttriangle * 3; if (element3s_indexbuffer) element3s_bufferoffset += firsttriangle * 3 * sizeof(*element3s); switch(vid.renderpath) { case RENDERPATH_GL11: case RENDERPATH_GL13: case RENDERPATH_GL20: case RENDERPATH_GLES1: case RENDERPATH_GLES2: // check if the user specified to ignore static index buffers if (!gl_state.usevbo_staticindex || (gl_vbo.integer == 3 && !vid.forcevbo && (element3i_bufferoffset || element3s_bufferoffset))) { element3i_indexbuffer = NULL; element3s_indexbuffer = NULL; } break; case RENDERPATH_D3D9: case RENDERPATH_D3D10: case RENDERPATH_D3D11: break; case RENDERPATH_SOFT: break; } // upload a dynamic index buffer if needed if (element3s) { if (!element3s_indexbuffer && gl_state.usevbo_dynamicindex) element3s_indexbuffer = R_BufferData_Store(numelements * sizeof(*element3s), (void *)element3s, R_BUFFERDATA_INDEX16, &element3s_bufferoffset); } else if (element3i) { if (!element3i_indexbuffer && gl_state.usevbo_dynamicindex) element3i_indexbuffer = R_BufferData_Store(numelements * sizeof(*element3i), (void *)element3i, R_BUFFERDATA_INDEX32, &element3i_bufferoffset); } bufferobject3i = element3i_indexbuffer ? element3i_indexbuffer->bufferobject : 0; bufferoffset3i = element3i_bufferoffset; bufferobject3s = element3s_indexbuffer ? element3s_indexbuffer->bufferobject : 0; bufferoffset3s = element3s_bufferoffset; r_refdef.stats[r_stat_draws]++; r_refdef.stats[r_stat_draws_vertices] += numvertices; r_refdef.stats[r_stat_draws_elements] += numelements; if (gl_paranoid.integer) { unsigned int i; // LordHavoc: disabled this - it needs to be updated to handle components and gltype and stride in each array #if 0 unsigned int j, size; const int *p; // note: there's no validation done here on buffer objects because it // is somewhat difficult to get at the data, and gl_paranoid can be // used without buffer objects if the need arises // (the data could be gotten using glMapBuffer but it would be very // slow due to uncachable video memory reads) if (!qglIsEnabled(GL_VERTEX_ARRAY)) Con_Print("R_Mesh_Draw: vertex array not enabled\n"); CHECKGLERROR if (gl_state.pointer_vertex_pointer) for (j = 0, size = numvertices * 3, p = (int *)((float *)gl_state.pointer_vertex + firstvertex * 3);j < size;j++, p++) paranoidblah += *p; if (gl_state.pointer_color_enabled) { if (!qglIsEnabled(GL_COLOR_ARRAY)) Con_Print("R_Mesh_Draw: color array set but not enabled\n"); CHECKGLERROR if (gl_state.pointer_color && gl_state.pointer_color_enabled) for (j = 0, size = numvertices * 4, p = (int *)((float *)gl_state.pointer_color + firstvertex * 4);j < size;j++, p++) paranoidblah += *p; } for (i = 0;i < vid.texarrayunits;i++) { if (gl_state.units[i].arrayenabled) { GL_ClientActiveTexture(i); if (!qglIsEnabled(GL_TEXTURE_COORD_ARRAY)) Con_Print("R_Mesh_Draw: texcoord array set but not enabled\n"); CHECKGLERROR if (gl_state.units[i].pointer_texcoord && gl_state.units[i].arrayenabled) for (j = 0, size = numvertices * gl_state.units[i].arraycomponents, p = (int *)((float *)gl_state.units[i].pointer_texcoord + firstvertex * gl_state.units[i].arraycomponents);j < size;j++, p++) paranoidblah += *p; } } #endif if (element3i) { for (i = 0;i < (unsigned int) numtriangles * 3;i++) { if (element3i[i] < firstvertex || element3i[i] >= firstvertex + numvertices) { Con_Printf("R_Mesh_Draw: invalid vertex index %i (outside range %i - %i) in element3i array\n", element3i[i], firstvertex, firstvertex + numvertices); return; } } } if (element3s) { for (i = 0;i < (unsigned int) numtriangles * 3;i++) { if (element3s[i] < firstvertex || element3s[i] >= firstvertex + numvertices) { Con_Printf("R_Mesh_Draw: invalid vertex index %i (outside range %i - %i) in element3s array\n", element3s[i], firstvertex, firstvertex + numvertices); return; } } } } if (r_render.integer || r_refdef.draw2dstage) { switch(vid.renderpath) { case RENDERPATH_GL11: case RENDERPATH_GL13: case RENDERPATH_GL20: CHECKGLERROR if (gl_mesh_testmanualfeeding.integer) { #ifndef USE_GLES2 unsigned int i, j, element; const GLfloat *p; qglBegin(GL_TRIANGLES); if(vid.renderpath == RENDERPATH_GL20) { for (i = 0;i < (unsigned int) numtriangles * 3;i++) { if (element3i) element = element3i[i]; else if (element3s) element = element3s[i]; else element = firstvertex + i; for (j = 0;j < vid.texarrayunits;j++) { if (gl_state.units[j].pointer_texcoord_pointer && gl_state.units[j].arrayenabled) { if (gl_state.units[j].pointer_texcoord_gltype == GL_FLOAT) { p = (const GLfloat *)((const unsigned char *)gl_state.units[j].pointer_texcoord_pointer + element * gl_state.units[j].pointer_texcoord_stride); if (gl_state.units[j].pointer_texcoord_components == 4) qglVertexAttrib4f(GLSLATTRIB_TEXCOORD0 + j, p[0], p[1], p[2], p[3]); else if (gl_state.units[j].pointer_texcoord_components == 3) qglVertexAttrib3f(GLSLATTRIB_TEXCOORD0 + j, p[0], p[1], p[2]); else if (gl_state.units[j].pointer_texcoord_components == 2) qglVertexAttrib2f(GLSLATTRIB_TEXCOORD0 + j, p[0], p[1]); else qglVertexAttrib1f(GLSLATTRIB_TEXCOORD0 + j, p[0]); } else if (gl_state.units[j].pointer_texcoord_gltype == (int)(GL_SHORT | 0x80000000)) { const GLshort *s = (const GLshort *)((const unsigned char *)gl_state.units[j].pointer_texcoord_pointer + element * gl_state.units[j].pointer_texcoord_stride); if (gl_state.units[j].pointer_texcoord_components == 4) qglVertexAttrib4f(GLSLATTRIB_TEXCOORD0 + j, s[0], s[1], s[2], s[3]); else if (gl_state.units[j].pointer_texcoord_components == 3) qglVertexAttrib3f(GLSLATTRIB_TEXCOORD0 + j, s[0], s[1], s[2]); else if (gl_state.units[j].pointer_texcoord_components == 2) qglVertexAttrib2f(GLSLATTRIB_TEXCOORD0 + j, s[0], s[1]); else if (gl_state.units[j].pointer_texcoord_components == 1) qglVertexAttrib1f(GLSLATTRIB_TEXCOORD0 + j, s[0]); } else if (gl_state.units[j].pointer_texcoord_gltype == GL_BYTE) { const GLbyte *sb = (const GLbyte *)((const unsigned char *)gl_state.units[j].pointer_texcoord_pointer + element * gl_state.units[j].pointer_texcoord_stride); if (gl_state.units[j].pointer_texcoord_components == 4) qglVertexAttrib4f(GLSLATTRIB_TEXCOORD0 + j, sb[0] * (1.0f / 127.0f), sb[1] * (1.0f / 127.0f), sb[2] * (1.0f / 127.0f), sb[3] * (1.0f / 127.0f)); else if (gl_state.units[j].pointer_texcoord_components == 3) qglVertexAttrib3f(GLSLATTRIB_TEXCOORD0 + j, sb[0] * (1.0f / 127.0f), sb[1] * (1.0f / 127.0f), sb[2] * (1.0f / 127.0f)); else if (gl_state.units[j].pointer_texcoord_components == 2) qglVertexAttrib2f(GLSLATTRIB_TEXCOORD0 + j, sb[0] * (1.0f / 127.0f), sb[1] * (1.0f / 127.0f)); else if (gl_state.units[j].pointer_texcoord_components == 1) qglVertexAttrib1f(GLSLATTRIB_TEXCOORD0 + j, sb[0] * (1.0f / 127.0f)); } else if (gl_state.units[j].pointer_texcoord_gltype == GL_UNSIGNED_BYTE) { const GLubyte *sb = (const GLubyte *)((const unsigned char *)gl_state.units[j].pointer_texcoord_pointer + element * gl_state.units[j].pointer_texcoord_stride); if (gl_state.units[j].pointer_texcoord_components == 4) qglVertexAttrib4f(GLSLATTRIB_TEXCOORD0 + j, sb[0] * (1.0f / 255.0f), sb[1] * (1.0f / 255.0f), sb[2] * (1.0f / 255.0f), sb[3] * (1.0f / 255.0f)); else if (gl_state.units[j].pointer_texcoord_components == 3) qglVertexAttrib3f(GLSLATTRIB_TEXCOORD0 + j, sb[0] * (1.0f / 255.0f), sb[1] * (1.0f / 255.0f), sb[2] * (1.0f / 255.0f)); else if (gl_state.units[j].pointer_texcoord_components == 2) qglVertexAttrib2f(GLSLATTRIB_TEXCOORD0 + j, sb[0] * (1.0f / 255.0f), sb[1] * (1.0f / 255.0f)); else if (gl_state.units[j].pointer_texcoord_components == 1) qglVertexAttrib1f(GLSLATTRIB_TEXCOORD0 + j, sb[0] * (1.0f / 255.0f)); } else if (gl_state.units[j].pointer_texcoord_gltype == (int)(GL_UNSIGNED_BYTE | 0x80000000)) { const GLubyte *sb = (const GLubyte *)((const unsigned char *)gl_state.units[j].pointer_texcoord_pointer + element * gl_state.units[j].pointer_texcoord_stride); if (gl_state.units[j].pointer_texcoord_components == 4) qglVertexAttrib4f(GLSLATTRIB_TEXCOORD0 + j, sb[0], sb[1], sb[2], sb[3]); else if (gl_state.units[j].pointer_texcoord_components == 3) qglVertexAttrib3f(GLSLATTRIB_TEXCOORD0 + j, sb[0], sb[1], sb[2]); else if (gl_state.units[j].pointer_texcoord_components == 2) qglVertexAttrib2f(GLSLATTRIB_TEXCOORD0 + j, sb[0], sb[1]); else if (gl_state.units[j].pointer_texcoord_components == 1) qglVertexAttrib1f(GLSLATTRIB_TEXCOORD0 + j, sb[0]); } } } if (gl_state.pointer_color_pointer && gl_state.pointer_color_enabled && gl_state.pointer_color_components == 4) { if (gl_state.pointer_color_gltype == GL_FLOAT) { p = (const GLfloat *)((const unsigned char *)gl_state.pointer_color_pointer + element * gl_state.pointer_color_stride); qglVertexAttrib4f(GLSLATTRIB_COLOR, p[0], p[1], p[2], p[3]); } else if (gl_state.pointer_color_gltype == GL_UNSIGNED_BYTE) { const GLubyte *ub = (const GLubyte *)((const unsigned char *)gl_state.pointer_color_pointer + element * gl_state.pointer_color_stride); qglVertexAttrib4Nub(GLSLATTRIB_COLOR, ub[0], ub[1], ub[2], ub[3]); } } if (gl_state.pointer_vertex_gltype == GL_FLOAT) { p = (const GLfloat *)((const unsigned char *)gl_state.pointer_vertex_pointer + element * gl_state.pointer_vertex_stride); if (gl_state.pointer_vertex_components == 4) qglVertexAttrib4f(GLSLATTRIB_POSITION, p[0], p[1], p[2], p[3]); else if (gl_state.pointer_vertex_components == 3) qglVertexAttrib3f(GLSLATTRIB_POSITION, p[0], p[1], p[2]); else qglVertexAttrib2f(GLSLATTRIB_POSITION, p[0], p[1]); } } } else { for (i = 0;i < (unsigned int) numtriangles * 3;i++) { if (element3i) element = element3i[i]; else if (element3s) element = element3s[i]; else element = firstvertex + i; for (j = 0;j < vid.texarrayunits;j++) { if (gl_state.units[j].pointer_texcoord_pointer && gl_state.units[j].arrayenabled) { if (gl_state.units[j].pointer_texcoord_gltype == GL_FLOAT) { p = (const GLfloat *)((const unsigned char *)gl_state.units[j].pointer_texcoord_pointer + element * gl_state.units[j].pointer_texcoord_stride); if (vid.texarrayunits > 1) { if (gl_state.units[j].pointer_texcoord_components == 4) qglMultiTexCoord4f(GL_TEXTURE0 + j, p[0], p[1], p[2], p[3]); else if (gl_state.units[j].pointer_texcoord_components == 3) qglMultiTexCoord3f(GL_TEXTURE0 + j, p[0], p[1], p[2]); else if (gl_state.units[j].pointer_texcoord_components == 2) qglMultiTexCoord2f(GL_TEXTURE0 + j, p[0], p[1]); else qglMultiTexCoord1f(GL_TEXTURE0 + j, p[0]); } else { if (gl_state.units[j].pointer_texcoord_components == 4) qglTexCoord4f(p[0], p[1], p[2], p[3]); else if (gl_state.units[j].pointer_texcoord_components == 3) qglTexCoord3f(p[0], p[1], p[2]); else if (gl_state.units[j].pointer_texcoord_components == 2) qglTexCoord2f(p[0], p[1]); else qglTexCoord1f(p[0]); } } else if (gl_state.units[j].pointer_texcoord_gltype == GL_SHORT) { const GLshort *s = (const GLshort *)((const unsigned char *)gl_state.units[j].pointer_texcoord_pointer + element * gl_state.units[j].pointer_texcoord_stride); if (vid.texarrayunits > 1) { if (gl_state.units[j].pointer_texcoord_components == 4) qglMultiTexCoord4f(GL_TEXTURE0 + j, s[0], s[1], s[2], s[3]); else if (gl_state.units[j].pointer_texcoord_components == 3) qglMultiTexCoord3f(GL_TEXTURE0 + j, s[0], s[1], s[2]); else if (gl_state.units[j].pointer_texcoord_components == 2) qglMultiTexCoord2f(GL_TEXTURE0 + j, s[0], s[1]); else if (gl_state.units[j].pointer_texcoord_components == 1) qglMultiTexCoord1f(GL_TEXTURE0 + j, s[0]); } else { if (gl_state.units[j].pointer_texcoord_components == 4) qglTexCoord4f(s[0], s[1], s[2], s[3]); else if (gl_state.units[j].pointer_texcoord_components == 3) qglTexCoord3f(s[0], s[1], s[2]); else if (gl_state.units[j].pointer_texcoord_components == 2) qglTexCoord2f(s[0], s[1]); else if (gl_state.units[j].pointer_texcoord_components == 1) qglTexCoord1f(s[0]); } } else if (gl_state.units[j].pointer_texcoord_gltype == GL_BYTE) { const GLbyte *sb = (const GLbyte *)((const unsigned char *)gl_state.units[j].pointer_texcoord_pointer + element * gl_state.units[j].pointer_texcoord_stride); if (vid.texarrayunits > 1) { if (gl_state.units[j].pointer_texcoord_components == 4) qglMultiTexCoord4f(GL_TEXTURE0 + j, sb[0], sb[1], sb[2], sb[3]); else if (gl_state.units[j].pointer_texcoord_components == 3) qglMultiTexCoord3f(GL_TEXTURE0 + j, sb[0], sb[1], sb[2]); else if (gl_state.units[j].pointer_texcoord_components == 2) qglMultiTexCoord2f(GL_TEXTURE0 + j, sb[0], sb[1]); else if (gl_state.units[j].pointer_texcoord_components == 1) qglMultiTexCoord1f(GL_TEXTURE0 + j, sb[0]); } else { if (gl_state.units[j].pointer_texcoord_components == 4) qglTexCoord4f(sb[0], sb[1], sb[2], sb[3]); else if (gl_state.units[j].pointer_texcoord_components == 3) qglTexCoord3f(sb[0], sb[1], sb[2]); else if (gl_state.units[j].pointer_texcoord_components == 2) qglTexCoord2f(sb[0], sb[1]); else if (gl_state.units[j].pointer_texcoord_components == 1) qglTexCoord1f(sb[0]); } } } } if (gl_state.pointer_color_pointer && gl_state.pointer_color_enabled && gl_state.pointer_color_components == 4) { if (gl_state.pointer_color_gltype == GL_FLOAT) { p = (const GLfloat *)((const unsigned char *)gl_state.pointer_color_pointer + element * gl_state.pointer_color_stride); qglColor4f(p[0], p[1], p[2], p[3]); } else if (gl_state.pointer_color_gltype == GL_UNSIGNED_BYTE) { const GLubyte *ub = (const GLubyte *)((const unsigned char *)gl_state.pointer_color_pointer + element * gl_state.pointer_color_stride); qglColor4ub(ub[0], ub[1], ub[2], ub[3]); } } if (gl_state.pointer_vertex_gltype == GL_FLOAT) { p = (const GLfloat *)((const unsigned char *)gl_state.pointer_vertex_pointer + element * gl_state.pointer_vertex_stride); if (gl_state.pointer_vertex_components == 4) qglVertex4f(p[0], p[1], p[2], p[3]); else if (gl_state.pointer_vertex_components == 3) qglVertex3f(p[0], p[1], p[2]); else qglVertex2f(p[0], p[1]); } } } qglEnd(); CHECKGLERROR #endif } else if (bufferobject3s) { GL_BindEBO(bufferobject3s); #ifndef USE_GLES2 if (gl_mesh_drawrangeelements.integer && qglDrawRangeElements != NULL) { qglDrawRangeElements(GL_TRIANGLES, firstvertex, firstvertex + numvertices - 1, numelements, GL_UNSIGNED_SHORT, (void *)bufferoffset3s); CHECKGLERROR } else #endif { qglDrawElements(GL_TRIANGLES, numelements, GL_UNSIGNED_SHORT, (void *)bufferoffset3s); CHECKGLERROR } } else if (bufferobject3i) { GL_BindEBO(bufferobject3i); #ifndef USE_GLES2 if (gl_mesh_drawrangeelements.integer && qglDrawRangeElements != NULL) { qglDrawRangeElements(GL_TRIANGLES, firstvertex, firstvertex + numvertices - 1, numelements, GL_UNSIGNED_INT, (void *)bufferoffset3i); CHECKGLERROR } else #endif { qglDrawElements(GL_TRIANGLES, numelements, GL_UNSIGNED_INT, (void *)bufferoffset3i); CHECKGLERROR } } else if (element3s) { GL_BindEBO(0); #ifndef USE_GLES2 if (gl_mesh_drawrangeelements.integer && qglDrawRangeElements != NULL) { qglDrawRangeElements(GL_TRIANGLES, firstvertex, firstvertex + numvertices - 1, numelements, GL_UNSIGNED_SHORT, element3s); CHECKGLERROR } else #endif { qglDrawElements(GL_TRIANGLES, numelements, GL_UNSIGNED_SHORT, element3s); CHECKGLERROR } } else if (element3i) { GL_BindEBO(0); #ifndef USE_GLES2 if (gl_mesh_drawrangeelements.integer && qglDrawRangeElements != NULL) { qglDrawRangeElements(GL_TRIANGLES, firstvertex, firstvertex + numvertices - 1, numelements, GL_UNSIGNED_INT, element3i); CHECKGLERROR } else #endif { qglDrawElements(GL_TRIANGLES, numelements, GL_UNSIGNED_INT, element3i); CHECKGLERROR } } else { qglDrawArrays(GL_TRIANGLES, firstvertex, numvertices); CHECKGLERROR } break; case RENDERPATH_D3D9: #ifdef SUPPORTD3D if (gl_state.d3dvertexbuffer && ((element3s && element3s_indexbuffer) || (element3i && element3i_indexbuffer))) { if (element3s_indexbuffer) { IDirect3DDevice9_SetIndices(vid_d3d9dev, (IDirect3DIndexBuffer9 *)element3s_indexbuffer->devicebuffer); IDirect3DDevice9_DrawIndexedPrimitive(vid_d3d9dev, D3DPT_TRIANGLELIST, 0, firstvertex, numvertices, element3s_bufferoffset>>1, numtriangles); } else if (element3i_indexbuffer) { IDirect3DDevice9_SetIndices(vid_d3d9dev, (IDirect3DIndexBuffer9 *)element3i_indexbuffer->devicebuffer); IDirect3DDevice9_DrawIndexedPrimitive(vid_d3d9dev, D3DPT_TRIANGLELIST, 0, firstvertex, numvertices, element3i_bufferoffset>>2, numtriangles); } else IDirect3DDevice9_DrawPrimitive(vid_d3d9dev, D3DPT_TRIANGLELIST, firstvertex, numvertices); } else { if (element3s) IDirect3DDevice9_DrawIndexedPrimitiveUP(vid_d3d9dev, D3DPT_TRIANGLELIST, firstvertex, numvertices, numtriangles, element3s, D3DFMT_INDEX16, gl_state.d3dvertexdata, gl_state.d3dvertexsize); else if (element3i) IDirect3DDevice9_DrawIndexedPrimitiveUP(vid_d3d9dev, D3DPT_TRIANGLELIST, firstvertex, numvertices, numtriangles, element3i, D3DFMT_INDEX32, gl_state.d3dvertexdata, gl_state.d3dvertexsize); else IDirect3DDevice9_DrawPrimitiveUP(vid_d3d9dev, D3DPT_TRIANGLELIST, numvertices, (void *)gl_state.d3dvertexdata, gl_state.d3dvertexsize); } #endif break; case RENDERPATH_D3D10: Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_D3D11: Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_SOFT: DPSOFTRAST_DrawTriangles(firstvertex, numvertices, numtriangles, element3i, element3s); break; case RENDERPATH_GLES1: case RENDERPATH_GLES2: // GLES does not have glDrawRangeElements so this is a bit shorter than the GL20 path if (bufferobject3s) { GL_BindEBO(bufferobject3s); qglDrawElements(GL_TRIANGLES, numelements, GL_UNSIGNED_SHORT, (void *)bufferoffset3s); CHECKGLERROR } else if (bufferobject3i) { GL_BindEBO(bufferobject3i); qglDrawElements(GL_TRIANGLES, numelements, GL_UNSIGNED_INT, (void *)bufferoffset3i); CHECKGLERROR } else if (element3s) { GL_BindEBO(0); qglDrawElements(GL_TRIANGLES, numelements, GL_UNSIGNED_SHORT, element3s); CHECKGLERROR } else if (element3i) { static int enableandroidhack=0;//Tegra 3 doesn't list uint extension: using the most precise & dirty way of detection GL_BindEBO(0); if (!enableandroidhack) { CHECKGLERROR qglDrawElements(GL_TRIANGLES, numelements, GL_UNSIGNED_INT, element3i); if (glGetError()!=GL_NO_ERROR) enableandroidhack=1; } if (enableandroidhack) { unsigned short tmpconv[numelements]; int i; for (i=0;ibufferobject = 0; buffer->devicebuffer = NULL; buffer->size = size; buffer->isindexbuffer = isindexbuffer; buffer->isuniformbuffer = isuniformbuffer; buffer->isdynamic = isdynamic; buffer->isindex16 = isindex16; strlcpy(buffer->name, name, sizeof(buffer->name)); R_Mesh_UpdateMeshBuffer(buffer, data, size, false, 0); return buffer; } void R_Mesh_UpdateMeshBuffer(r_meshbuffer_t *buffer, const void *data, size_t size, qboolean subdata, size_t offset) { if (!buffer) return; if (buffer->isindexbuffer) { r_refdef.stats[r_stat_indexbufferuploadcount]++; r_refdef.stats[r_stat_indexbufferuploadsize] += size; } else { r_refdef.stats[r_stat_vertexbufferuploadcount]++; r_refdef.stats[r_stat_vertexbufferuploadsize] += size; } if (!subdata) buffer->size = size; switch(vid.renderpath) { case RENDERPATH_GL11: case RENDERPATH_GL13: case RENDERPATH_GL20: case RENDERPATH_GLES1: case RENDERPATH_GLES2: if (!buffer->bufferobject) qglGenBuffersARB(1, (GLuint *)&buffer->bufferobject); if (buffer->isuniformbuffer) GL_BindUBO(buffer->bufferobject); else if (buffer->isindexbuffer) GL_BindEBO(buffer->bufferobject); else GL_BindVBO(buffer->bufferobject); if (subdata) qglBufferSubDataARB(buffer->isuniformbuffer ? GL_UNIFORM_BUFFER : (buffer->isindexbuffer ? GL_ELEMENT_ARRAY_BUFFER : GL_ARRAY_BUFFER), offset, size, data); else qglBufferDataARB(buffer->isuniformbuffer ? GL_UNIFORM_BUFFER : (buffer->isindexbuffer ? GL_ELEMENT_ARRAY_BUFFER : GL_ARRAY_BUFFER), size, data, buffer->isdynamic ? GL_STREAM_DRAW : GL_STATIC_DRAW); if (buffer->isuniformbuffer) GL_BindUBO(0); break; case