/************************************************************************************ Filename : Q2VR_SurfaceView.c based on VrCubeWorld_SurfaceView.c Content : This sample uses a plain Android SurfaceView and handles all Activity and Surface life cycle events in native code. This sample does not use the application framework and also does not use LibOVR. This sample only uses the VrApi. Created : March, 2015 Authors : J.M.P. van Waveren / Simon Brown Copyright : Copyright 2015 Oculus VR, LLC. All Rights reserved. *************************************************************************************/ #include #include #include #include #include #include #include // for prctl( PR_SET_NAME ) #include #include // for native window JNI #include #include "argtable3.h" #include "VrInput.h" #include "VrCvars.h" #include #include #include #include #include "VrApi.h" #include "VrApi_Helpers.h" #include "VrApi_SystemUtils.h" #include "VrApi_Input.h" #include "VrApi_Types.h" #include "../gl4es/src/gl/loader.h" #include "VrCompositor.h" #include "VrInput.h" #include "../quake2/src/client/client.h" #if !defined( EGL_OPENGL_ES3_BIT_KHR ) #define EGL_OPENGL_ES3_BIT_KHR 0x0040 #endif // EXT_texture_border_clamp #ifndef GL_CLAMP_TO_BORDER #define GL_CLAMP_TO_BORDER 0x812D #endif #ifndef GL_TEXTURE_BORDER_COLOR #define GL_TEXTURE_BORDER_COLOR 0x1004 #endif // Must use EGLSyncKHR because the VrApi still supports OpenGL ES 2.0 #define EGL_SYNC #if defined EGL_SYNC // EGL_KHR_reusable_sync PFNEGLCREATESYNCKHRPROC eglCreateSyncKHR; PFNEGLDESTROYSYNCKHRPROC eglDestroySyncKHR; PFNEGLCLIENTWAITSYNCKHRPROC eglClientWaitSyncKHR; PFNEGLSIGNALSYNCKHRPROC eglSignalSyncKHR; PFNEGLGETSYNCATTRIBKHRPROC eglGetSyncAttribKHR; #endif //Let's go to the maximum! int CPU_LEVEL = 2; int GPU_LEVEL = 3; int NUM_MULTI_SAMPLES = 1; float SS_MULTIPLIER = 1.25f; vec2_t cylinderSize = {1280, 720}; float radians(float deg) { return (deg * M_PI) / 180.0; } float degrees(float rad) { return (rad * 180.0) / M_PI; } /* global arg_xxx structs */ struct arg_dbl *ss; struct arg_int *cpu; struct arg_int *gpu; struct arg_end *end; char **argv; int argc=0; extern cvar_t *r_lefthand; enum control_scheme { RIGHT_HANDED_DEFAULT = 0, LEFT_HANDED_DEFAULT = 10, GAMEPAD = 20 //Not implemented, someone else can do this! }; /* ================================================================================ System Clock Time in millis ================================================================================ */ double GetTimeInMilliSeconds() { struct timespec now; clock_gettime( CLOCK_MONOTONIC, &now ); return ( now.tv_sec * 1e9 + now.tv_nsec ) * (double)(1e-6); } /* ================================================================================ LAMBDA1VR Stuff ================================================================================ */ void Qcommon_Init (int argc, char **argv); bool useScreenLayer() { //TODO return (showingScreenLayer || (cls.state != ca_connected && cls.state != ca_active) || cls.key_dest != key_game); } int runStatus = -1; void Q2VR_exit(int exitCode) { runStatus = exitCode; } static void UnEscapeQuotes( char *arg ) { char *last = NULL; while( *arg ) { if( *arg == '"' && *last == '\\' ) { char *c_curr = arg; char *c_last = last; while( *c_curr ) { *c_last = *c_curr; c_last = c_curr; c_curr++; } *c_last = '\0'; } last = arg; arg++; } } static int ParseCommandLine(char *cmdline, char **argv) { char *bufp; char *lastp = NULL; int argc, last_argc; argc = last_argc = 0; for ( bufp = cmdline; *bufp; ) { while ( isspace(*bufp) ) { ++bufp; } if ( *bufp == '"' ) { ++bufp; if ( *bufp ) { if ( argv ) { argv[argc] = bufp; } ++argc; } while ( *bufp && ( *bufp != '"' || *lastp == '\\' ) ) { lastp = bufp; ++bufp; } } else { if ( *bufp ) { if ( argv ) { argv[argc] = bufp; } ++argc; } while ( *bufp && ! isspace(*bufp) ) { ++bufp; } } if ( *bufp ) { if ( argv ) { *bufp = '\0'; } ++bufp; } if( argv && last_argc != argc ) { UnEscapeQuotes( argv[last_argc] ); } last_argc = argc; } if ( argv ) { argv[argc] = NULL; } return(argc); } /* ================================================================================ OpenGL-ES Utility Functions ================================================================================ */ typedef struct { bool multi_view; // GL_OVR_multiview, GL_OVR_multiview2 bool EXT_texture_border_clamp; // GL_EXT_texture_border_clamp, GL_OES_texture_border_clamp } OpenGLExtensions_t; OpenGLExtensions_t glExtensions; static void EglInitExtensions() { #if defined EGL_SYNC eglCreateSyncKHR = (PFNEGLCREATESYNCKHRPROC) eglGetProcAddress( "eglCreateSyncKHR" ); eglDestroySyncKHR = (PFNEGLDESTROYSYNCKHRPROC) eglGetProcAddress( "eglDestroySyncKHR" ); eglClientWaitSyncKHR = (PFNEGLCLIENTWAITSYNCKHRPROC) eglGetProcAddress( "eglClientWaitSyncKHR" ); eglSignalSyncKHR = (PFNEGLSIGNALSYNCKHRPROC) eglGetProcAddress( "eglSignalSyncKHR" ); eglGetSyncAttribKHR = (PFNEGLGETSYNCATTRIBKHRPROC) eglGetProcAddress( "eglGetSyncAttribKHR" ); #endif const char * allExtensions = (const char *)glGetString( GL_EXTENSIONS ); if ( allExtensions != NULL ) { glExtensions.multi_view = strstr( allExtensions, "GL_OVR_multiview2" ) && strstr( allExtensions, "GL_OVR_multiview_multisampled_render_to_texture" ); glExtensions.EXT_texture_border_clamp = false;//strstr( allExtensions, "GL_EXT_texture_border_clamp" ) || //strstr( allExtensions, "GL_OES_texture_border_clamp" ); } } static const char * EglErrorString( const EGLint error ) { switch ( error ) { case EGL_SUCCESS: return "EGL_SUCCESS"; case EGL_NOT_INITIALIZED: return "EGL_NOT_INITIALIZED"; case EGL_BAD_ACCESS: return "EGL_BAD_ACCESS"; case EGL_BAD_ALLOC: return "EGL_BAD_ALLOC"; case EGL_BAD_ATTRIBUTE: return "EGL_BAD_ATTRIBUTE"; case EGL_BAD_CONTEXT: return "EGL_BAD_CONTEXT"; case EGL_BAD_CONFIG: return "EGL_BAD_CONFIG"; case EGL_BAD_CURRENT_SURFACE: return "EGL_BAD_CURRENT_SURFACE"; case EGL_BAD_DISPLAY: return "EGL_BAD_DISPLAY"; case EGL_BAD_SURFACE: return "EGL_BAD_SURFACE"; case EGL_BAD_MATCH: return "EGL_BAD_MATCH"; case EGL_BAD_PARAMETER: return "EGL_BAD_PARAMETER"; case EGL_BAD_NATIVE_PIXMAP: return "EGL_BAD_NATIVE_PIXMAP"; case EGL_BAD_NATIVE_WINDOW: return "EGL_BAD_NATIVE_WINDOW"; case EGL_CONTEXT_LOST: return "EGL_CONTEXT_LOST"; default: return "unknown"; } } static const char * GlFrameBufferStatusString( GLenum status ) { switch ( status ) { case GL_FRAMEBUFFER_UNDEFINED: return "GL_FRAMEBUFFER_UNDEFINED"; case GL_FRAMEBUFFER_INCOMPLETE_ATTACHMENT: return "GL_FRAMEBUFFER_INCOMPLETE_ATTACHMENT"; case GL_FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT: return "GL_FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT"; case GL_FRAMEBUFFER_UNSUPPORTED: return "GL_FRAMEBUFFER_UNSUPPORTED"; case GL_FRAMEBUFFER_INCOMPLETE_MULTISAMPLE: return "GL_FRAMEBUFFER_INCOMPLETE_MULTISAMPLE"; default: return "unknown"; } } /* ================================================================================ ovrEgl ================================================================================ */ typedef struct { EGLint MajorVersion; EGLint MinorVersion; EGLDisplay Display; EGLConfig Config; EGLSurface TinySurface; EGLSurface MainSurface; EGLContext Context; } ovrEgl; static void ovrEgl_Clear( ovrEgl * egl ) { egl->MajorVersion = 0; egl->MinorVersion = 0; egl->Display = 0; egl->Config = 0; egl->TinySurface = EGL_NO_SURFACE; egl->MainSurface = EGL_NO_SURFACE; egl->Context = EGL_NO_CONTEXT; } static void ovrEgl_CreateContext( ovrEgl * egl, const ovrEgl * shareEgl ) { if ( egl->Display != 0 ) { return; } egl->Display = eglGetDisplay( EGL_DEFAULT_DISPLAY ); ALOGV( " eglInitialize( Display, &MajorVersion, &MinorVersion )" ); eglInitialize( egl->Display, &egl->MajorVersion, &egl->MinorVersion ); // Do NOT use eglChooseConfig, because the Android EGL code pushes in multisample // flags in eglChooseConfig if the user has selected the "force 4x MSAA" option in // settings, and that is completely wasted for our warp target. const int MAX_CONFIGS = 1024; EGLConfig configs[MAX_CONFIGS]; EGLint numConfigs = 0; if ( eglGetConfigs( egl->Display, configs, MAX_CONFIGS, &numConfigs ) == EGL_FALSE ) { ALOGE( " eglGetConfigs() failed: %s", EglErrorString( eglGetError() ) ); return; } const EGLint configAttribs[] = { EGL_RED_SIZE, 8, EGL_GREEN_SIZE, 8, EGL_BLUE_SIZE, 8, EGL_ALPHA_SIZE, 8, // need alpha for the multi-pass timewarp compositor EGL_DEPTH_SIZE, 0, EGL_STENCIL_SIZE, 0, EGL_SAMPLES, 0, EGL_NONE }; egl->Config = 0; for ( int i = 0; i < numConfigs; i++ ) { EGLint value = 0; eglGetConfigAttrib( egl->Display, configs[i], EGL_RENDERABLE_TYPE, &value ); if ( ( value & EGL_OPENGL_ES3_BIT_KHR ) != EGL_OPENGL_ES3_BIT_KHR ) { continue; } // The pbuffer config also needs to be compatible with normal window rendering // so it can share textures with the window context. eglGetConfigAttrib( egl->Display, configs[i], EGL_SURFACE_TYPE, &value ); if ( ( value & ( EGL_WINDOW_BIT | EGL_PBUFFER_BIT ) ) != ( EGL_WINDOW_BIT | EGL_PBUFFER_BIT ) ) { continue; } int j = 0; for ( ; configAttribs[j] != EGL_NONE; j += 2 ) { eglGetConfigAttrib( egl->Display, configs[i], configAttribs[j], &value ); if ( value != configAttribs[j + 1] ) { break; } } if ( configAttribs[j] == EGL_NONE ) { egl->Config = configs[i]; break; } } if ( egl->Config == 0 ) { ALOGE( " eglChooseConfig() failed: %s", EglErrorString( eglGetError() ) ); return; } EGLint contextAttribs[] = { EGL_CONTEXT_CLIENT_VERSION, 3, EGL_NONE }; ALOGV( " Context = eglCreateContext( Display, Config, EGL_NO_CONTEXT, contextAttribs )" ); egl->Context = eglCreateContext( egl->Display, egl->Config, ( shareEgl != NULL ) ? shareEgl->Context : EGL_NO_CONTEXT, contextAttribs ); if ( egl->Context == EGL_NO_CONTEXT ) { ALOGE( " eglCreateContext() failed: %s", EglErrorString( eglGetError() ) ); return; } const EGLint surfaceAttribs[] = { EGL_WIDTH, 16, EGL_HEIGHT, 16, EGL_NONE }; ALOGV( " TinySurface = eglCreatePbufferSurface( Display, Config, surfaceAttribs )" ); egl->TinySurface = eglCreatePbufferSurface( egl->Display, egl->Config, surfaceAttribs ); if ( egl->TinySurface == EGL_NO_SURFACE ) { ALOGE( " eglCreatePbufferSurface() failed: %s", EglErrorString( eglGetError() ) ); eglDestroyContext( egl->Display, egl->Context ); egl->Context = EGL_NO_CONTEXT; return; } ALOGV( " eglMakeCurrent( Display, TinySurface, TinySurface, Context )" ); if ( eglMakeCurrent( egl->Display, egl->TinySurface, egl->TinySurface, egl->Context ) == EGL_FALSE ) { ALOGE( " eglMakeCurrent() failed: %s", EglErrorString( eglGetError() ) ); eglDestroySurface( egl->Display, egl->TinySurface ); eglDestroyContext( egl->Display, egl->Context ); egl->Context = EGL_NO_CONTEXT; return; } } static void ovrEgl_DestroyContext( ovrEgl * egl ) { if ( egl->Display != 0 ) { ALOGE( " eglMakeCurrent( Display, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT )" ); if ( eglMakeCurrent( egl->Display, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT ) == EGL_FALSE ) { ALOGE( " eglMakeCurrent() failed: %s", EglErrorString( eglGetError() ) ); } } if ( egl->Context != EGL_NO_CONTEXT ) { ALOGE( " eglDestroyContext( Display, Context )" ); if ( eglDestroyContext( egl->Display, egl->Context ) == EGL_FALSE ) { ALOGE( " eglDestroyContext() failed: %s", EglErrorString( eglGetError() ) ); } egl->Context = EGL_NO_CONTEXT; } if ( egl->TinySurface != EGL_NO_SURFACE ) { ALOGE( " eglDestroySurface( Display, TinySurface )" ); if ( eglDestroySurface( egl->Display, egl->TinySurface ) == EGL_FALSE ) { ALOGE( " eglDestroySurface() failed: %s", EglErrorString( eglGetError() ) ); } egl->TinySurface = EGL_NO_SURFACE; } if ( egl->Display != 0 ) { ALOGE( " eglTerminate( Display )" ); if ( eglTerminate( egl->Display ) == EGL_FALSE ) { ALOGE( " eglTerminate() failed: %s", EglErrorString( eglGetError() ) ); } egl->Display = 0; } } /* ================================================================================ ovrFramebuffer ================================================================================ */ static void ovrFramebuffer_Clear( ovrFramebuffer * frameBuffer ) { frameBuffer->Width = 0; frameBuffer->Height = 0; frameBuffer->Multisamples = 0; frameBuffer->TextureSwapChainLength = 0; frameBuffer->TextureSwapChainIndex = 0; frameBuffer->ColorTextureSwapChain = NULL; frameBuffer->DepthBuffers = NULL; frameBuffer->FrameBuffers = NULL; } static bool ovrFramebuffer_Create( ovrFramebuffer * frameBuffer, const GLenum colorFormat, const int width, const int height, const int multisamples ) { LOAD_GLES2(glBindTexture); LOAD_GLES2(glTexParameteri); LOAD_GLES2(glGenRenderbuffers); LOAD_GLES2(glBindRenderbuffer); LOAD_GLES2(glRenderbufferStorage); LOAD_GLES2(glGenFramebuffers); LOAD_GLES2(glBindFramebuffer); LOAD_GLES2(glFramebufferRenderbuffer); LOAD_GLES2(glFramebufferTexture2D); LOAD_GLES2(glCheckFramebufferStatus); frameBuffer->Width = width; frameBuffer->Height = height; frameBuffer->Multisamples = multisamples; frameBuffer->ColorTextureSwapChain = vrapi_CreateTextureSwapChain3( VRAPI_TEXTURE_TYPE_2D, colorFormat, frameBuffer->Width, frameBuffer->Height, 1, 3 ); frameBuffer->TextureSwapChainLength = vrapi_GetTextureSwapChainLength( frameBuffer->ColorTextureSwapChain ); frameBuffer->DepthBuffers = (GLuint *)malloc( frameBuffer->TextureSwapChainLength * sizeof( GLuint ) ); frameBuffer->FrameBuffers = (GLuint *)malloc( frameBuffer->TextureSwapChainLength * sizeof( GLuint ) ); for ( int i = 0; i < frameBuffer->TextureSwapChainLength; i++ ) { // Create the color buffer texture. const GLuint colorTexture = vrapi_GetTextureSwapChainHandle( frameBuffer->ColorTextureSwapChain, i ); GLenum colorTextureTarget = GL_TEXTURE_2D; GL( gles_glBindTexture( colorTextureTarget, colorTexture ) ); // Just clamp to edge. However, this requires manually clearing the border // around the layer to clear the edge texels. GL( gles_glTexParameteri( colorTextureTarget, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE ) ); GL( gles_glTexParameteri( colorTextureTarget, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE ) ); GL( gles_glTexParameteri( colorTextureTarget, GL_TEXTURE_MIN_FILTER, GL_LINEAR ) ); GL( gles_glTexParameteri( colorTextureTarget, GL_TEXTURE_MAG_FILTER, GL_LINEAR ) ); GL( gles_glBindTexture( colorTextureTarget, 0 ) ); { { // Create depth buffer. GL( gles_glGenRenderbuffers( 1, &frameBuffer->DepthBuffers[i] ) ); GL( gles_glBindRenderbuffer( GL_RENDERBUFFER, frameBuffer->DepthBuffers[i] ) ); GL( gles_glRenderbufferStorage( GL_RENDERBUFFER, GL_DEPTH_COMPONENT24, frameBuffer->Width, frameBuffer->Height ) ); GL( gles_glBindRenderbuffer( GL_RENDERBUFFER, 0 ) ); // Create the frame buffer. GL( gles_glGenFramebuffers( 1, &frameBuffer->FrameBuffers[i] ) ); GL( gles_glBindFramebuffer( GL_DRAW_FRAMEBUFFER, frameBuffer->FrameBuffers[i] ) ); GL( gles_glFramebufferRenderbuffer( GL_DRAW_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, frameBuffer->DepthBuffers[i] ) ); GL( gles_glFramebufferTexture2D( GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, colorTexture, 0 ) ); GL( GLenum renderFramebufferStatus = gles_glCheckFramebufferStatus( GL_DRAW_FRAMEBUFFER ) ); GL( gles_glBindFramebuffer( GL_DRAW_FRAMEBUFFER, 0 ) ); if ( renderFramebufferStatus != GL_FRAMEBUFFER_COMPLETE ) { ALOGE( "Incomplete frame buffer object: %s", GlFrameBufferStatusString( renderFramebufferStatus ) ); return false; } } } } return true; } void ovrFramebuffer_Destroy( ovrFramebuffer * frameBuffer ) { LOAD_GLES2(glDeleteFramebuffers); LOAD_GLES2(glDeleteRenderbuffers); GL( gles_glDeleteFramebuffers( frameBuffer->TextureSwapChainLength, frameBuffer->FrameBuffers ) ); GL( gles_glDeleteRenderbuffers( frameBuffer->TextureSwapChainLength, frameBuffer->DepthBuffers ) ); vrapi_DestroyTextureSwapChain( frameBuffer->ColorTextureSwapChain ); free( frameBuffer->DepthBuffers ); free( frameBuffer->FrameBuffers ); ovrFramebuffer_Clear( frameBuffer ); } void ovrFramebuffer_SetCurrent( ovrFramebuffer * frameBuffer ) { LOAD_GLES2(glBindFramebuffer); GL( gles_glBindFramebuffer( GL_DRAW_FRAMEBUFFER, frameBuffer->FrameBuffers[frameBuffer->TextureSwapChainIndex] ) ); } void ovrFramebuffer_SetNone() { LOAD_GLES2(glBindFramebuffer); GL( gles_glBindFramebuffer( GL_DRAW_FRAMEBUFFER, 0 ) ); } void ovrFramebuffer_Resolve( ovrFramebuffer * frameBuffer ) { // Discard the depth buffer, so the tiler won't need to write it back out to memory. const GLenum depthAttachment[1] = { GL_DEPTH_ATTACHMENT }; glInvalidateFramebuffer( GL_DRAW_FRAMEBUFFER, 1, depthAttachment ); // Flush this frame worth of commands. glFlush(); } void ovrFramebuffer_Advance( ovrFramebuffer * frameBuffer ) { // Advance to the next texture from the set. frameBuffer->TextureSwapChainIndex = ( frameBuffer->TextureSwapChainIndex + 1 ) % frameBuffer->TextureSwapChainLength; } void ovrFramebuffer_ClearEdgeTexels( ovrFramebuffer * frameBuffer ) { LOAD_GLES2(glEnable); LOAD_GLES2(glDisable); LOAD_GLES2(glViewport); LOAD_GLES2(glScissor); LOAD_GLES2(glClearColor); LOAD_GLES2(glClear); GL( gles_glEnable( GL_SCISSOR_TEST ) ); GL( gles_glViewport( 0, 0, frameBuffer->Width, frameBuffer->Height ) ); // Explicitly clear the border texels to black because OpenGL-ES does not support GL_CLAMP_TO_BORDER. // Clear to fully opaque black. GL( gles_glClearColor( 0.0f, 0.0f, 0.0f, 1.0f ) ); // bottom GL( gles_glScissor( 0, 0, frameBuffer->Width, 1 ) ); GL( gles_glClear( GL_COLOR_BUFFER_BIT ) ); // top GL( gles_glScissor( 0, frameBuffer->Height - 1, frameBuffer->Width, 1 ) ); GL( gles_glClear( GL_COLOR_BUFFER_BIT ) ); // left GL( gles_glScissor( 0, 0, 1, frameBuffer->Height ) ); GL( gles_glClear( GL_COLOR_BUFFER_BIT ) ); // right GL( gles_glScissor( frameBuffer->Width - 1, 0, 1, frameBuffer->Height ) ); GL( gles_glClear( GL_COLOR_BUFFER_BIT ) ); GL( gles_glScissor( 0, 0, 0, 0 ) ); GL( gles_glDisable( GL_SCISSOR_TEST ) ); } /* ================================================================================ ovrRenderer ================================================================================ */ void ovrRenderer_Clear( ovrRenderer * renderer ) { for ( int eye = 0; eye < VRAPI_FRAME_LAYER_EYE_MAX; eye++ ) { ovrFramebuffer_Clear( &renderer->FrameBuffer[eye] ); } renderer->ProjectionMatrix = ovrMatrix4f_CreateIdentity(); renderer->NumBuffers = VRAPI_FRAME_LAYER_EYE_MAX; } void ovrRenderer_Create( int width, int height, ovrRenderer * renderer, const ovrJava * java ) { renderer->NumBuffers = VRAPI_FRAME_LAYER_EYE_MAX; //Now using a symmetrical render target, based on the horizontal FOV vrFOV = vrapi_GetSystemPropertyInt( java, VRAPI_SYS_PROP_SUGGESTED_EYE_FOV_DEGREES_X); // Create the render Textures. for ( int eye = 0; eye < VRAPI_FRAME_LAYER_EYE_MAX; eye++ ) { ovrFramebuffer_Create( &renderer->FrameBuffer[eye], GL_RGBA8, width, height, NUM_MULTI_SAMPLES ); } // Setup the projection matrix. renderer->ProjectionMatrix = ovrMatrix4f_CreateProjectionFov( vrFOV, vrFOV, 0.0f, 0.0f, 1.0f, 0.0f ); } void ovrRenderer_Destroy( ovrRenderer * renderer ) { for ( int eye = 0; eye < renderer->NumBuffers; eye++ ) { ovrFramebuffer_Destroy( &renderer->FrameBuffer[eye] ); } renderer->ProjectionMatrix = ovrMatrix4f_CreateIdentity(); } #ifndef EPSILON #define EPSILON 0.001f #endif static ovrVector3f normalizeVec(ovrVector3f vec) { //NOTE: leave w-component untouched //@@const float EPSILON = 0.000001f; float xxyyzz = vec.x*vec.x + vec.y*vec.y + vec.z*vec.z; //@@if(xxyyzz < EPSILON) //@@ return *this; // do nothing if it is zero vector //float invLength = invSqrt(xxyyzz); ovrVector3f result; float invLength = 1.0f / sqrtf(xxyyzz); result.x = vec.x * invLength; result.y = vec.y * invLength; result.z = vec.z * invLength; return result; } void NormalizeAngles(vec3_t angles) { while (angles[0] >= 90) angles[0] -= 180; while (angles[1] >= 180) angles[1] -= 360; while (angles[2] >= 180) angles[2] -= 360; while (angles[0] < -90) angles[0] += 180; while (angles[1] < -180) angles[1] += 360; while (angles[2] < -180) angles[2] += 360; } void GetAnglesFromVectors(const ovrVector3f forward, const ovrVector3f right, const ovrVector3f up, vec3_t angles) { float sr, sp, sy, cr, cp, cy; sp = -forward.z; float cp_x_cy = forward.x; float cp_x_sy = forward.y; float cp_x_sr = -right.z; float cp_x_cr = up.z; float yaw = atan2(cp_x_sy, cp_x_cy); float roll = atan2(cp_x_sr, cp_x_cr); cy = cos(yaw); sy = sin(yaw); cr = cos(roll); sr = sin(roll); if (fabs(cy) > EPSILON) { cp = cp_x_cy / cy; } else if (fabs(sy) > EPSILON) { cp = cp_x_sy / sy; } else if (fabs(sr) > EPSILON) { cp = cp_x_sr / sr; } else if (fabs(cr) > EPSILON) { cp = cp_x_cr / cr; } else { cp = cos(asin(sp)); } float pitch = atan2(sp, cp); angles[0] = pitch / (M_PI*2.f / 360.f); angles[1] = yaw / (M_PI*2.f / 360.f); angles[2] = roll / (M_PI*2.f / 360.f); NormalizeAngles(angles); } void QuatToYawPitchRoll(ovrQuatf q, float pitchAdjust, vec3_t out) { ovrMatrix4f mat = ovrMatrix4f_CreateFromQuaternion( &q ); if (pitchAdjust != 0.0f) { ovrMatrix4f rot = ovrMatrix4f_CreateRotation(radians(pitchAdjust), 0.0f, 0.0f); mat = ovrMatrix4f_Multiply(&mat, &rot); } ovrVector4f v1 = {0, 0, -1, 0}; ovrVector4f v2 = {1, 0, 0, 0}; ovrVector4f v3 = {0, 1, 0, 0}; ovrVector4f forwardInVRSpace = ovrVector4f_MultiplyMatrix4f(&mat, &v1); ovrVector4f rightInVRSpace = ovrVector4f_MultiplyMatrix4f(&mat, &v2); ovrVector4f upInVRSpace = ovrVector4f_MultiplyMatrix4f(&mat, &v3); ovrVector3f forward = {-forwardInVRSpace.z, -forwardInVRSpace.x, forwardInVRSpace.y}; ovrVector3f right = {-rightInVRSpace.z, -rightInVRSpace.x, rightInVRSpace.y}; ovrVector3f up = {-upInVRSpace.z, -upInVRSpace.x, upInVRSpace.y}; ovrVector3f forwardNormal = normalizeVec(forward); ovrVector3f rightNormal = normalizeVec(right); ovrVector3f upNormal = normalizeVec(up); GetAnglesFromVectors(forwardNormal, rightNormal, upNormal, out); return; } void setWorldPosition( float x, float y, float z ) { positionDeltaThisFrame[0] = (worldPosition[0] - x); positionDeltaThisFrame[1] = (worldPosition[1] - y); positionDeltaThisFrame[2] = (worldPosition[2] - z); worldPosition[0] = x; worldPosition[1] = y; worldPosition[2] = z; } void setHMDPosition( float x, float y, float z, float yaw ) { static bool s_useScreen = false; VectorSet(hmdPosition, x, y, z); if (s_useScreen != useScreenLayer()) { s_useScreen = useScreenLayer(); //Record player height on transition playerHeight = y; } if (!useScreenLayer()) { playerYaw = yaw; if (vr_enable_crouching->value > 0.0f && vr_enable_crouching->value < 0.98f) { //Do we trigger crouching based on player height? if (hmdPosition[1] < (playerHeight * vr_enable_crouching->value) && ducked == DUCK_NOTDUCKED) { ducked = DUCK_CROUCHED; //sendButtonAction("+crouch", 1); } else if (hmdPosition[1] > (playerHeight * (vr_enable_crouching->value + 0.02f)) && ducked == DUCK_CROUCHED) { ducked = DUCK_NOTDUCKED; //sendButtonAction("+crouch", 0); } } } } qboolean isMultiplayer() { return Cvar_VariableValue("maxclients") > 1; } void Qcommon_BeginFrame (int time); void Qcommon_Frame (int eye); void Qcommon_EndFrame (int time); void VR_GetMove( float *forward, float *side, float *up, float *yaw, float *pitch, float *roll ) { *forward = remote_movementForward + positional_movementForward; *up = remote_movementUp; *side = remote_movementSideways + positional_movementSideways; *yaw = hmdorientation[YAW] + snapTurn; *pitch = hmdorientation[PITCH]; *roll = hmdorientation[ROLL]; } //TODO static inline bool isHostAlive() { return true; //(host.state != HOST_SHUTDOWN && //host.state != HOST_CRASHED); } static int oldtime = 0; void RenderFrame( ovrRenderer * renderer, const ovrJava * java, const ovrTracking2 * tracking, ovrMobile * ovr ) { //if we are now shutting down, drop out here //TODO if (true)//isHostAlive()) { { int time; // find time spent rendering last frame do { global_time = Sys_Milliseconds (); time = global_time - oldtime; } while (time < 1); Qcommon_BeginFrame (time); // Render the eye images. for (int eye = 0; eye < renderer->NumBuffers && isHostAlive(); eye++) { ovrFramebuffer *frameBuffer = &(renderer->FrameBuffer[eye]); ovrFramebuffer_SetCurrent(frameBuffer); { GL(glEnable(GL_SCISSOR_TEST)); GL(glDepthMask(GL_TRUE)); GL(glEnable(GL_DEPTH_TEST)); GL(glDepthFunc(GL_LEQUAL)); //Weusing the size of the render target GL(glViewport(0, 0, frameBuffer->Width, frameBuffer->Height)); GL(glScissor(0, 0, frameBuffer->Width, frameBuffer->Height)); GL(glClearColor(0.0f, 0.0f, 0.0f, 1.0f)); GL(glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)); GL(glDisable(GL_SCISSOR_TEST)); //Now do the drawing for this eye Qcommon_Frame(eye); } //Clear edge to prevent smearing ovrFramebuffer_ClearEdgeTexels(frameBuffer); ovrFramebuffer_Resolve(frameBuffer); ovrFramebuffer_Advance(frameBuffer); } Qcommon_EndFrame(time); oldtime = global_time; } ovrFramebuffer_SetNone(); } /* ================================================================================ ovrRenderThread ================================================================================ */ /* ================================================================================ ovrApp ================================================================================ */ typedef struct { ovrJava Java; ovrEgl Egl; ANativeWindow * NativeWindow; bool Resumed; ovrMobile * Ovr; ovrScene Scene; long long FrameIndex; double DisplayTime; int SwapInterval; int CpuLevel; int GpuLevel; int MainThreadTid; int RenderThreadTid; ovrLayer_Union2 Layers[ovrMaxLayerCount]; int LayerCount; ovrRenderer Renderer; } ovrApp; static void ovrApp_Clear( ovrApp * app ) { app->Java.Vm = NULL; app->Java.Env = NULL; app->Java.ActivityObject = NULL; app->NativeWindow = NULL; app->Resumed = false; app->Ovr = NULL; app->FrameIndex = 1; app->DisplayTime = 0; app->SwapInterval = 1; app->CpuLevel = 2; app->GpuLevel = 2; app->MainThreadTid = 0; app->RenderThreadTid = 0; ovrEgl_Clear( &app->Egl ); ovrScene_Clear( &app->Scene ); ovrRenderer_Clear( &app->Renderer ); } static void ovrApp_PushBlackFinal( ovrApp * app ) { int frameFlags = 0; frameFlags |= VRAPI_FRAME_FLAG_FLUSH | VRAPI_FRAME_FLAG_FINAL; ovrLayerProjection2 layer = vrapi_DefaultLayerBlackProjection2(); layer.Header.Flags |= VRAPI_FRAME_LAYER_FLAG_INHIBIT_SRGB_FRAMEBUFFER; const ovrLayerHeader2 * layers[] = { &layer.Header }; ovrSubmitFrameDescription2 frameDesc = {}; frameDesc.Flags = frameFlags; frameDesc.SwapInterval = 1; frameDesc.FrameIndex = app->FrameIndex; frameDesc.DisplayTime = app->DisplayTime; frameDesc.LayerCount = 1; frameDesc.Layers = layers; vrapi_SubmitFrame2( app->Ovr, &frameDesc ); } static void ovrApp_HandleVrModeChanges( ovrApp * app ) { if ( app->Resumed != false && app->NativeWindow != NULL ) { if ( app->Ovr == NULL ) { ovrModeParms parms = vrapi_DefaultModeParms( &app->Java ); // Must reset the FLAG_FULLSCREEN window flag when using a SurfaceView parms.Flags |= VRAPI_MODE_FLAG_RESET_WINDOW_FULLSCREEN; parms.Flags |= VRAPI_MODE_FLAG_NATIVE_WINDOW; parms.Display = (size_t)app->Egl.Display; parms.WindowSurface = (size_t)app->NativeWindow; parms.ShareContext = (size_t)app->Egl.Context; ALOGV( " eglGetCurrentSurface( EGL_DRAW ) = %p", eglGetCurrentSurface( EGL_DRAW ) ); ALOGV( " vrapi_EnterVrMode()" ); app->Ovr = vrapi_EnterVrMode( &parms ); ALOGV( " eglGetCurrentSurface( EGL_DRAW ) = %p", eglGetCurrentSurface( EGL_DRAW ) ); // If entering VR mode failed then