RENDERPATH_D3D9: #ifdef SUPPORTD3D { int result; void *datapointer = NULL; if (buffer->isindexbuffer) { IDirect3DIndexBuffer9 *d3d9indexbuffer = (IDirect3DIndexBuffer9 *)buffer->devicebuffer; if (offset+size > buffer->size || !buffer->devicebuffer) { if (buffer->devicebuffer) IDirect3DIndexBuffer9_Release((IDirect3DIndexBuffer9*)buffer->devicebuffer); buffer->devicebuffer = NULL; if (FAILED(result = IDirect3DDevice9_CreateIndexBuffer(vid_d3d9dev, offset+size, buffer->isdynamic ? D3DUSAGE_WRITEONLY | D3DUSAGE_DYNAMIC : 0, buffer->isindex16 ? D3DFMT_INDEX16 : D3DFMT_INDEX32, buffer->isdynamic ? D3DPOOL_DEFAULT : D3DPOOL_MANAGED, &d3d9indexbuffer, NULL))) Sys_Error("IDirect3DDevice9_CreateIndexBuffer(%p, %d, %x, %x, %x, %p, NULL) returned %x\n", vid_d3d9dev, (int)size, buffer->isdynamic ? (int)D3DUSAGE_DYNAMIC : 0, buffer->isindex16 ? (int)D3DFMT_INDEX16 : (int)D3DFMT_INDEX32, buffer->isdynamic ? (int)D3DPOOL_DEFAULT : (int)D3DPOOL_MANAGED, &d3d9indexbuffer, (int)result); buffer->devicebuffer = (void *)d3d9indexbuffer; buffer->size = offset+size; } if (!FAILED(IDirect3DIndexBuffer9_Lock(d3d9indexbuffer, (unsigned int)offset, (unsigned int)size, &datapointer, buffer->isdynamic ? D3DLOCK_DISCARD : 0))) { if (data) memcpy(datapointer, data, size); else memset(datapointer, 0, size); IDirect3DIndexBuffer9_Unlock(d3d9indexbuffer); } } else { IDirect3DVertexBuffer9 *d3d9vertexbuffer = (IDirect3DVertexBuffer9 *)buffer->devicebuffer; if (offset+size > buffer->size || !buffer->devicebuffer) { if (buffer->devicebuffer) IDirect3DVertexBuffer9_Release((IDirect3DVertexBuffer9*)buffer->devicebuffer); buffer->devicebuffer = NULL; if (FAILED(result = IDirect3DDevice9_CreateVertexBuffer(vid_d3d9dev, offset+size, buffer->isdynamic ? D3DUSAGE_WRITEONLY | D3DUSAGE_DYNAMIC : 0, 0, buffer->isdynamic ? D3DPOOL_DEFAULT : D3DPOOL_MANAGED, &d3d9vertexbuffer, NULL))) Sys_Error("IDirect3DDevice9_CreateVertexBuffer(%p, %d, %x, %x, %x, %p, NULL) returned %x\n", vid_d3d9dev, (int)size, buffer->isdynamic ? (int)D3DUSAGE_DYNAMIC : 0, 0, buffer->isdynamic ? (int)D3DPOOL_DEFAULT : (int)D3DPOOL_MANAGED, &d3d9vertexbuffer, (int)result); buffer->devicebuffer = (void *)d3d9vertexbuffer; buffer->size = offset+size; } if (!FAILED(IDirect3DVertexBuffer9_Lock(d3d9vertexbuffer, (unsigned int)offset, (unsigned int)size, &datapointer, buffer->isdynamic ? D3DLOCK_DISCARD : 0))) { if (data) memcpy(datapointer, data, size); else memset(datapointer, 0, size); IDirect3DVertexBuffer9_Unlock(d3d9vertexbuffer); } } } #endif break; case RENDERPATH_D3D10: Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_D3D11: Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_SOFT: break; } } void R_Mesh_DestroyMeshBuffer(r_meshbuffer_t *buffer) { if (!buffer) return; switch(vid.renderpath) { case RENDERPATH_GL11: case RENDERPATH_GL13: case RENDERPATH_GL20: case RENDERPATH_GLES1: case RENDERPATH_GLES2: // GL clears the binding if we delete something bound if (gl_state.uniformbufferobject == buffer->bufferobject) gl_state.uniformbufferobject = 0; if (gl_state.vertexbufferobject == buffer->bufferobject) gl_state.vertexbufferobject = 0; if (gl_state.elementbufferobject == buffer->bufferobject) gl_state.elementbufferobject = 0; qglDeleteBuffersARB(1, (GLuint *)&buffer->bufferobject); break; case RENDERPATH_D3D9: #ifdef SUPPORTD3D if (gl_state.d3dvertexbuffer == (void *)buffer) gl_state.d3dvertexbuffer = NULL; if (buffer->devicebuffer) { if (buffer->isindexbuffer) IDirect3DIndexBuffer9_Release((IDirect3DIndexBuffer9 *)buffer->devicebuffer); else IDirect3DVertexBuffer9_Release((IDirect3DVertexBuffer9 *)buffer->devicebuffer); buffer->devicebuffer = NULL; } #endif break; case RENDERPATH_D3D10: Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_D3D11: Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_SOFT: break; } Mem_ExpandableArray_FreeRecord(&gl_state.meshbufferarray, (void *)buffer); } static const char *buffertypename[R_BUFFERDATA_COUNT] = {"vertex", "index16", "index32", "uniform"}; void GL_Mesh_ListVBOs(qboolean printeach) { int i, endindex; int type; int isdynamic; int index16count, index16mem; int index32count, index32mem; int vertexcount, vertexmem; int uniformcount, uniformmem; int totalcount, totalmem; size_t bufferstat[R_BUFFERDATA_COUNT][2][2]; r_meshbuffer_t *buffer; memset(bufferstat, 0, sizeof(bufferstat)); endindex = Mem_ExpandableArray_IndexRange(&gl_state.meshbufferarray); for (i = 0;i < endindex;i++) { buffer = (r_meshbuffer_t *) Mem_ExpandableArray_RecordAtIndex(&gl_state.meshbufferarray, i); if (!buffer) continue; if (buffer->isuniformbuffer) type = R_BUFFERDATA_UNIFORM; else if (buffer->isindexbuffer && buffer->isindex16) type = R_BUFFERDATA_INDEX16; else if (buffer->isindexbuffer) type = R_BUFFERDATA_INDEX32; else type = R_BUFFERDATA_VERTEX; isdynamic = buffer->isdynamic; bufferstat[type][isdynamic][0]++; bufferstat[type][isdynamic][1] += buffer->size; if (printeach) Con_Printf("buffer #%i %s = %i bytes (%s %s)\n", i, buffer->name, (int)buffer->size, isdynamic ? "dynamic" : "static", buffertypename[type]); } index16count = (int)(bufferstat[R_BUFFERDATA_INDEX16][0][0] + bufferstat[R_BUFFERDATA_INDEX16][1][0]); index16mem = (int)(bufferstat[R_BUFFERDATA_INDEX16][0][1] + bufferstat[R_BUFFERDATA_INDEX16][1][1]); index32count = (int)(bufferstat[R_BUFFERDATA_INDEX32][0][0] + bufferstat[R_BUFFERDATA_INDEX32][1][0]); index32mem = (int)(bufferstat[R_BUFFERDATA_INDEX32][0][1] + bufferstat[R_BUFFERDATA_INDEX32][1][1]); vertexcount = (int)(bufferstat[R_BUFFERDATA_VERTEX ][0][0] + bufferstat[R_BUFFERDATA_VERTEX ][1][0]); vertexmem = (int)(bufferstat[R_BUFFERDATA_VERTEX ][0][1] + bufferstat[R_BUFFERDATA_VERTEX ][1][1]); uniformcount = (int)(bufferstat[R_BUFFERDATA_UNIFORM][0][0] + bufferstat[R_BUFFERDATA_UNIFORM][1][0]); uniformmem = (int)(bufferstat[R_BUFFERDATA_UNIFORM][0][1] + bufferstat[R_BUFFERDATA_UNIFORM][1][1]); totalcount = index16count + index32count + vertexcount + uniformcount; totalmem = index16mem + index32mem + vertexmem + uniformmem; Con_Printf("%i 16bit indexbuffers totalling %i bytes (%.3f MB)\n%i 32bit indexbuffers totalling %i bytes (%.3f MB)\n%i vertexbuffers totalling %i bytes (%.3f MB)\n%i uniformbuffers totalling %i bytes (%.3f MB)\ncombined %i buffers totalling %i bytes (%.3fMB)\n", index16count, index16mem, index16mem / 10248576.0, index32count, index32mem, index32mem / 10248576.0, vertexcount, vertexmem, vertexmem / 10248576.0, uniformcount, uniformmem, uniformmem / 10248576.0, totalcount, totalmem, totalmem / 10248576.0); } void R_Mesh_VertexPointer(int components, int gltype, size_t stride, const void *pointer, const r_meshbuffer_t *vertexbuffer, size_t bufferoffset) { switch(vid.renderpath) { case RENDERPATH_GL11: case RENDERPATH_GL13: case RENDERPATH_GLES1: if (gl_state.pointer_vertex_components != components || gl_state.pointer_vertex_gltype != gltype || gl_state.pointer_vertex_stride != stride || gl_state.pointer_vertex_pointer != pointer || gl_state.pointer_vertex_vertexbuffer != vertexbuffer || gl_state.pointer_vertex_offset != bufferoffset) { int bufferobject = vertexbuffer ? vertexbuffer->bufferobject : 0; gl_state.pointer_vertex_components = components; gl_state.pointer_vertex_gltype = gltype; gl_state.pointer_vertex_stride = stride; gl_state.pointer_vertex_pointer = pointer; gl_state.pointer_vertex_vertexbuffer = vertexbuffer; gl_state.pointer_vertex_offset = bufferoffset; CHECKGLERROR GL_BindVBO(bufferobject); qglVertexPointer(components, gltype, stride, bufferobject ? (void *)bufferoffset : pointer);CHECKGLERROR } break; case RENDERPATH_GL20: case RENDERPATH_GLES2: if (gl_state.pointer_vertex_components != components || gl_state.pointer_vertex_gltype != gltype || gl_state.pointer_vertex_stride != stride || gl_state.pointer_vertex_pointer != pointer || gl_state.pointer_vertex_vertexbuffer != vertexbuffer || gl_state.pointer_vertex_offset != bufferoffset) { int bufferobject = vertexbuffer ? vertexbuffer->bufferobject : 0; gl_state.pointer_vertex_components = components; gl_state.pointer_vertex_gltype = gltype; gl_state.pointer_vertex_stride = stride; gl_state.pointer_vertex_pointer = pointer; gl_state.pointer_vertex_vertexbuffer = vertexbuffer; gl_state.pointer_vertex_offset = bufferoffset; CHECKGLERROR GL_BindVBO(bufferobject); // LordHavoc: special flag added to gltype for unnormalized types qglVertexAttribPointer(GLSLATTRIB_POSITION, components, gltype & ~0x80000000, (gltype & 0x80000000) == 0, stride, bufferobject ? (void *)bufferoffset : pointer);CHECKGLERROR } break; case RENDERPATH_D3D9: case RENDERPATH_D3D10: case RENDERPATH_D3D11: case RENDERPATH_SOFT: break; } } void R_Mesh_ColorPointer(int components, int gltype, size_t stride, const void *pointer, const r_meshbuffer_t *vertexbuffer, size_t bufferoffset) { // note: vertexbuffer may be non-NULL even if pointer is NULL, so check // the pointer only. switch(vid.renderpath) { case RENDERPATH_GL11: case RENDERPATH_GL13: case RENDERPATH_GLES1: #ifdef GL_MODELVIEW CHECKGLERROR if (pointer) { // caller wants color array enabled int bufferobject = vertexbuffer ? vertexbuffer->bufferobject : 0; if (!gl_state.pointer_color_enabled) { gl_state.pointer_color_enabled = true; CHECKGLERROR qglEnableClientState(GL_COLOR_ARRAY);CHECKGLERROR } if (gl_state.pointer_color_components != components || gl_state.pointer_color_gltype != gltype || gl_state.pointer_color_stride != stride || gl_state.pointer_color_pointer != pointer || gl_state.pointer_color_vertexbuffer != vertexbuffer || gl_state.pointer_color_offset != bufferoffset) { gl_state.pointer_color_components = components; gl_state.pointer_color_gltype = gltype; gl_state.pointer_color_stride = stride; gl_state.pointer_color_pointer = pointer; gl_state.pointer_color_vertexbuffer = vertexbuffer; gl_state.pointer_color_offset = bufferoffset; CHECKGLERROR GL_BindVBO(bufferobject); qglColorPointer(components, gltype, stride, bufferobject ? (void *)bufferoffset : pointer);CHECKGLERROR } } else { // caller wants color array disabled if (gl_state.pointer_color_enabled) { gl_state.pointer_color_enabled = false; CHECKGLERROR qglDisableClientState(GL_COLOR_ARRAY);CHECKGLERROR // when color array is on the glColor gets trashed, set it again qglColor4f(gl_state.color4f[0], gl_state.color4f[1], gl_state.color4f[2], gl_state.color4f[3]);CHECKGLERROR } } #endif break; case RENDERPATH_GL20: case RENDERPATH_GLES2: CHECKGLERROR if (pointer) { // caller wants color array enabled int bufferobject = vertexbuffer ? vertexbuffer->bufferobject : 0; if (!gl_state.pointer_color_enabled) { gl_state.pointer_color_enabled = true; CHECKGLERROR qglEnableVertexAttribArray(GLSLATTRIB_COLOR);CHECKGLERROR } if (gl_state.pointer_color_components != components || gl_state.pointer_color_gltype != gltype || gl_state.pointer_color_stride != stride || gl_state.pointer_color_pointer != pointer || gl_state.pointer_color_vertexbuffer != vertexbuffer || gl_state.pointer_color_offset != bufferoffset) { gl_state.pointer_color_components = components; gl_state.pointer_color_gltype = gltype; gl_state.pointer_color_stride = stride; gl_state.pointer_color_pointer = pointer; gl_state.pointer_color_vertexbuffer = vertexbuffer; gl_state.pointer_color_offset = bufferoffset; CHECKGLERROR GL_BindVBO(bufferobject); // LordHavoc: special flag added to gltype for unnormalized types qglVertexAttribPointer(GLSLATTRIB_COLOR, components, gltype & ~0x80000000, (gltype & 0x80000000) == 0, stride, bufferobject ? (void *)bufferoffset : pointer);CHECKGLERROR } } else { // caller wants color array disabled if (gl_state.pointer_color_enabled) { gl_state.pointer_color_enabled = false; CHECKGLERROR qglDisableVertexAttribArray(GLSLATTRIB_COLOR);CHECKGLERROR // when color array is on the glColor gets trashed, set it again qglVertexAttrib4f(GLSLATTRIB_COLOR, gl_state.color4f[0], gl_state.color4f[1], gl_state.color4f[2], gl_state.color4f[3]);CHECKGLERROR } } break; case RENDERPATH_D3D9: case RENDERPATH_D3D10: case RENDERPATH_D3D11: case RENDERPATH_SOFT: break; } } void R_Mesh_TexCoordPointer(unsigned int unitnum, int components, int gltype, size_t stride, const void *pointer, const r_meshbuffer_t *vertexbuffer, size_t bufferoffset) { gltextureunit_t *unit = gl_state.units + unitnum; // update array settings // note: there is no need to check bufferobject here because all cases // that involve a valid bufferobject also supply a texcoord array switch(vid.renderpath) { case RENDERPATH_GL11: case RENDERPATH_GL13: case RENDERPATH_GLES1: #ifdef GL_MODELVIEW CHECKGLERROR if (pointer) { int bufferobject = vertexbuffer ? vertexbuffer->bufferobject : 0; // texture array unit is enabled, enable the array if (!unit->arrayenabled) { unit->arrayenabled = true; GL_ClientActiveTexture(unitnum); qglEnableClientState(GL_TEXTURE_COORD_ARRAY);CHECKGLERROR } // texcoord array if (unit->pointer_texcoord_components != components || unit->pointer_texcoord_gltype != gltype || unit->pointer_texcoord_stride != stride || unit->pointer_texcoord_pointer != pointer || unit->pointer_texcoord_vertexbuffer != vertexbuffer || unit->pointer_texcoord_offset != bufferoffset) { unit->pointer_texcoord_components = components; unit->pointer_texcoord_gltype = gltype; unit->pointer_texcoord_stride = stride; unit->pointer_texcoord_pointer = pointer; unit->pointer_texcoord_vertexbuffer = vertexbuffer; unit->pointer_texcoord_offset = bufferoffset; GL_ClientActiveTexture(unitnum); GL_BindVBO(bufferobject); qglTexCoordPointer(components, gltype, stride, bufferobject ? (void *)bufferoffset : pointer);CHECKGLERROR } } else { // texture array unit is disabled, disable the array if (unit->arrayenabled) { unit->arrayenabled = false; GL_ClientActiveTexture(unitnum); qglDisableClientState(GL_TEXTURE_COORD_ARRAY);CHECKGLERROR } } #endif break; case RENDERPATH_GL20: case RENDERPATH_GLES2: CHECKGLERROR if (pointer) { int bufferobject = vertexbuffer ? vertexbuffer->bufferobject : 0; // texture array unit is enabled, enable the array if (!unit->arrayenabled) { unit->arrayenabled = true; qglEnableVertexAttribArray(unitnum+GLSLATTRIB_TEXCOORD0);CHECKGLERROR } // texcoord array if (unit->pointer_texcoord_components != components || unit->pointer_texcoord_gltype != gltype || unit->pointer_texcoord_stride != stride || unit->pointer_texcoord_pointer != pointer || unit->pointer_texcoord_vertexbuffer != vertexbuffer || unit->pointer_texcoord_offset != bufferoffset) { unit->pointer_texcoord_components = components; unit->pointer_texcoord_gltype = gltype; unit->pointer_texcoord_stride = stride; unit->pointer_texcoord_pointer = pointer; unit->pointer_texcoord_vertexbuffer = vertexbuffer; unit->pointer_texcoord_offset = bufferoffset; GL_BindVBO(bufferobject); // LordHavoc: special flag added to gltype for unnormalized types qglVertexAttribPointer(unitnum+GLSLATTRIB_TEXCOORD0, components, gltype & ~0x80000000, (gltype & 0x80000000) == 0, stride, bufferobject ? (void *)bufferoffset : pointer);CHECKGLERROR } } else { // texture array unit is disabled, disable the array if (unit->arrayenabled) { unit->arrayenabled = false; qglDisableVertexAttribArray(unitnum+GLSLATTRIB_TEXCOORD0);CHECKGLERROR } } break; case RENDERPATH_D3D9: case RENDERPATH_D3D10: case RENDERPATH_D3D11: case RENDERPATH_SOFT: break; } } int R_Mesh_TexBound(unsigned int unitnum, int id) { gltextureunit_t *unit = gl_state.units + unitnum; if (unitnum >= vid.teximageunits) return 0; if (id == GL_TEXTURE_2D) return unit->t2d; if (id == GL_TEXTURE_3D) return unit->t3d; if (id == GL_TEXTURE_CUBE_MAP) return unit->tcubemap; return 0; } void R_Mesh_CopyToTexture(rtexture_t *tex, int tx, int ty, int sx, int sy, int width, int height) { switch(vid.renderpath) { case RENDERPATH_GL11: case RENDERPATH_GL13: case RENDERPATH_GL20: case RENDERPATH_GLES1: case RENDERPATH_GLES2: R_Mesh_TexBind(0, tex); GL_ActiveTexture(0);CHECKGLERROR qglCopyTexSubImage2D(GL_TEXTURE_2D, 0, tx, ty, sx, sy, width, height);CHECKGLERROR break; case RENDERPATH_D3D9: #ifdef SUPPORTD3D { IDirect3DSurface9 *currentsurface = NULL; IDirect3DSurface9 *texturesurface = NULL; RECT sourcerect; RECT destrect; sourcerect.left = sx; sourcerect.top = sy; sourcerect.right = sx + width; sourcerect.bottom = sy + height; destrect.left = tx; destrect.top = ty; destrect.right = tx + width; destrect.bottom = ty + height; if (!FAILED(IDirect3DTexture9_GetSurfaceLevel(((IDirect3DTexture9 *)tex->d3dtexture), 0, &texturesurface))) { if (!FAILED(IDirect3DDevice9_GetRenderTarget(vid_d3d9dev, 0, ¤tsurface))) { IDirect3DDevice9_StretchRect(vid_d3d9dev, currentsurface, &sourcerect, texturesurface, &destrect, D3DTEXF_NONE); IDirect3DSurface9_Release(currentsurface); } IDirect3DSurface9_Release(texturesurface); } } #endif break; case RENDERPATH_D3D10: Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_D3D11: Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_SOFT: DPSOFTRAST_CopyRectangleToTexture(tex->texnum, 0, tx, ty, sx, sy, width, height); break; } } #ifdef SUPPORTD3D int d3drswrap[16] = {D3DRS_WRAP0, D3DRS_WRAP1, D3DRS_WRAP2, D3DRS_WRAP3, D3DRS_WRAP4, D3DRS_WRAP5, D3DRS_WRAP6, D3DRS_WRAP7, D3DRS_WRAP8, D3DRS_WRAP9, D3DRS_WRAP10, D3DRS_WRAP11, D3DRS_WRAP12, D3DRS_WRAP13, D3DRS_WRAP14, D3DRS_WRAP15}; #endif void R_Mesh_ClearBindingsForTexture(int texnum) { gltextureunit_t *unit; unsigned int unitnum; // this doesn't really unbind the texture, but it does prevent a mistaken "do nothing" behavior on the next time this same texnum is bound on the same unit as the same type (this mainly affects r_shadow_bouncegrid because 3D textures are so rarely used) for (unitnum = 0;unitnum < vid.teximageunits;unitnum++) { unit = gl_state.units + unitnum; if (unit->t2d == texnum) unit->t2d = -1; if (unit->t3d == texnum) unit->t3d = -1; if (unit->tcubemap == texnum) unit->tcubemap = -1; } } void R_Mesh_TexBind(unsigned int unitnum, rtexture_t *tex) { gltextureunit_t *unit = gl_state.units + unitnum; int tex2d, tex3d, texcubemap, texnum; if (unitnum >= vid.teximageunits) return; // if (unit->texture == tex) // return; switch(vid.renderpath) { case RENDERPATH_GL20: case RENDERPATH_GLES2: if (!tex) { tex = r_texture_white; // not initialized enough yet... if (!tex) return; } unit->texture = tex; texnum = R_GetTexture(tex); switch(tex->gltexturetypeenum) { case GL_TEXTURE_2D: if (unit->t2d != texnum) {GL_ActiveTexture(unitnum);unit->t2d = texnum;qglBindTexture(GL_TEXTURE_2D, unit->t2d);CHECKGLERROR}break; case GL_TEXTURE_3D: if (unit->t3d != texnum) {GL_ActiveTexture(unitnum);unit->t3d = texnum;qglBindTexture(GL_TEXTURE_3D, unit->t3d);CHECKGLERROR}break; case GL_TEXTURE_CUBE_MAP: if (unit->tcubemap != texnum) {GL_ActiveTexture(unitnum);unit->tcubemap = texnum;qglBindTexture(GL_TEXTURE_CUBE_MAP, unit->tcubemap);CHECKGLERROR}break; } break; case RENDERPATH_GL11: case RENDERPATH_GL13: case RENDERPATH_GLES1: unit->texture = tex; tex2d = 0; tex3d = 0; texcubemap = 0; if (tex) { texnum = R_GetTexture(tex); switch(tex->gltexturetypeenum) { case GL_TEXTURE_2D: tex2d = texnum; break; case GL_TEXTURE_3D: tex3d = texnum; break; case GL_TEXTURE_CUBE_MAP: texcubemap = texnum; break; } } // update 2d texture binding if (unit->t2d != tex2d) { GL_ActiveTexture(unitnum); if (tex2d) { if (unit->t2d == 0) { qglEnable(GL_TEXTURE_2D);CHECKGLERROR } } else { if (unit->t2d) { qglDisable(GL_TEXTURE_2D);CHECKGLERROR } } unit->t2d = tex2d; qglBindTexture(GL_TEXTURE_2D, unit->t2d);CHECKGLERROR } // update 3d texture binding if (unit->t3d != tex3d) { GL_ActiveTexture(unitnum); if (tex3d) { if (unit->t3d == 0) { qglEnable(GL_TEXTURE_3D);CHECKGLERROR } } else { if (unit->t3d) { qglDisable(GL_TEXTURE_3D);CHECKGLERROR } } unit->t3d = tex3d; qglBindTexture(GL_TEXTURE_3D, unit->t3d);CHECKGLERROR } // update cubemap texture binding if (unit->tcubemap != texcubemap) { GL_ActiveTexture(unitnum); if (texcubemap) { if (unit->tcubemap == 0) { qglEnable(GL_TEXTURE_CUBE_MAP);CHECKGLERROR } } else { if (unit->tcubemap) { qglDisable(GL_TEXTURE_CUBE_MAP);CHECKGLERROR } } unit->tcubemap = texcubemap; qglBindTexture(GL_TEXTURE_CUBE_MAP, unit->tcubemap);CHECKGLERROR } break; case RENDERPATH_D3D9: #ifdef SUPPORTD3D { extern cvar_t gl_texture_anisotropy; if (!tex) { tex = r_texture_white; // not initialized enough yet... if (!tex) return; } // upload texture if needed R_GetTexture(tex); if (unit->texture == tex) return; unit->texture = tex; IDirect3DDevice9_SetTexture(vid_d3d9dev, unitnum, (IDirect3DBaseTexture9*)tex->d3dtexture); //IDirect3DDevice9_SetRenderState(vid_d3d9dev, d3drswrap[unitnum], (tex->flags & TEXF_CLAMP) ? (D3DWRAPCOORD_0 | D3DWRAPCOORD_1 | D3DWRAPCOORD_2) : 0); IDirect3DDevice9_SetSamplerState(vid_d3d9dev, unitnum, D3DSAMP_ADDRESSU, tex->d3daddressu); IDirect3DDevice9_SetSamplerState(vid_d3d9dev, unitnum, D3DSAMP_ADDRESSV, tex->d3daddressv); if (tex->d3daddressw) IDirect3DDevice9_SetSamplerState(vid_d3d9dev, unitnum, D3DSAMP_ADDRESSW, tex->d3daddressw); IDirect3DDevice9_SetSamplerState(vid_d3d9dev, unitnum, D3DSAMP_MAGFILTER, tex->d3dmagfilter); IDirect3DDevice9_SetSamplerState(vid_d3d9dev, unitnum, D3DSAMP_MINFILTER, tex->d3dminfilter); IDirect3DDevice9_SetSamplerState(vid_d3d9dev, unitnum, D3DSAMP_MIPFILTER, tex->d3dmipfilter); IDirect3DDevice9_SetSamplerState(vid_d3d9dev, unitnum, D3DSAMP_MIPMAPLODBIAS, tex->d3dmipmaplodbias); IDirect3DDevice9_SetSamplerState(vid_d3d9dev, unitnum, D3DSAMP_MAXMIPLEVEL, tex->d3dmaxmiplevelfilter); IDirect3DDevice9_SetSamplerState(vid_d3d9dev, unitnum, D3DSAMP_MAXANISOTROPY, gl_texture_anisotropy.integer); } #endif break; case RENDERPATH_D3D10: Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_D3D11: Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_SOFT: if (!tex) { tex = r_texture_white; // not initialized enough yet... if (!tex) return; } texnum = R_GetTexture(tex); if (unit->texture == tex) return; unit->texture = tex; DPSOFTRAST_SetTexture(unitnum, texnum); break; } } void R_Mesh_TexMatrix(unsigned int unitnum, const matrix4x4_t *matrix) { gltextureunit_t *unit = gl_state.units + unitnum; switch(vid.renderpath) { case RENDERPATH_GL11: case RENDERPATH_GL13: case RENDERPATH_GL20: case RENDERPATH_GLES1: case RENDERPATH_GLES2: #ifdef GL_MODELVIEW if (matrix && matrix->m[3][3]) { // texmatrix specified, check if it is different if (!unit->texmatrixenabled || memcmp(&unit->matrix, matrix, sizeof(matrix4x4_t))) { float glmatrix[16]; unit->texmatrixenabled = true; unit->matrix = *matrix; CHECKGLERROR Matrix4x4_ToArrayFloatGL(&unit->matrix, glmatrix); GL_ActiveTexture(unitnum); qglMatrixMode(GL_TEXTURE);CHECKGLERROR qglLoadMatrixf(glmatrix);CHECKGLERROR qglMatrixMode(GL_MODELVIEW);CHECKGLERROR } } else { // no texmatrix specified, revert to identity if (unit->texmatrixenabled) { unit->texmatrixenabled = false; unit->matrix = identitymatrix; CHECKGLERROR GL_ActiveTexture(unitnum); qglMatrixMode(GL_TEXTURE);CHECKGLERROR qglLoadIdentity();CHECKGLERROR qglMatrixMode(GL_MODELVIEW);CHECKGLERROR } } #endif break; case RENDERPATH_D3D9: case RENDERPATH_D3D10: case RENDERPATH_D3D11: break; case RENDERPATH_SOFT: break; } } void R_Mesh_TexCombine(unsigned int unitnum, int combinergb, int combinealpha, int rgbscale, int alphascale) { gltextureunit_t *unit = gl_state.units + unitnum; CHECKGLERROR switch(vid.renderpath) { case RENDERPATH_GL20: case RENDERPATH_GLES2: // do nothing break; case RENDERPATH_GL13: case RENDERPATH_GLES1: #ifdef GL_TEXTURE_ENV // GL_ARB_texture_env_combine if (!combinergb) combinergb = GL_MODULATE; if (!combinealpha) combinealpha = GL_MODULATE; if (!rgbscale) rgbscale = 1; if (!alphascale) alphascale = 1; if (combinergb != combinealpha || rgbscale != 1 || alphascale != 1) { if (combinergb == GL_DECAL) combinergb = GL_INTERPOLATE; if (unit->combine != GL_COMBINE) { unit->combine = GL_COMBINE; GL_ActiveTexture(unitnum); qglTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE);CHECKGLERROR qglTexEnvi(GL_TEXTURE_ENV, GL_SOURCE2_RGB, GL_TEXTURE);CHECKGLERROR // for GL_INTERPOLATE mode } if (unit->combinergb != combinergb) { unit->combinergb = combinergb; GL_ActiveTexture(unitnum); qglTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB, unit->combinergb);CHECKGLERROR } if (unit->combinealpha != combinealpha) { unit->combinealpha = combinealpha; GL_ActiveTexture(unitnum); qglTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_ALPHA, unit->combinealpha);CHECKGLERROR } if (unit->rgbscale != rgbscale) { unit->rgbscale = rgbscale; GL_ActiveTexture(unitnum); qglTexEnvi(GL_TEXTURE_ENV, GL_RGB_SCALE, unit->rgbscale);CHECKGLERROR } if (unit->alphascale != alphascale) { unit->alphascale = alphascale; GL_ActiveTexture(unitnum); qglTexEnvi(GL_TEXTURE_ENV, GL_ALPHA_SCALE, unit->alphascale);CHECKGLERROR } } else { if (unit->combine != combinergb) { unit->combine = combinergb; GL_ActiveTexture(unitnum); qglTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, unit->combine);CHECKGLERROR } } #endif break; case RENDERPATH_GL11: // normal GL texenv #ifdef GL_TEXTURE_ENV if (!combinergb) combinergb = GL_MODULATE; if (unit->combine != combinergb) { unit->combine = combinergb; GL_ActiveTexture(unitnum); qglTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, unit->combine);CHECKGLERROR } #endif break; case RENDERPATH_D3D9: case RENDERPATH_D3D10: case RENDERPATH_D3D11: break; case RENDERPATH_SOFT: break; } } void R_Mesh_ResetTextureState(void) { unsigned int unitnum; BACKENDACTIVECHECK for (unitnum = 0;unitnum < vid.teximageunits;unitnum++) R_Mesh_TexBind(unitnum, NULL); for (unitnum = 0;unitnum < vid.texarrayunits;unitnum++) R_Mesh_TexCoordPointer(unitnum, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0); switch(vid.renderpath) { case RENDERPATH_GL20: case RENDERPATH_GLES2: case RENDERPATH_D3D9: case RENDERPATH_D3D10: case RENDERPATH_D3D11: case RENDERPATH_SOFT: break; case RENDERPATH_GL11: case RENDERPATH_GL13: case RENDERPATH_GLES1: for (unitnum = 0;unitnum < vid.texunits;unitnum++) { R_Mesh_TexCombine(unitnum, GL_MODULATE, GL_MODULATE, 1, 1); R_Mesh_TexMatrix(unitnum, NULL); } break; } } #ifdef SUPPORTD3D //#define r_vertex3f_d3d9fvf (D3DFVF_XYZ) //#define r_vertexgeneric_d3d9fvf (D3DFVF_XYZ | D3DFVF_DIFFUSE | D3DFVF_TEX1) //#define r_vertexmesh_d3d9fvf (D3DFVF_XYZ | D3DFVF_DIFFUSE | D3DFVF_TEX5 | D3DFVF_TEXCOORDSIZE1(3) | D3DFVF_TEXCOORDSIZE2(3) | D3DFVF_TEXCOORDSIZE3(3)) D3DVERTEXELEMENT9 r_vertex3f_d3d9elements[] = { {0, 0, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_POSITION, 0}, D3DDECL_END() }; D3DVERTEXELEMENT9 r_vertexgeneric_d3d9elements[] = { {0, (int)((size_t)&((r_vertexgeneric_t *)0)->vertex3f ), D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_POSITION, 0}, {0, (int)((size_t)&((r_vertexgeneric_t *)0)->color4f ), D3DDECLTYPE_FLOAT4, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_COLOR, 0}, {0, (int)((size_t)&((r_vertexgeneric_t *)0)->texcoord2f), D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_TEXCOORD, 0}, D3DDECL_END() }; D3DVERTEXELEMENT9 r_vertexmesh_d3d9elements[] = { {0, (int)((size_t)&((r_vertexmesh_t *)0)->vertex3f ), D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_POSITION, 0}, {0, (int)((size_t)&((r_vertexmesh_t *)0)->color4f ), D3DDECLTYPE_FLOAT4, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_COLOR, 0}, {0, (int)((size_t)&((r_vertexmesh_t *)0)->texcoordtexture2f ), D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_TEXCOORD, 0}, {0, (int)((size_t)&((r_vertexmesh_t *)0)->svector3f ), D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_TEXCOORD, 1}, {0, (int)((size_t)&((r_vertexmesh_t *)0)->tvector3f ), D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_TEXCOORD, 2}, {0, (int)((size_t)&((r_vertexmesh_t *)0)->normal3f ), D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_TEXCOORD, 3}, {0, (int)((size_t)&((r_vertexmesh_t *)0)->texcoordlightmap2f), D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_TEXCOORD, 4}, {0, (int)((size_t)&((r_vertexmesh_t *)0)->skeletalindex4ub ), D3DDECLTYPE_UBYTE4, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_TEXCOORD, 6}, {0, (int)((size_t)&((r_vertexmesh_t *)0)->skeletalweight4ub ), D3DDECLTYPE_UBYTE4N, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_TEXCOORD, 7}, D3DDECL_END() }; IDirect3DVertexDeclaration9 *r_vertex3f_d3d9decl; IDirect3DVertexDeclaration9 *r_vertexgeneric_d3d9decl; IDirect3DVertexDeclaration9 *r_vertexmesh_d3d9decl; #endif static void R_Mesh_InitVertexDeclarations(void) { #ifdef SUPPORTD3D r_vertex3f_d3d9decl = NULL; r_vertexgeneric_d3d9decl = NULL; r_vertexmesh_d3d9decl = NULL; switch(vid.renderpath) { case RENDERPATH_GL20: case RENDERPATH_GL13: case RENDERPATH_GL11: case RENDERPATH_GLES1: case RENDERPATH_GLES2: break; case RENDERPATH_D3D9: IDirect3DDevice9_CreateVertexDeclaration(vid_d3d9dev, r_vertex3f_d3d9elements, &r_vertex3f_d3d9decl); IDirect3DDevice9_CreateVertexDeclaration(vid_d3d9dev, r_vertexgeneric_d3d9elements, &r_vertexgeneric_d3d9decl); IDirect3DDevice9_CreateVertexDeclaration(vid_d3d9dev, r_vertexmesh_d3d9elements, &r_vertexmesh_d3d9decl); break; case RENDERPATH_D3D10: Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_D3D11: Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_SOFT: break; } #endif } static void R_Mesh_DestroyVertexDeclarations(void) { #ifdef SUPPORTD3D if (r_vertex3f_d3d9decl) IDirect3DVertexDeclaration9_Release(r_vertex3f_d3d9decl); r_vertex3f_d3d9decl = NULL; if (r_vertexgeneric_d3d9decl) IDirect3DVertexDeclaration9_Release(r_vertexgeneric_d3d9decl); r_vertexgeneric_d3d9decl = NULL; if (r_vertexmesh_d3d9decl) IDirect3DVertexDeclaration9_Release(r_vertexmesh_d3d9decl); r_vertexmesh_d3d9decl = NULL; #endif } void R_Mesh_PrepareVertices_Vertex3f(int numvertices, const float *vertex3f, const r_meshbuffer_t *vertexbuffer, int bufferoffset) { // upload temporary vertexbuffer for this rendering if (!gl_state.usevbo_staticvertex) vertexbuffer = NULL; if (!vertexbuffer && gl_state.usevbo_dynamicvertex) vertexbuffer = R_BufferData_Store(numvertices * sizeof(float[3]), (void *)vertex3f, R_BUFFERDATA_VERTEX, &bufferoffset); switch(vid.renderpath) { case RENDERPATH_GL20: case RENDERPATH_GLES2: if (vertexbuffer) { R_Mesh_VertexPointer(3, GL_FLOAT, sizeof(float[3]), vertex3f, vertexbuffer, bufferoffset); R_Mesh_ColorPointer(4, GL_FLOAT, sizeof(float[4]), NULL, NULL, 0); R_Mesh_TexCoordPointer(0, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0); R_Mesh_TexCoordPointer(1, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0); R_Mesh_TexCoordPointer(2, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0); R_Mesh_TexCoordPointer(3, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0); R_Mesh_TexCoordPointer(4, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0); R_Mesh_TexCoordPointer(5, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0); R_Mesh_TexCoordPointer(6, 4, GL_UNSIGNED_BYTE, sizeof(unsigned char[4]), NULL, NULL, 0); R_Mesh_TexCoordPointer(7, 4, GL_UNSIGNED_BYTE, sizeof(unsigned char[4]), NULL, NULL, 0); } else { R_Mesh_VertexPointer(3, GL_FLOAT, sizeof(float[3]), vertex3f, vertexbuffer, 0); R_Mesh_ColorPointer(4, GL_FLOAT, sizeof(float[4]), NULL, NULL, 0); R_Mesh_TexCoordPointer(0, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0); R_Mesh_TexCoordPointer(1, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0); R_Mesh_TexCoordPointer(2, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0); R_Mesh_TexCoordPointer(3, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0); R_Mesh_TexCoordPointer(4, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0); R_Mesh_TexCoordPointer(5, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0); R_Mesh_TexCoordPointer(6, 4, GL_UNSIGNED_BYTE, sizeof(unsigned char[4]), NULL, NULL, 0); R_Mesh_TexCoordPointer(7, 4, GL_UNSIGNED_BYTE, sizeof(unsigned char[4]), NULL, NULL, 0); } break; case RENDERPATH_GL13: case RENDERPATH_GLES1: if (vertexbuffer) { R_Mesh_VertexPointer(3, GL_FLOAT, sizeof(float[3]), vertex3f, vertexbuffer, bufferoffset); R_Mesh_ColorPointer(4, GL_FLOAT, sizeof(float[4]), NULL, NULL, 0); R_Mesh_TexCoordPointer(0, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0); R_Mesh_TexCoordPointer(1, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0); } else { R_Mesh_VertexPointer(3, GL_FLOAT, sizeof(float[3]), vertex3f, vertexbuffer, 0); R_Mesh_ColorPointer(4, GL_FLOAT, sizeof(float[4]), NULL, NULL, 0); R_Mesh_TexCoordPointer(0, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0); R_Mesh_TexCoordPointer(1, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0); } break; case RENDERPATH_GL11: if (vertexbuffer) { R_Mesh_VertexPointer(3, GL_FLOAT, sizeof(float[3]), vertex3f, vertexbuffer, bufferoffset); R_Mesh_ColorPointer(4, GL_FLOAT, sizeof(float[4]), NULL, NULL, 0); R_Mesh_TexCoordPointer(0, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0); } else { R_Mesh_VertexPointer(3, GL_FLOAT, sizeof(float[3]), vertex3f, vertexbuffer, 0); R_Mesh_ColorPointer(4, GL_FLOAT, sizeof(float[4]), NULL, NULL, 0); R_Mesh_TexCoordPointer(0, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0); } break; case RENDERPATH_D3D9: #ifdef SUPPORTD3D IDirect3DDevice9_SetVertexDeclaration(vid_d3d9dev, r_vertex3f_d3d9decl); if (vertexbuffer) IDirect3DDevice9_SetStreamSource(vid_d3d9dev, 0, (IDirect3DVertexBuffer9*)vertexbuffer->devicebuffer, bufferoffset, sizeof(float[3])); else IDirect3DDevice9_SetStreamSource(vid_d3d9dev, 0, NULL, 0, 0); gl_state.d3dvertexbuffer = (void *)vertexbuffer; gl_state.d3dvertexdata = (void *)vertex3f; gl_state.d3dvertexsize = sizeof(float[3]); #endif break; case RENDERPATH_D3D10: Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_D3D11: Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_SOFT: DPSOFTRAST_SetVertexPointer(vertex3f, sizeof(float[3])); DPSOFTRAST_SetColorPointer(NULL, 0); DPSOFTRAST_SetTexCoordPointer(0, 2, sizeof(float[2]), NULL); DPSOFTRAST_SetTexCoordPointer(1, 2, sizeof(float[2]), NULL); DPSOFTRAST_SetTexCoordPointer(2, 2, sizeof(float[2]), NULL); DPSOFTRAST_SetTexCoordPointer(3, 2, sizeof(float[2]), NULL); DPSOFTRAST_SetTexCoordPointer(4, 2, sizeof(float[2]), NULL); break; } } r_vertexgeneric_t *R_Mesh_PrepareVertices_Generic_Lock(int numvertices) { size_t size; size = sizeof(r_vertexgeneric_t) * numvertices; if (gl_state.preparevertices_tempdatamaxsize < size) { gl_state.preparevertices_tempdatamaxsize = size; gl_state.preparevertices_tempdata = Mem_Realloc(r_main_mempool, gl_state.preparevertices_tempdata, gl_state.preparevertices_tempdatamaxsize); } gl_state.preparevertices_vertexgeneric = (r_vertexgeneric_t *)gl_state.preparevertices_tempdata; gl_state.preparevertices_numvertices = numvertices; return gl_state.preparevertices_vertexgeneric; } qboolean R_Mesh_PrepareVertices_Generic_Unlock(void) { R_Mesh_PrepareVertices_Generic(gl_state.preparevertices_numvertices, gl_state.preparevertices_vertexgeneric, NULL, 0); gl_state.preparevertices_vertexgeneric = NULL; gl_state.preparevertices_numvertices = 0; return true; } void R_Mesh_PrepareVertices_Generic_Arrays(int numvertices, const float *vertex3f, const float *color4f, const float *texcoord2f) { int i; r_vertexgeneric_t *vertex; switch(vid.renderpath) { case RENDERPATH_GL20: case RENDERPATH_GLES2: if (gl_state.usevbo_dynamicvertex) { r_meshbuffer_t *buffer_vertex3f = NULL; r_meshbuffer_t *buffer_color4f = NULL; r_meshbuffer_t *buffer_texcoord2f = NULL; int bufferoffset_vertex3f = 0; int bufferoffset_color4f = 0; int bufferoffset_texcoord2f = 0; buffer_color4f = R_BufferData_Store(numvertices * sizeof(float[4]), color4f , R_BUFFERDATA_VERTEX, &bufferoffset_color4f ); buffer_vertex3f = R_BufferData_Store(numvertices * sizeof(float[3]), vertex3f , R_BUFFERDATA_VERTEX, &bufferoffset_vertex3f ); buffer_texcoord2f = R_BufferData_Store(numvertices * sizeof(float[2]), texcoord2f, R_BUFFERDATA_VERTEX, &bufferoffset_texcoord2f); R_Mesh_VertexPointer( 3, GL_FLOAT , sizeof(float[3]) , vertex3f , buffer_vertex3f , bufferoffset_vertex3f ); R_Mesh_ColorPointer( 4, GL_FLOAT , sizeof(float[4]) , color4f , buffer_color4f , bufferoffset_color4f ); R_Mesh_TexCoordPointer(0, 2, GL_FLOAT , sizeof(float[2]) , texcoord2f , buffer_texcoord2f , bufferoffset_texcoord2f ); R_Mesh_TexCoordPointer(1, 3, GL_FLOAT , sizeof(float[3]) , NULL , NULL , 0 ); R_Mesh_TexCoordPointer(2, 3, GL_FLOAT , sizeof(float[3]) , NULL , NULL , 0 ); R_Mesh_TexCoordPointer(3, 3, GL_FLOAT , sizeof(float[3]) , NULL , NULL , 0 ); R_Mesh_TexCoordPointer(4, 2, GL_FLOAT , sizeof(float[2]) , NULL , NULL , 0 ); R_Mesh_TexCoordPointer(5, 2, GL_FLOAT , sizeof(float[2]) , NULL , NULL , 0 ); R_Mesh_TexCoordPointer(6, 4, GL_UNSIGNED_BYTE, sizeof(unsigned char[4]), NULL , NULL , 0 ); R_Mesh_TexCoordPointer(7, 4, GL_UNSIGNED_BYTE, sizeof(unsigned char[4]), NULL , NULL , 0 ); } else if (!vid.useinterleavedarrays) { R_Mesh_VertexPointer(3, GL_FLOAT, sizeof(float[3]), vertex3f, NULL, 0); R_Mesh_ColorPointer(4, GL_FLOAT, sizeof(float[4]), color4f, NULL, 0); R_Mesh_TexCoordPointer(0, 2, GL_FLOAT, sizeof(float[2]), texcoord2f, NULL, 0); R_Mesh_TexCoordPointer(1, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0); R_Mesh_TexCoordPointer(2, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0); R_Mesh_TexCoordPointer(3, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0); R_Mesh_TexCoordPointer(4, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0); R_Mesh_TexCoordPointer(5, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0); R_Mesh_TexCoordPointer(6, 4, GL_UNSIGNED_BYTE, sizeof(unsigned char[4]), NULL, NULL, 0); R_Mesh_TexCoordPointer(7, 4, GL_UNSIGNED_BYTE, sizeof(unsigned char[4]), NULL, NULL, 0); return; } break; case RENDERPATH_GL11: case RENDERPATH_GL13: case RENDERPATH_GLES1: if (!vid.useinterleavedarrays) { R_Mesh_VertexPointer(3, GL_FLOAT, sizeof(float[3]), vertex3f, NULL, 0); R_Mesh_ColorPointer(4, GL_FLOAT, sizeof(float[4]), color4f, NULL, 0); R_Mesh_TexCoordPointer(0, 2, GL_FLOAT, sizeof(float[2]), texcoord2f, NULL, 0); if (vid.texunits >= 2) R_Mesh_TexCoordPointer(1, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0); if (vid.texunits >= 3) R_Mesh_TexCoordPointer(2, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0); return; } break; case RENDERPATH_D3D9: case RENDERPATH_D3D10: case RENDERPATH_D3D11: break; case RENDERPATH_SOFT: DPSOFTRAST_SetVertexPointer(vertex3f, sizeof(float[3])); DPSOFTRAST_SetColorPointer(color4f, sizeof(float[4])); DPSOFTRAST_SetTexCoordPointer(0, 2, sizeof(float[2]), texcoord2f); DPSOFTRAST_SetTexCoordPointer(1, 2, sizeof(float[2]), NULL); DPSOFTRAST_SetTexCoordPointer(2, 2, sizeof(float[2]), NULL); DPSOFTRAST_SetTexCoordPointer(3, 2, sizeof(float[2]), NULL); DPSOFTRAST_SetTexCoordPointer(4, 2, sizeof(float[2]), NULL); return; } // no quick path for this case, convert to vertex structs vertex = R_Mesh_PrepareVertices_Generic_Lock(numvertices); for (i = 0;i < numvertices;i++) VectorCopy(vertex3f + 3*i, vertex[i].vertex3f); if (color4f) { for (i = 0;i < numvertices;i++) Vector4Copy(color4f + 4*i, vertex[i].color4f); } else { for (i = 0;i < numvertices;i++) Vector4Copy(gl_state.color4f, vertex[i].color4f); } if (texcoord2f) for (i = 0;i < numvertices;i++) Vector2Copy(texcoord2f + 2*i, vertex[i].texcoord2f); R_Mesh_PrepareVertices_Generic_Unlock(); R_Mesh_PrepareVertices_Generic(numvertices, vertex, NULL, 