the ANativeWindow was not valid. if ( app->Ovr == NULL ) { ALOGE( "Invalid ANativeWindow!" ); app->NativeWindow = NULL; } // Set performance parameters once we have entered VR mode and have a valid ovrMobile. if ( app->Ovr != NULL ) { vrapi_SetClockLevels( app->Ovr, app->CpuLevel, app->GpuLevel ); ALOGV( " vrapi_SetClockLevels( %d, %d )", app->CpuLevel, app->GpuLevel ); vrapi_SetPerfThread( app->Ovr, VRAPI_PERF_THREAD_TYPE_MAIN, app->MainThreadTid ); ALOGV( " vrapi_SetPerfThread( MAIN, %d )", app->MainThreadTid ); vrapi_SetPerfThread( app->Ovr, VRAPI_PERF_THREAD_TYPE_RENDERER, app->RenderThreadTid ); ALOGV( " vrapi_SetPerfThread( RENDERER, %d )", app->RenderThreadTid ); } } } else { if ( app->Ovr != NULL ) { ALOGV( " eglGetCurrentSurface( EGL_DRAW ) = %p", eglGetCurrentSurface( EGL_DRAW ) ); ALOGV( " vrapi_LeaveVrMode()" ); vrapi_LeaveVrMode( app->Ovr ); app->Ovr = NULL; ALOGV( " eglGetCurrentSurface( EGL_DRAW ) = %p", eglGetCurrentSurface( EGL_DRAW ) ); } } } /* ================================================================================ ovrMessageQueue ================================================================================ */ typedef enum { MQ_WAIT_NONE, // don't wait MQ_WAIT_RECEIVED, // wait until the consumer thread has received the message MQ_WAIT_PROCESSED // wait until the consumer thread has processed the message } ovrMQWait; #define MAX_MESSAGE_PARMS 8 #define MAX_MESSAGES 1024 typedef struct { int Id; ovrMQWait Wait; long long Parms[MAX_MESSAGE_PARMS]; } ovrMessage; static void ovrMessage_Init( ovrMessage * message, const int id, const int wait ) { message->Id = id; message->Wait = wait; memset( message->Parms, 0, sizeof( message->Parms ) ); } static void ovrMessage_SetPointerParm( ovrMessage * message, int index, void * ptr ) { *(void **)&message->Parms[index] = ptr; } static void * ovrMessage_GetPointerParm( ovrMessage * message, int index ) { return *(void **)&message->Parms[index]; } static void ovrMessage_SetIntegerParm( ovrMessage * message, int index, int value ) { message->Parms[index] = value; } static int ovrMessage_GetIntegerParm( ovrMessage * message, int index ) { return (int)message->Parms[index]; } static void ovrMessage_SetFloatParm( ovrMessage * message, int index, float value ) { *(float *)&message->Parms[index] = value; } static float ovrMessage_GetFloatParm( ovrMessage * message, int index ) { return *(float *)&message->Parms[index]; } // Cyclic queue with messages. typedef struct { ovrMessage Messages[MAX_MESSAGES]; volatile int Head; // dequeue at the head volatile int Tail; // enqueue at the tail ovrMQWait Wait; volatile bool EnabledFlag; volatile bool PostedFlag; volatile bool ReceivedFlag; volatile bool ProcessedFlag; pthread_mutex_t Mutex; pthread_cond_t PostedCondition; pthread_cond_t ReceivedCondition; pthread_cond_t ProcessedCondition; } ovrMessageQueue; static void ovrMessageQueue_Create( ovrMessageQueue * messageQueue ) { messageQueue->Head = 0; messageQueue->Tail = 0; messageQueue->Wait = MQ_WAIT_NONE; messageQueue->EnabledFlag = false; messageQueue->PostedFlag = false; messageQueue->ReceivedFlag = false; messageQueue->ProcessedFlag = false; pthread_mutexattr_t attr; pthread_mutexattr_init( &attr ); pthread_mutexattr_settype( &attr, PTHREAD_MUTEX_ERRORCHECK ); pthread_mutex_init( &messageQueue->Mutex, &attr ); pthread_mutexattr_destroy( &attr ); pthread_cond_init( &messageQueue->PostedCondition, NULL ); pthread_cond_init( &messageQueue->ReceivedCondition, NULL ); pthread_cond_init( &messageQueue->ProcessedCondition, NULL ); } static void ovrMessageQueue_Destroy( ovrMessageQueue * messageQueue ) { pthread_mutex_destroy( &messageQueue->Mutex ); pthread_cond_destroy( &messageQueue->PostedCondition ); pthread_cond_destroy( &messageQueue->ReceivedCondition ); pthread_cond_destroy( &messageQueue->ProcessedCondition ); } static void ovrMessageQueue_Enable( ovrMessageQueue * messageQueue, const bool set ) { messageQueue->EnabledFlag = set; } static void ovrMessageQueue_PostMessage( ovrMessageQueue * messageQueue, const ovrMessage * message ) { if ( !messageQueue->EnabledFlag ) { return; } while ( messageQueue->Tail - messageQueue->Head >= MAX_MESSAGES ) { usleep( 1000 ); } pthread_mutex_lock( &messageQueue->Mutex ); messageQueue->Messages[messageQueue->Tail & ( MAX_MESSAGES - 1 )] = *message; messageQueue->Tail++; messageQueue->PostedFlag = true; pthread_cond_broadcast( &messageQueue->PostedCondition ); if ( message->Wait == MQ_WAIT_RECEIVED ) { while ( !messageQueue->ReceivedFlag ) { pthread_cond_wait( &messageQueue->ReceivedCondition, &messageQueue->Mutex ); } messageQueue->ReceivedFlag = false; } else if ( message->Wait == MQ_WAIT_PROCESSED ) { while ( !messageQueue->ProcessedFlag ) { pthread_cond_wait( &messageQueue->ProcessedCondition, &messageQueue->Mutex ); } messageQueue->ProcessedFlag = false; } pthread_mutex_unlock( &messageQueue->Mutex ); } static void ovrMessageQueue_SleepUntilMessage( ovrMessageQueue * messageQueue ) { if ( messageQueue->Wait == MQ_WAIT_PROCESSED ) { messageQueue->ProcessedFlag = true; pthread_cond_broadcast( &messageQueue->ProcessedCondition ); messageQueue->Wait = MQ_WAIT_NONE; } pthread_mutex_lock( &messageQueue->Mutex ); if ( messageQueue->Tail > messageQueue->Head ) { pthread_mutex_unlock( &messageQueue->Mutex ); return; } while ( !messageQueue->PostedFlag ) { pthread_cond_wait( &messageQueue->PostedCondition, &messageQueue->Mutex ); } messageQueue->PostedFlag = false; pthread_mutex_unlock( &messageQueue->Mutex ); } static bool ovrMessageQueue_GetNextMessage( ovrMessageQueue * messageQueue, ovrMessage * message, bool waitForMessages ) { if ( messageQueue->Wait == MQ_WAIT_PROCESSED ) { messageQueue->ProcessedFlag = true; pthread_cond_broadcast( &messageQueue->ProcessedCondition ); messageQueue->Wait = MQ_WAIT_NONE; } if ( waitForMessages ) { ovrMessageQueue_SleepUntilMessage( messageQueue ); } pthread_mutex_lock( &messageQueue->Mutex ); if ( messageQueue->Tail <= messageQueue->Head ) { pthread_mutex_unlock( &messageQueue->Mutex ); return false; } *message = messageQueue->Messages[messageQueue->Head & ( MAX_MESSAGES - 1 )]; messageQueue->Head++; pthread_mutex_unlock( &messageQueue->Mutex ); if ( message->Wait == MQ_WAIT_RECEIVED ) { messageQueue->ReceivedFlag = true; pthread_cond_broadcast( &messageQueue->ReceivedCondition ); } else if ( message->Wait == MQ_WAIT_PROCESSED ) { messageQueue->Wait = MQ_WAIT_PROCESSED; } return true; } /* ================================================================================ ovrAppThread ================================================================================ */ enum { MESSAGE_ON_CREATE, MESSAGE_ON_START, MESSAGE_ON_RESUME, MESSAGE_ON_PAUSE, MESSAGE_ON_STOP, MESSAGE_ON_DESTROY, MESSAGE_ON_SURFACE_CREATED, MESSAGE_ON_SURFACE_DESTROYED }; typedef struct { JavaVM * JavaVm; jobject ActivityObject; pthread_t Thread; ovrMessageQueue MessageQueue; ANativeWindow * NativeWindow; } ovrAppThread; long shutdownCountdown; int m_width; int m_height; void R_SetMode( void ); void Android_GetScreenRes(int *width, int *height) { if (useScreenLayer()) { *width = cylinderSize[0]; *height = cylinderSize[1]; } else { *width = m_width; *height = m_height; } } void Android_MessageBox(const char *title, const char *text) { ALOGE("%s %s", title, text); } void initialize_gl4es(); void VR_Init() { //Initialise all our variables playerYaw = 0.0f; showingScreenLayer = true; remote_movementSideways = 0.0f; remote_movementForward = 0.0f; remote_movementUp = 0.0f; positional_movementSideways = 0.0f; positional_movementForward = 0.0f; snapTurn = 0.0f; ducked = DUCK_NOTDUCKED; //init randomiser srand(time(NULL)); //Create Cvars vr_snapturn_angle = Cvar_Get( "vr_snapturn_angle", "45", CVAR_ARCHIVE); vr_reloadtimeoutms = Cvar_Get( "vr_reloadtimeoutms", "200", CVAR_ARCHIVE); vr_positional_factor = Cvar_Get( "vr_positional_factor", "2000", CVAR_ARCHIVE); vr_walkdirection = Cvar_Get( "vr_walkdirection", "0", CVAR_ARCHIVE); vr_weapon_pitchadjust = Cvar_Get( "vr_weapon_pitchadjust", "-20.0", CVAR_ARCHIVE); vr_weapon_recoil = Cvar_Get( "vr_weapon_recoil", "0", CVAR_ARCHIVE); vr_weapon_stabilised = Cvar_Get( "vr_weapon_stabilised", "0", 0); vr_lasersight = Cvar_Get( "vr_lasersight", "0", CVAR_ARCHIVE); vr_control_scheme = Cvar_Get( "vr_control_scheme", "0", CVAR_ARCHIVE); vr_enable_crouching = Cvar_Get( "vr_enable_crouching", "0.85", CVAR_ARCHIVE); vr_height_adjust = Cvar_Get( "vr_height_adjust", "0.0", CVAR_ARCHIVE); vr_flashlight_model = Cvar_Get( "vr_flashlight_model", "1", CVAR_ARCHIVE); vr_mirror_weapons = Cvar_Get( "vr_mirror_weapons", "0", CVAR_ARCHIVE); vr_weaponscale = Cvar_Get( "vr_weaponscale", "0.6", CVAR_ARCHIVE); //The Engine (which is a derivative of Quake) uses a very specific unit size: //Wolfenstein 3D, DOOM and QUAKE use the same coordinate/unit system: //8 foot (96 inch) height wall == 64 units, 1.5 inches per pixel unit //1.0 pixel unit / 1.5 inch == 0.666666 pixel units per inch //This make a world scale of: 26.2467 vr_worldscale = Cvar_Get( "vr_worldscale", "26.2467", CVAR_ARCHIVE); } void M_Menu_Main_f (void); void * AppThreadFunction( void * parm ) { ovrAppThread * appThread = (ovrAppThread *)parm; ovrJava java; java.Vm = appThread->JavaVm; (*java.Vm)->AttachCurrentThread( java.Vm, &java.Env, NULL ); java.ActivityObject = appThread->ActivityObject; // Note that AttachCurrentThread will reset the thread name. prctl( PR_SET_NAME, (long)"OVR::Main", 0, 0, 0 ); quake2_initialised = false; const ovrInitParms initParms = vrapi_DefaultInitParms( &java ); int32_t initResult = vrapi_Initialize( &initParms ); if ( initResult != VRAPI_INITIALIZE_SUCCESS ) { // If intialization failed, vrapi_* function calls will not be available. exit( 0 ); } ovrApp appState; ovrApp_Clear( &appState ); appState.Java = java; // This app will handle android gamepad events itself. vrapi_SetPropertyInt( &appState.Java, VRAPI_EAT_NATIVE_GAMEPAD_EVENTS, 0 ); //Using a symmetrical render target m_width=vrapi_GetSystemPropertyInt( &java, VRAPI_SYS_PROP_SUGGESTED_EYE_TEXTURE_WIDTH ) * SS_MULTIPLIER; m_height=m_width; ovrEgl_CreateContext( &appState.Egl, NULL ); EglInitExtensions(); appState.CpuLevel = CPU_LEVEL; appState.GpuLevel = GPU_LEVEL; appState.MainThreadTid = gettid(); ovrRenderer_Create( m_width, m_height, &appState.Renderer, &java ); //Always use this folder chdir("/sdcard/Quake2Quest"); for ( bool destroyed = false; destroyed == false; ) { for ( ; ; ) { ovrMessage message; const bool waitForMessages = ( appState.Ovr == NULL && destroyed == false ); if ( !ovrMessageQueue_GetNextMessage( &appThread->MessageQueue, &message, waitForMessages ) ) { break; } switch ( message.Id ) { case MESSAGE_ON_CREATE: { break; } case MESSAGE_ON_START: { if (!quake2_initialised) { ALOGV( " Initialising Quake2 Engine" ); if (argc != 0) { //TODO Qcommon_Init(argc, (const char**)argv); } else { int argc = 1; char *argv[] = { "quake2" }; Qcommon_Init(argc, (const char**)argv); } //M_Menu_Main_f (); quake2_initialised = true; } break; } case MESSAGE_ON_RESUME: { //If we get here, then user has opted not to quit //jni_resumeAudio(); appState.Resumed = true; break; } case MESSAGE_ON_PAUSE: { //jni_pauseAudio(); appState.Resumed = false; break; } case MESSAGE_ON_STOP: { break; } case MESSAGE_ON_DESTROY: { appState.NativeWindow = NULL; destroyed = true; break; } case MESSAGE_ON_SURFACE_CREATED: { appState.NativeWindow = (ANativeWindow *)ovrMessage_GetPointerParm( &message, 0 ); break; } case MESSAGE_ON_SURFACE_DESTROYED: { appState.NativeWindow = NULL; break; } } ovrApp_HandleVrModeChanges( &appState ); } if ( appState.Ovr == NULL ) { continue; } //Use floor based tracking space vrapi_SetTrackingSpace(appState.Ovr, VRAPI_TRACKING_SPACE_LOCAL_FLOOR); // Create the scene if not yet created. // The scene is created here to be able to show a loading icon. if ( !ovrScene_IsCreated( &appState.Scene ) ) { ovrScene_Create( cylinderSize[0], cylinderSize[1], &appState.Scene, &java ); } // This is the only place the frame index is incremented, right before // calling vrapi_GetPredictedDisplayTime(). appState.FrameIndex++; // Create the scene if not yet created. // The scene is created here to be able to show a loading icon. if (!quake2_initialised || runStatus != -1) { // Show a loading icon. int frameFlags = 0; frameFlags |= VRAPI_FRAME_FLAG_FLUSH; ovrLayerProjection2 blackLayer = vrapi_DefaultLayerBlackProjection2(); blackLayer.Header.Flags |= VRAPI_FRAME_LAYER_FLAG_INHIBIT_SRGB_FRAMEBUFFER; ovrLayerLoadingIcon2 iconLayer = vrapi_DefaultLayerLoadingIcon2(); iconLayer.Header.Flags |= VRAPI_FRAME_LAYER_FLAG_INHIBIT_SRGB_FRAMEBUFFER; const ovrLayerHeader2 * layers[] = { &blackLayer.Header, &iconLayer.Header, }; ovrSubmitFrameDescription2 frameDesc = {}; frameDesc.Flags = frameFlags; frameDesc.SwapInterval = 1; frameDesc.FrameIndex = appState.FrameIndex; frameDesc.DisplayTime = appState.DisplayTime; frameDesc.LayerCount = 2; frameDesc.Layers = layers; vrapi_SubmitFrame2( appState.Ovr, &frameDesc ); } if (runStatus == -1) { #ifndef NDEBUG if (appState.FrameIndex > 10800) { //Trigger shutdown after a couple of minutes in debug mode //runStatus = 0; } #endif // Get the HMD pose, predicted for the middle of the time period during which // the new eye images will be displayed. The number of frames predicted ahead // depends on the pipeline depth of the engine and the synthesis rate. // The better the prediction, the less black will be pulled in at the edges. const double predictedDisplayTime = vrapi_GetPredictedDisplayTime(appState.Ovr, appState.FrameIndex); const ovrTracking2 tracking = vrapi_GetPredictedTracking2(appState.Ovr, predictedDisplayTime); appState.DisplayTime = predictedDisplayTime; //Get orientation // We extract Yaw, Pitch, Roll instead of directly using the orientation // to allow "additional" yaw manipulation with mouse/controller. const ovrQuatf quatHmd = tracking.HeadPose.Pose.Orientation; const ovrVector3f positionHmd = tracking.HeadPose.Pose.Position; QuatToYawPitchRoll(quatHmd, 0.0f, hmdorientation); setHMDPosition(positionHmd.x, positionHmd.y, positionHmd.z, hmdorientation[YAW]); //TODO: fix - set to use HMD position for world position setWorldPosition(positionHmd.x, positionHmd.y, positionHmd.z); ALOGV(" HMD-Position: %f, %f, %f", positionHmd.x, positionHmd.y, positionHmd.z); //Get info for tracked remotes acquireTrackedRemotesData(appState.Ovr, appState.DisplayTime); //Call additional control schemes here switch ((int)vr_control_scheme->value) { case RIGHT_HANDED_DEFAULT: HandleInput_Default(&rightTrackedRemoteState_new, &rightTrackedRemoteState_old, &rightRemoteTracking_new, &leftTrackedRemoteState_new, &leftTrackedRemoteState_old, &leftRemoteTracking_new, ovrButton_A, ovrButton_B, ovrButton_X, ovrButton_Y); break; case LEFT_HANDED_DEFAULT: HandleInput_Default(&leftTrackedRemoteState_new, &leftTrackedRemoteState_old, &leftRemoteTracking_new, &rightTrackedRemoteState_new, &rightTrackedRemoteState_old, &rightRemoteTracking_new, ovrButton_X, ovrButton_Y, ovrButton_A, ovrButton_B); break; } static bool usingScreenLayer = true; //Starts off using the screen layer if (usingScreenLayer != useScreenLayer()) { usingScreenLayer = useScreenLayer(); R_SetMode(); } ovrSubmitFrameDescription2 frameDesc = { 0 }; if (!useScreenLayer()) { ovrLayerProjection2 layer = vrapi_DefaultLayerProjection2(); layer.HeadPose = tracking.HeadPose; for ( int eye = 0; eye < VRAPI_FRAME_LAYER_EYE_MAX; eye++ ) { ovrFramebuffer * frameBuffer = &appState.Renderer.FrameBuffer[appState.Renderer.NumBuffers == 1 ? 0 : eye]; layer.Textures[eye].ColorSwapChain = frameBuffer->ColorTextureSwapChain; layer.Textures[eye].SwapChainIndex = frameBuffer->TextureSwapChainIndex; ovrMatrix4f projectionMatrix; projectionMatrix = ovrMatrix4f_CreateProjectionFov(vrFOV, vrFOV, 0.0f, 0.0f, 0.1f, 0.0f); layer.Textures[eye].TexCoordsFromTanAngles = ovrMatrix4f_TanAngleMatrixFromProjection(&projectionMatrix); layer.Textures[eye].TextureRect.x = 0; layer.Textures[eye].TextureRect.y = 0; layer.Textures[eye].TextureRect.width = 1.0f; layer.Textures[eye].TextureRect.height = 1.0f; } layer.Header.Flags |= VRAPI_FRAME_LAYER_FLAG_CHROMATIC_ABERRATION_CORRECTION; //Call the game drawing code to populate the cylinder layer texture RenderFrame(&appState.Renderer, &appState.Java, &tracking, appState.Ovr); // Set up the description for this frame. const ovrLayerHeader2 *layers[] = { &layer.Header }; ovrSubmitFrameDescription2 frameDesc = {}; frameDesc.Flags = 0; frameDesc.SwapInterval = appState.SwapInterval; frameDesc.FrameIndex = appState.FrameIndex; frameDesc.DisplayTime = appState.DisplayTime; frameDesc.LayerCount = 1; frameDesc.Layers = layers; // Hand over the eye images to the time warp. vrapi_SubmitFrame2(appState.Ovr, &frameDesc); } else { // Set-up the compositor layers for this frame. // NOTE: Multiple independent layers are allowed, but they need to be added // in a depth consistent order. memset( appState.Layers, 0, sizeof( ovrLayer_Union2 ) * ovrMaxLayerCount ); appState.LayerCount = 0; // Add a simple cylindrical layer appState.Layers[appState.LayerCount++].Cylinder = BuildCylinderLayer( &appState.Scene.CylinderRenderer, appState.Scene.CylinderWidth, appState.Scene.CylinderHeight, &tracking, radians(playerYaw) ); //Call the game drawing code to populate the cylinder layer texture RenderFrame(&appState.Scene.CylinderRenderer, &appState.Java, &tracking, appState.Ovr); // Compose the layers for this frame. const ovrLayerHeader2 * layerHeaders[ovrMaxLayerCount] = { 0 }; for ( int i = 0; i < appState.LayerCount; i++ ) { layerHeaders[i] = &appState.Layers[i].Header; } // Set up the description for this frame. frameDesc.Flags = 0; frameDesc.SwapInterval = appState.SwapInterval; frameDesc.FrameIndex = appState.FrameIndex; frameDesc.DisplayTime = appState.DisplayTime; frameDesc.LayerCount = appState.LayerCount; frameDesc.Layers = layerHeaders; // Hand over the eye images to the time warp. vrapi_SubmitFrame2(appState.Ovr, &frameDesc); } } else { //We are now shutting down if (runStatus == 0) { //Give us half a second (36 frames) shutdownCountdown = 36; runStatus++; } else if (runStatus == 1) { if (--shutdownCountdown == 0) { runStatus++; } } else if (runStatus == 2) { //TODO //Host_Shutdown(); runStatus++; } else if (runStatus == 3) { ovrRenderer_Destroy( &appState.Renderer ); ovrEgl_DestroyContext( &appState.Egl ); (*java.Vm)->DetachCurrentThread( java.Vm ); vrapi_Shutdown(); exit( 0 ); } } } return NULL; } static void ovrAppThread_Create( ovrAppThread * appThread, JNIEnv * env, jobject activityObject ) { (*env)->GetJavaVM( env, &appThread->JavaVm ); appThread->ActivityObject = (*env)->NewGlobalRef( env, activityObject ); appThread->Thread = 0; appThread->NativeWindow = NULL; ovrMessageQueue_Create( &appThread->MessageQueue ); const int createErr = pthread_create( &appThread->Thread, NULL, AppThreadFunction, appThread ); if ( createErr != 0 ) { ALOGE( "pthread_create returned %i", createErr ); } } static void ovrAppThread_Destroy( ovrAppThread * appThread, JNIEnv * env ) { pthread_join( appThread->Thread, NULL ); (*env)->DeleteGlobalRef( env, appThread->ActivityObject ); ovrMessageQueue_Destroy( &appThread->MessageQueue ); } /* ================================================================================ Activity lifecycle ================================================================================ */ int JNI_OnLoad(JavaVM* vm, void* reserved) { JNIEnv *env; if((*vm)->GetEnv(vm, (void**) &env, JNI_VERSION_1_4) != JNI_OK) { ALOGE("Failed JNI_OnLoad"); return -1; } return JNI_VERSION_1_4; } JNIEXPORT jlong JNICALL Java_com_drbeef_quake2quest_GLES3JNILib_onCreate( JNIEnv * env, jclass activityClass, jobject activity, jstring commandLineParams) { ALOGV( " GLES3JNILib::onCreate()" ); /* the global arg_xxx structs are initialised within the argtable */ void *argtable[] = { ss = arg_dbl0("s", "supersampling", "", "super sampling value (e.g. 1.0)"), cpu = arg_int0("c", "cpu", "", "CPU perf index 1-4 (default: 2)"), gpu = arg_int0("g", "gpu", "", "GPU perf index 1-4 (default: 3)"), end = arg_end(20) }; jboolean iscopy; const char *arg = (*env)->GetStringUTFChars(env, commandLineParams, &iscopy); char *cmdLine = NULL; if (arg && strlen(arg)) { cmdLine = strdup(arg); } (*env)->ReleaseStringUTFChars(env, commandLineParams, arg); ALOGV("Command line %s", cmdLine); argv = malloc(sizeof(char*) * 255); argc = ParseCommandLine(strdup(cmdLine), argv); /* verify