0); } void R_Mesh_PrepareVertices_Generic(int numvertices, const r_vertexgeneric_t *vertex, const r_meshbuffer_t *vertexbuffer, int bufferoffset) { // upload temporary vertexbuffer for this rendering if (!gl_state.usevbo_staticvertex) vertexbuffer = NULL; if (!vertexbuffer && gl_state.usevbo_dynamicvertex) vertexbuffer = R_BufferData_Store(numvertices * sizeof(*vertex), (void *)vertex, R_BUFFERDATA_VERTEX, &bufferoffset); switch(vid.renderpath) { case RENDERPATH_GL20: case RENDERPATH_GLES2: if (vertexbuffer) { R_Mesh_VertexPointer( 3, GL_FLOAT , sizeof(*vertex), vertex->vertex3f , vertexbuffer, bufferoffset + (int)((unsigned char *)vertex->vertex3f - (unsigned char *)vertex)); R_Mesh_ColorPointer( 4, GL_FLOAT , sizeof(*vertex), vertex->color4f , vertexbuffer, bufferoffset + (int)((unsigned char *)vertex->color4f - (unsigned char *)vertex)); R_Mesh_TexCoordPointer(0, 2, GL_FLOAT , sizeof(*vertex), vertex->texcoord2f , vertexbuffer, bufferoffset + (int)((unsigned char *)vertex->texcoord2f - (unsigned char *)vertex)); R_Mesh_TexCoordPointer(1, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0); R_Mesh_TexCoordPointer(2, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0); R_Mesh_TexCoordPointer(3, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0); R_Mesh_TexCoordPointer(4, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0); R_Mesh_TexCoordPointer(5, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0); R_Mesh_TexCoordPointer(6, 4, GL_UNSIGNED_BYTE, sizeof(unsigned char[4]), NULL, NULL, 0); R_Mesh_TexCoordPointer(7, 4, GL_UNSIGNED_BYTE, sizeof(unsigned char[4]), NULL, NULL, 0); } else { R_Mesh_VertexPointer( 3, GL_FLOAT , sizeof(*vertex), vertex->vertex3f , NULL, 0); R_Mesh_ColorPointer( 4, GL_FLOAT , sizeof(*vertex), vertex->color4f , NULL, 0); R_Mesh_TexCoordPointer(0, 2, GL_FLOAT , sizeof(*vertex), vertex->texcoord2f , NULL, 0); R_Mesh_TexCoordPointer(1, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0); R_Mesh_TexCoordPointer(2, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0); R_Mesh_TexCoordPointer(3, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0); R_Mesh_TexCoordPointer(4, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0); R_Mesh_TexCoordPointer(5, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0); R_Mesh_TexCoordPointer(6, 4, GL_UNSIGNED_BYTE, sizeof(unsigned char[4]), NULL, NULL, 0); R_Mesh_TexCoordPointer(7, 4, GL_UNSIGNED_BYTE, sizeof(unsigned char[4]), NULL, NULL, 0); } break; case RENDERPATH_GL13: case RENDERPATH_GLES1: if (vertexbuffer) { R_Mesh_VertexPointer( 3, GL_FLOAT , sizeof(*vertex), vertex->vertex3f , vertexbuffer, bufferoffset + (int)((unsigned char *)vertex->vertex3f - (unsigned char *)vertex)); R_Mesh_ColorPointer( 4, GL_FLOAT , sizeof(*vertex), vertex->color4f , vertexbuffer, bufferoffset + (int)((unsigned char *)vertex->color4f - (unsigned char *)vertex)); R_Mesh_TexCoordPointer(0, 2, GL_FLOAT , sizeof(*vertex), vertex->texcoord2f , vertexbuffer, bufferoffset + (int)((unsigned char *)vertex->texcoord2f - (unsigned char *)vertex)); R_Mesh_TexCoordPointer(1, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0); } else { R_Mesh_VertexPointer( 3, GL_FLOAT , sizeof(*vertex), vertex->vertex3f , NULL, 0); R_Mesh_ColorPointer( 4, GL_FLOAT , sizeof(*vertex), vertex->color4f , NULL, 0); R_Mesh_TexCoordPointer(0, 2, GL_FLOAT , sizeof(*vertex), vertex->texcoord2f , NULL, 0); R_Mesh_TexCoordPointer(1, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0); } break; case RENDERPATH_GL11: if (vertexbuffer) { R_Mesh_VertexPointer( 3, GL_FLOAT , sizeof(*vertex), vertex->vertex3f , vertexbuffer, bufferoffset + (int)((unsigned char *)vertex->vertex3f - (unsigned char *)vertex)); R_Mesh_ColorPointer( 4, GL_FLOAT , sizeof(*vertex), vertex->color4f , vertexbuffer, bufferoffset + (int)((unsigned char *)vertex->color4f - (unsigned char *)vertex)); R_Mesh_TexCoordPointer(0, 2, GL_FLOAT , sizeof(*vertex), vertex->texcoord2f , vertexbuffer, bufferoffset + (int)((unsigned char *)vertex->texcoord2f - (unsigned char *)vertex)); } else { R_Mesh_VertexPointer( 3, GL_FLOAT , sizeof(*vertex), vertex->vertex3f , NULL, 0); R_Mesh_ColorPointer( 4, GL_FLOAT , sizeof(*vertex), vertex->color4f , NULL, 0); R_Mesh_TexCoordPointer(0, 2, GL_FLOAT , sizeof(*vertex), vertex->texcoord2f , NULL, 0); } break; case RENDERPATH_D3D9: #ifdef SUPPORTD3D IDirect3DDevice9_SetVertexDeclaration(vid_d3d9dev, r_vertexgeneric_d3d9decl); if (vertexbuffer) IDirect3DDevice9_SetStreamSource(vid_d3d9dev, 0, (IDirect3DVertexBuffer9*)vertexbuffer->devicebuffer, bufferoffset, sizeof(*vertex)); else IDirect3DDevice9_SetStreamSource(vid_d3d9dev, 0, NULL, 0, 0); gl_state.d3dvertexbuffer = (void *)vertexbuffer; gl_state.d3dvertexdata = (void *)vertex; gl_state.d3dvertexsize = sizeof(*vertex); #endif break; case RENDERPATH_D3D10: Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_D3D11: Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_SOFT: DPSOFTRAST_SetVertexPointer(vertex->vertex3f, sizeof(*vertex)); DPSOFTRAST_SetColorPointer(vertex->color4f, sizeof(*vertex)); DPSOFTRAST_SetTexCoordPointer(0, 2, sizeof(*vertex), vertex->texcoord2f); DPSOFTRAST_SetTexCoordPointer(1, 2, sizeof(*vertex), NULL); DPSOFTRAST_SetTexCoordPointer(2, 2, sizeof(*vertex), NULL); DPSOFTRAST_SetTexCoordPointer(3, 2, sizeof(*vertex), NULL); DPSOFTRAST_SetTexCoordPointer(4, 2, sizeof(*vertex), NULL); break; } } r_vertexmesh_t *R_Mesh_PrepareVertices_Mesh_Lock(int numvertices) { size_t size; size = sizeof(r_vertexmesh_t) * numvertices; if (gl_state.preparevertices_tempdatamaxsize < size) { gl_state.preparevertices_tempdatamaxsize = size; gl_state.preparevertices_tempdata = Mem_Realloc(r_main_mempool, gl_state.preparevertices_tempdata, gl_state.preparevertices_tempdatamaxsize); } gl_state.preparevertices_vertexmesh = (r_vertexmesh_t *)gl_state.preparevertices_tempdata; gl_state.preparevertices_numvertices = numvertices; return gl_state.preparevertices_vertexmesh; } qboolean R_Mesh_PrepareVertices_Mesh_Unlock(void) { R_Mesh_PrepareVertices_Mesh(gl_state.preparevertices_numvertices, gl_state.preparevertices_vertexmesh, NULL, 0); gl_state.preparevertices_vertexmesh = NULL; gl_state.preparevertices_numvertices = 0; return true; } void R_Mesh_PrepareVertices_Mesh_Arrays(int numvertices, const float *vertex3f, const float *svector3f, const float *tvector3f, const float *normal3f, const float *color4f, const float *texcoordtexture2f, const float *texcoordlightmap2f) { int i; r_vertexmesh_t *vertex; switch(vid.renderpath) { case RENDERPATH_GL20: case RENDERPATH_GLES2: if (gl_state.usevbo_dynamicvertex) { r_meshbuffer_t *buffer_vertex3f = NULL; r_meshbuffer_t *buffer_color4f = NULL; r_meshbuffer_t *buffer_texcoordtexture2f = NULL; r_meshbuffer_t *buffer_svector3f = NULL; r_meshbuffer_t *buffer_tvector3f = NULL; r_meshbuffer_t *buffer_normal3f = NULL; r_meshbuffer_t *buffer_texcoordlightmap2f = NULL; int bufferoffset_vertex3f = 0; int bufferoffset_color4f = 0; int bufferoffset_texcoordtexture2f = 0; int bufferoffset_svector3f = 0; int bufferoffset_tvector3f = 0; int bufferoffset_normal3f = 0; int bufferoffset_texcoordlightmap2f = 0; buffer_color4f = R_BufferData_Store(numvertices * sizeof(float[4]), color4f , R_BUFFERDATA_VERTEX, &bufferoffset_color4f ); buffer_vertex3f = R_BufferData_Store(numvertices * sizeof(float[3]), vertex3f , R_BUFFERDATA_VERTEX, &bufferoffset_vertex3f ); buffer_svector3f = R_BufferData_Store(numvertices * sizeof(float[3]), svector3f , R_BUFFERDATA_VERTEX, &bufferoffset_svector3f ); buffer_tvector3f = R_BufferData_Store(numvertices * sizeof(float[3]), tvector3f , R_BUFFERDATA_VERTEX, &bufferoffset_tvector3f ); buffer_normal3f = R_BufferData_Store(numvertices * sizeof(float[3]), normal3f , R_BUFFERDATA_VERTEX, &bufferoffset_normal3f ); buffer_texcoordtexture2f = R_BufferData_Store(numvertices * sizeof(float[2]), texcoordtexture2f , R_BUFFERDATA_VERTEX, &bufferoffset_texcoordtexture2f ); buffer_texcoordlightmap2f = R_BufferData_Store(numvertices * sizeof(float[2]), texcoordlightmap2f, R_BUFFERDATA_VERTEX, &bufferoffset_texcoordlightmap2f); R_Mesh_VertexPointer( 3, GL_FLOAT , sizeof(float[3]) , vertex3f , buffer_vertex3f , bufferoffset_vertex3f ); R_Mesh_ColorPointer( 4, GL_FLOAT , sizeof(float[4]) , color4f , buffer_color4f , bufferoffset_color4f ); R_Mesh_TexCoordPointer(0, 2, GL_FLOAT , sizeof(float[2]) , texcoordtexture2f , buffer_texcoordtexture2f , bufferoffset_texcoordtexture2f ); R_Mesh_TexCoordPointer(1, 3, GL_FLOAT , sizeof(float[3]) , svector3f , buffer_svector3f , bufferoffset_svector3f ); R_Mesh_TexCoordPointer(2, 3, GL_FLOAT , sizeof(float[3]) , tvector3f , buffer_tvector3f , bufferoffset_tvector3f ); R_Mesh_TexCoordPointer(3, 3, GL_FLOAT , sizeof(float[3]) , normal3f , buffer_normal3f , bufferoffset_normal3f ); R_Mesh_TexCoordPointer(4, 2, GL_FLOAT , sizeof(float[2]) , texcoordlightmap2f, buffer_texcoordlightmap2f, bufferoffset_texcoordlightmap2f); R_Mesh_TexCoordPointer(5, 2, GL_FLOAT , sizeof(float[2]) , NULL , NULL , 0 ); R_Mesh_TexCoordPointer(6, 4, GL_UNSIGNED_BYTE, sizeof(unsigned char[4]), NULL , NULL , 0 ); R_Mesh_TexCoordPointer(7, 4, GL_UNSIGNED_BYTE, sizeof(unsigned char[4]), NULL , NULL , 0 ); } else if (!vid.useinterleavedarrays) { R_Mesh_VertexPointer(3, GL_FLOAT, sizeof(float[3]), vertex3f, NULL, 0); R_Mesh_ColorPointer(4, GL_FLOAT, sizeof(float[4]), color4f, NULL, 0); R_Mesh_TexCoordPointer(0, 2, GL_FLOAT, sizeof(float[2]), texcoordtexture2f, NULL, 0); R_Mesh_TexCoordPointer(1, 3, GL_FLOAT, sizeof(float[3]), svector3f, NULL, 0); R_Mesh_TexCoordPointer(2, 3, GL_FLOAT, sizeof(float[3]), tvector3f, NULL, 0); R_Mesh_TexCoordPointer(3, 3, GL_FLOAT, sizeof(float[3]), normal3f, NULL, 0); R_Mesh_TexCoordPointer(4, 2, GL_FLOAT, sizeof(float[2]), texcoordlightmap2f, NULL, 0); R_Mesh_TexCoordPointer(5, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0); R_Mesh_TexCoordPointer(6, 4, GL_UNSIGNED_BYTE, sizeof(unsigned char[4]), NULL, NULL, 0); R_Mesh_TexCoordPointer(7, 4, GL_UNSIGNED_BYTE, sizeof(unsigned char[4]), NULL, NULL, 0); return; } break; case RENDERPATH_GL11: case RENDERPATH_GL13: case RENDERPATH_GLES1: if (!vid.useinterleavedarrays) { R_Mesh_VertexPointer(3, GL_FLOAT, sizeof(float[3]), vertex3f, NULL, 0); R_Mesh_ColorPointer(4, GL_FLOAT, sizeof(float[4]), color4f, NULL, 0); R_Mesh_TexCoordPointer(0, 2, GL_FLOAT, sizeof(float[2]), texcoordtexture2f, NULL, 0); if (vid.texunits >= 2) R_Mesh_TexCoordPointer(1, 2, GL_FLOAT, sizeof(float[2]), texcoordlightmap2f, NULL, 0); if (vid.texunits >= 3) R_Mesh_TexCoordPointer(2, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0); return; } break; case RENDERPATH_D3D9: case RENDERPATH_D3D10: case RENDERPATH_D3D11: break; case RENDERPATH_SOFT: DPSOFTRAST_SetVertexPointer(vertex3f, sizeof(float[3])); DPSOFTRAST_SetColorPointer(color4f, sizeof(float[4])); DPSOFTRAST_SetTexCoordPointer(0, 2, sizeof(float[2]), texcoordtexture2f); DPSOFTRAST_SetTexCoordPointer(1, 3, sizeof(float[3]), svector3f); DPSOFTRAST_SetTexCoordPointer(2, 3, sizeof(float[3]), tvector3f); DPSOFTRAST_SetTexCoordPointer(3, 3, sizeof(float[3]), normal3f); DPSOFTRAST_SetTexCoordPointer(4, 2, sizeof(float[2]), texcoordlightmap2f); return; } vertex = R_Mesh_PrepareVertices_Mesh_Lock(numvertices); for (i = 0;i < numvertices;i++) VectorCopy(vertex3f + 3*i, vertex[i].vertex3f); if (svector3f) for (i = 0;i < numvertices;i++) VectorCopy(svector3f + 3*i, vertex[i].svector3f); if (tvector3f) for (i = 0;i < numvertices;i++) VectorCopy(tvector3f + 3*i, vertex[i].tvector3f); if (normal3f) for (i = 0;i < numvertices;i++) VectorCopy(normal3f + 3*i, vertex[i].normal3f); if (color4f) { for (i = 0;i < numvertices;i++) Vector4Copy(color4f + 4*i, vertex[i].color4f); } else { for (i = 0;i < numvertices;i++) Vector4Copy(gl_state.color4f, vertex[i].color4f); } if (texcoordtexture2f) for (i = 0;i < numvertices;i++) Vector2Copy(texcoordtexture2f + 2*i, vertex[i].texcoordtexture2f); if (texcoordlightmap2f) for (i = 0;i < numvertices;i++) Vector2Copy(texcoordlightmap2f + 2*i, vertex[i].texcoordlightmap2f); R_Mesh_PrepareVertices_Mesh_Unlock(); R_Mesh_PrepareVertices_Mesh(numvertices, vertex, NULL, 0); } void R_Mesh_PrepareVertices_Mesh(int numvertices, const r_vertexmesh_t *vertex, const r_meshbuffer_t *vertexbuffer, int bufferoffset) { // upload temporary vertexbuffer for this rendering if (!gl_state.usevbo_staticvertex) vertexbuffer = NULL; if (!vertexbuffer && gl_state.usevbo_dynamicvertex) vertexbuffer = R_BufferData_Store(numvertices * sizeof(*vertex), (void *)vertex, R_BUFFERDATA_VERTEX, &bufferoffset); switch(vid.renderpath) { case RENDERPATH_GL20: case RENDERPATH_GLES2: if (vertexbuffer) { R_Mesh_VertexPointer( 3, GL_FLOAT , sizeof(*vertex), vertex->vertex3f , vertexbuffer, bufferoffset + (int)((unsigned char *)vertex->vertex3f - (unsigned char *)vertex)); R_Mesh_ColorPointer( 4, GL_FLOAT , sizeof(*vertex), vertex->color4f , vertexbuffer, bufferoffset + (int)((unsigned char *)vertex->color4f - (unsigned char *)vertex)); R_Mesh_TexCoordPointer(0, 2, GL_FLOAT , sizeof(*vertex), vertex->texcoordtexture2f , vertexbuffer, bufferoffset + (int)((unsigned char *)vertex->texcoordtexture2f - (unsigned char *)vertex)); R_Mesh_TexCoordPointer(1, 3, GL_FLOAT , sizeof(*vertex), vertex->svector3f , vertexbuffer, bufferoffset + (int)((unsigned char *)vertex->svector3f - (unsigned char *)vertex)); R_Mesh_TexCoordPointer(2, 3, GL_FLOAT , sizeof(*vertex), vertex->tvector3f , vertexbuffer, bufferoffset + (int)((unsigned char *)vertex->tvector3f - (unsigned char *)vertex)); R_Mesh_TexCoordPointer(3, 3, GL_FLOAT , sizeof(*vertex), vertex->normal3f , vertexbuffer, bufferoffset + (int)((unsigned char *)vertex->normal3f - (unsigned char *)vertex)); R_Mesh_TexCoordPointer(4, 2, GL_FLOAT , sizeof(*vertex), vertex->texcoordlightmap2f, vertexbuffer, bufferoffset + (int)((unsigned char *)vertex->texcoordlightmap2f - (unsigned char *)vertex)); R_Mesh_TexCoordPointer(5, 2, GL_FLOAT , sizeof(*vertex), NULL, NULL, 0); R_Mesh_TexCoordPointer(6, 4, GL_UNSIGNED_BYTE | 0x80000000, sizeof(*vertex), vertex->skeletalindex4ub , vertexbuffer, bufferoffset + (int)((unsigned char *)vertex->skeletalindex4ub - (unsigned char *)vertex)); R_Mesh_TexCoordPointer(7, 4, GL_UNSIGNED_BYTE, sizeof(*vertex), vertex->skeletalweight4ub , vertexbuffer, bufferoffset + (int)((unsigned char *)vertex->skeletalweight4ub - (unsigned char *)vertex)); } else { R_Mesh_VertexPointer( 3, GL_FLOAT , sizeof(*vertex), vertex->vertex3f , NULL, 0); R_Mesh_ColorPointer( 4, GL_FLOAT , sizeof(*vertex), vertex->color4f , NULL, 0); R_Mesh_TexCoordPointer(0, 2, GL_FLOAT , sizeof(*vertex), vertex->texcoordtexture2f , NULL, 0); R_Mesh_TexCoordPointer(1, 3, GL_FLOAT , sizeof(*vertex), vertex->svector3f , NULL, 0); R_Mesh_TexCoordPointer(2, 3, GL_FLOAT , sizeof(*vertex), vertex->tvector3f , NULL, 0); R_Mesh_TexCoordPointer(3, 3, GL_FLOAT , sizeof(*vertex), vertex->normal3f , NULL, 0); R_Mesh_TexCoordPointer(4, 2, GL_FLOAT , sizeof(*vertex), vertex->texcoordlightmap2f, NULL, 0); R_Mesh_TexCoordPointer(5, 2, GL_FLOAT , sizeof(*vertex), NULL, NULL, 0); R_Mesh_TexCoordPointer(6, 4, GL_UNSIGNED_BYTE | 0x80000000, sizeof(*vertex), vertex->skeletalindex4ub , NULL, 0); R_Mesh_TexCoordPointer(7, 4, GL_UNSIGNED_BYTE, sizeof(*vertex), vertex->skeletalweight4ub , NULL, 0); } break; case RENDERPATH_GL13: case RENDERPATH_GLES1: if (vertexbuffer) { R_Mesh_VertexPointer( 3, GL_FLOAT , sizeof(*vertex), vertex->vertex3f , vertexbuffer, bufferoffset + (int)((unsigned char *)vertex->vertex3f - (unsigned char *)vertex)); R_Mesh_ColorPointer( 4, GL_FLOAT , sizeof(*vertex), vertex->color4f , vertexbuffer, bufferoffset + (int)((unsigned char *)vertex->color4f - (unsigned char *)vertex)); R_Mesh_TexCoordPointer(0, 2, GL_FLOAT , sizeof(*vertex), vertex->texcoordtexture2f , vertexbuffer, bufferoffset + (int)((unsigned char *)vertex->texcoordtexture2f - (unsigned char *)vertex)); R_Mesh_TexCoordPointer(1, 2, GL_FLOAT , sizeof(*vertex), vertex->texcoordlightmap2f, vertexbuffer, bufferoffset + (int)((unsigned char *)vertex->texcoordlightmap2f - (unsigned char *)vertex)); } else { R_Mesh_VertexPointer( 3, GL_FLOAT , sizeof(*vertex), vertex->vertex3f , NULL, 0); R_Mesh_ColorPointer( 4, GL_FLOAT , sizeof(*vertex), vertex->color4f , NULL, 0); R_Mesh_TexCoordPointer(0, 2, GL_FLOAT , sizeof(*vertex), vertex->texcoordtexture2f , NULL, 0); R_Mesh_TexCoordPointer(1, 2, GL_FLOAT , sizeof(*vertex), vertex->texcoordlightmap2f, NULL, 0); } break; case RENDERPATH_GL11: if (vertexbuffer) { R_Mesh_VertexPointer( 3, GL_FLOAT , sizeof(*vertex), vertex->vertex3f , vertexbuffer, bufferoffset + (int)((unsigned char *)vertex->vertex3f - (unsigned char *)vertex)); R_Mesh_ColorPointer( 4, GL_FLOAT , sizeof(*vertex), vertex->color4f , vertexbuffer, bufferoffset + (int)((unsigned char *)vertex->color4f - (unsigned char *)vertex)); R_Mesh_TexCoordPointer(0, 2, GL_FLOAT , sizeof(*vertex), vertex->texcoordtexture2f , vertexbuffer, bufferoffset + (int)((unsigned char *)vertex->texcoordtexture2f - (unsigned char *)vertex)); } else { R_Mesh_VertexPointer( 3, GL_FLOAT , sizeof(*vertex), vertex->vertex3f , NULL, 0); R_Mesh_ColorPointer( 4, GL_FLOAT , sizeof(*vertex), vertex->color4f , NULL, 0); R_Mesh_TexCoordPointer(0, 2, GL_FLOAT , sizeof(*vertex), vertex->texcoordtexture2f , NULL, 0); } break; case RENDERPATH_D3D9: #ifdef SUPPORTD3D IDirect3DDevice9_SetVertexDeclaration(vid_d3d9dev, r_vertexmesh_d3d9decl); if (vertexbuffer) IDirect3DDevice9_SetStreamSource(vid_d3d9dev, 0, (IDirect3DVertexBuffer9*)vertexbuffer->devicebuffer, bufferoffset, sizeof(*vertex)); else IDirect3DDevice9_SetStreamSource(vid_d3d9dev, 0, NULL, 0, 0); gl_state.d3dvertexbuffer = (void *)vertexbuffer; gl_state.d3dvertexdata = (void *)vertex; gl_state.d3dvertexsize = sizeof(*vertex); #endif break; case RENDERPATH_D3D10: Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_D3D11: Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_SOFT: DPSOFTRAST_SetVertexPointer(vertex->vertex3f, sizeof(*vertex)); DPSOFTRAST_SetColorPointer(vertex->color4f, sizeof(*vertex)); DPSOFTRAST_SetTexCoordPointer(0, 2, sizeof(*vertex), vertex->texcoordtexture2f); DPSOFTRAST_SetTexCoordPointer(1, 3, sizeof(*vertex), vertex->svector3f); DPSOFTRAST_SetTexCoordPointer(2, 3, sizeof(*vertex), vertex->tvector3f); DPSOFTRAST_SetTexCoordPointer(3, 3, sizeof(*vertex), vertex->normal3f); DPSOFTRAST_SetTexCoordPointer(4, 2, sizeof(*vertex), vertex->texcoordlightmap2f); break; } } void GL_BlendEquationSubtract(qboolean negated) { if(negated) { switch(vid.renderpath) { case RENDERPATH_GL11: case RENDERPATH_GL13: case RENDERPATH_GL20: case RENDERPATH_GLES1: case RENDERPATH_GLES2: qglBlendEquationEXT(GL_FUNC_REVERSE_SUBTRACT); break; case RENDERPATH_D3D9: #ifdef SUPPORTD3D IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_BLENDOP, D3DBLENDOP_SUBTRACT); #endif break; case RENDERPATH_D3D10: Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_D3D11: Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_SOFT: DPSOFTRAST_BlendSubtract(true); break; } } else { switch(vid.renderpath) { case RENDERPATH_GL11: case RENDERPATH_GL13: case RENDERPATH_GL20: case RENDERPATH_GLES1: case RENDERPATH_GLES2: qglBlendEquationEXT(GL_FUNC_ADD); break; case RENDERPATH_D3D9: #ifdef SUPPORTD3D IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_BLENDOP, D3DBLENDOP_ADD); #endif break; case RENDERPATH_D3D10: Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_D3D11: Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__); break; case RENDERPATH_SOFT: DPSOFTRAST_BlendSubtract(false); break; } } }