the argtable[] entries were allocated sucessfully */ if (arg_nullcheck(argtable) == 0) { /* Parse the command line as defined by argtable[] */ arg_parse(argc, argv, argtable); if (ss->count > 0 && ss->dval[0] > 0.0) { SS_MULTIPLIER = ss->dval[0]; } if (cpu->count > 0 && cpu->ival[0] > 0 && cpu->ival[0] < 10) { CPU_LEVEL = cpu->ival[0]; } if (gpu->count > 0 && gpu->ival[0] > 0 && gpu->ival[0] < 10) { GPU_LEVEL = gpu->ival[0]; } } initialize_gl4es(); ovrAppThread * appThread = (ovrAppThread *) malloc( sizeof( ovrAppThread ) ); ovrAppThread_Create( appThread, env, activity ); ovrMessageQueue_Enable( &appThread->MessageQueue, true ); ovrMessage message; ovrMessage_Init( &message, MESSAGE_ON_CREATE, MQ_WAIT_PROCESSED ); ovrMessageQueue_PostMessage( &appThread->MessageQueue, &message ); return (jlong)((size_t)appThread); } JNIEXPORT void JNICALL Java_com_drbeef_quake2quest_GLES3JNILib_onStart( JNIEnv * env, jobject obj, jlong handle) { ALOGV( " GLES3JNILib::onStart()" ); ovrAppThread * appThread = (ovrAppThread *)((size_t)handle); ovrMessage message; ovrMessage_Init( &message, MESSAGE_ON_START, MQ_WAIT_PROCESSED ); ovrMessageQueue_PostMessage( &appThread->MessageQueue, &message ); } JNIEXPORT void JNICALL Java_com_drbeef_quake2quest_GLES3JNILib_onResume( JNIEnv * env, jobject obj, jlong handle ) { ALOGV( " GLES3JNILib::onResume()" ); ovrAppThread * appThread = (ovrAppThread *)((size_t)handle); ovrMessage message; ovrMessage_Init( &message, MESSAGE_ON_RESUME, MQ_WAIT_PROCESSED ); ovrMessageQueue_PostMessage( &appThread->MessageQueue, &message ); } JNIEXPORT void JNICALL Java_com_drbeef_quake2quest_GLES3JNILib_onPause( JNIEnv * env, jobject obj, jlong handle ) { ALOGV( " GLES3JNILib::onPause()" ); ovrAppThread * appThread = (ovrAppThread *)((size_t)handle); ovrMessage message; ovrMessage_Init( &message, MESSAGE_ON_PAUSE, MQ_WAIT_PROCESSED ); ovrMessageQueue_PostMessage( &appThread->MessageQueue, &message ); } JNIEXPORT void JNICALL Java_com_drbeef_quake2quest_GLES3JNILib_onStop( JNIEnv * env, jobject obj, jlong handle ) { ALOGV( " GLES3JNILib::onStop()" ); ovrAppThread * appThread = (ovrAppThread *)((size_t)handle); ovrMessage message; ovrMessage_Init( &message, MESSAGE_ON_STOP, MQ_WAIT_PROCESSED ); ovrMessageQueue_PostMessage( &appThread->MessageQueue, &message ); } JNIEXPORT void JNICALL Java_com_drbeef_quake2quest_GLES3JNILib_onDestroy( JNIEnv * env, jobject obj, jlong handle ) { ALOGV( " GLES3JNILib::onDestroy()" ); ovrAppThread * appThread = (ovrAppThread *)((size_t)handle); ovrMessage message; ovrMessage_Init( &message, MESSAGE_ON_DESTROY, MQ_WAIT_PROCESSED ); ovrMessageQueue_PostMessage( &appThread->MessageQueue, &message ); ovrMessageQueue_Enable( &appThread->MessageQueue, false ); ovrAppThread_Destroy( appThread, env ); free( appThread ); } /* ================================================================================ Surface lifecycle ================================================================================ */ JNIEXPORT void JNICALL Java_com_drbeef_quake2quest_GLES3JNILib_onSurfaceCreated( JNIEnv * env, jobject obj, jlong handle, jobject surface ) { ALOGV( " GLES3JNILib::onSurfaceCreated()" ); ovrAppThread * appThread = (ovrAppThread *)((size_t)handle); ANativeWindow * newNativeWindow = ANativeWindow_fromSurface( env, surface ); if ( ANativeWindow_getWidth( newNativeWindow ) < ANativeWindow_getHeight( newNativeWindow ) ) { // An app that is relaunched after pressing the home button gets an initial surface with // the wrong orientation even though android:screenOrientation="landscape" is set in the // manifest. The choreographer callback will also never be called for this surface because // the surface is immediately replaced with a new surface with the correct orientation. ALOGE( " Surface not in landscape mode!" ); } ALOGV( " NativeWindow = ANativeWindow_fromSurface( env, surface )" ); appThread->NativeWindow = newNativeWindow; ovrMessage message; ovrMessage_Init( &message, MESSAGE_ON_SURFACE_CREATED, MQ_WAIT_PROCESSED ); ovrMessage_SetPointerParm( &message, 0, appThread->NativeWindow ); ovrMessageQueue_PostMessage( &appThread->MessageQueue, &message ); } JNIEXPORT void JNICALL Java_com_drbeef_quake2quest_GLES3JNILib_onSurfaceChanged( JNIEnv * env, jobject obj, jlong handle, jobject surface ) { ALOGV( " GLES3JNILib::onSurfaceChanged()" ); ovrAppThread * appThread = (ovrAppThread *)((size_t)handle); ANativeWindow * newNativeWindow = ANativeWindow_fromSurface( env, surface ); if ( ANativeWindow_getWidth( newNativeWindow ) < ANativeWindow_getHeight( newNativeWindow ) ) { // An app that is relaunched after pressing the home button gets an initial surface with // the wrong orientation even though android:screenOrientation="landscape" is set in the // manifest. The choreographer callback will also never be called for this surface because // the surface is immediately replaced with a new surface with the correct orientation. ALOGE( " Surface not in landscape mode!" ); } if ( newNativeWindow != appThread->NativeWindow ) { if ( appThread->NativeWindow != NULL ) { ovrMessage message; ovrMessage_Init( &message, MESSAGE_ON_SURFACE_DESTROYED, MQ_WAIT_PROCESSED ); ovrMessageQueue_PostMessage( &appThread->MessageQueue, &message ); ALOGV( " ANativeWindow_release( NativeWindow )" ); ANativeWindow_release( appThread->NativeWindow ); appThread->NativeWindow = NULL; } if ( newNativeWindow != NULL ) { ALOGV( " NativeWindow = ANativeWindow_fromSurface( env, surface )" ); appThread->NativeWindow = newNativeWindow; ovrMessage message; ovrMessage_Init( &message, MESSAGE_ON_SURFACE_CREATED, MQ_WAIT_PROCESSED ); ovrMessage_SetPointerParm( &message, 0, appThread->NativeWindow ); ovrMessageQueue_PostMessage( &appThread->MessageQueue, &message ); } } else if ( newNativeWindow != NULL ) { ANativeWindow_release( newNativeWindow ); } } JNIEXPORT void JNICALL Java_com_drbeef_quake2quest_GLES3JNILib_onSurfaceDestroyed( JNIEnv * env, jobject obj, jlong handle ) { ALOGV( " GLES3JNILib::onSurfaceDestroyed()" ); ovrAppThread * appThread = (ovrAppThread *)((size_t)handle); ovrMessage message; ovrMessage_Init( &message, MESSAGE_ON_SURFACE_DESTROYED, MQ_WAIT_PROCESSED ); ovrMessageQueue_PostMessage( &appThread->MessageQueue, &message ); ALOGV( " ANativeWindow_release( NativeWindow )" ); ANativeWindow_release( appThread->NativeWindow ); appThread->NativeWindow = NULL; } /************************* * Audio stuff *************************/ JNIEXPORT jint JNICALL Java_com_drbeef_quake2quest_GLES3JNILib_Quake2PaintAudio( JNIEnv* env, jobject thiz, jobject buf ) { extern int paint_audio (void *unused, void * stream, int len); void *stream; int len; stream = (*env)->GetDirectBufferAddress( env, buf); len = (*env)->GetDirectBufferCapacity( env, buf); return paint_audio ( NULL, stream, len ); }