jkxr/Projects/Android/jni/OpenJK/codemp/rd-vanilla/tr_arb.cpp

232 lines
9.1 KiB
C++

/*
===========================================================================
Copyright (C) 2000 - 2013, Raven Software, Inc.
Copyright (C) 2001 - 2013, Activision, Inc.
Copyright (C) 2013 - 2015, OpenJK contributors
This file is part of the OpenJK source code.
OpenJK is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License version 2 as
published by the Free Software Foundation.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, see <http://www.gnu.org/licenses/>.
===========================================================================
*/
// tr_arb.c -- this file deals with the arb shaders for dynamic glow
#include "tr_local.h"
/////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Vertex and Pixel Shader definitions. - AReis
/***********************************************************************************************************/
// This vertex shader basically passes through most values and calculates no lighting. The only
// unusual thing it does is add the inputed texel offsets to all four texture units (this allows
// nearest neighbor pixel peeking).
const unsigned char g_strGlowVShaderARB[] =
{
"!!ARBvp1.0\
\
# Input.\n\
ATTRIB iPos = vertex.position;\
ATTRIB iColor = vertex.color;\
ATTRIB iTex0 = vertex.texcoord[0];\
ATTRIB iTex1 = vertex.texcoord[1];\
ATTRIB iTex2 = vertex.texcoord[2];\
ATTRIB iTex3 = vertex.texcoord[3];\
\
# Output.\n\
OUTPUT oPos = result.position;\
OUTPUT oColor = result.color;\
OUTPUT oTex0 = result.texcoord[0];\
OUTPUT oTex1 = result.texcoord[1];\
OUTPUT oTex2 = result.texcoord[2];\
OUTPUT oTex3 = result.texcoord[3];\
\
# Constants.\n\
PARAM ModelViewProj[4]= { state.matrix.mvp };\
PARAM TexelOffset0 = program.env[0];\
PARAM TexelOffset1 = program.env[1];\
PARAM TexelOffset2 = program.env[2];\
PARAM TexelOffset3 = program.env[3];\
\
# Main.\n\
DP4 oPos.x, ModelViewProj[0], iPos;\
DP4 oPos.y, ModelViewProj[1], iPos;\
DP4 oPos.z, ModelViewProj[2], iPos;\
DP4 oPos.w, ModelViewProj[3], iPos;\
MOV oColor, iColor;\
# Notice the optimization of using one texture coord instead of all four.\n\
ADD oTex0, iTex0, TexelOffset0;\
ADD oTex1, iTex0, TexelOffset1;\
ADD oTex2, iTex0, TexelOffset2;\
ADD oTex3, iTex0, TexelOffset3;\
\
END"
};
// This Pixel Shader loads four texture units and adds them all together (with a modifier
// multiplied to each in the process). The final output is r0 = t0 + t1 + t2 + t3.
const unsigned char g_strGlowPShaderARB[] =
{
"!!ARBfp1.0\
\
# Input.\n\
ATTRIB iColor = fragment.color.primary;\
\
# Output.\n\
OUTPUT oColor = result.color;\
\
# Constants.\n\
PARAM Weight = program.env[0];\
TEMP t0;\
TEMP t1;\
TEMP t2;\
TEMP t3;\
TEMP r0;\
\
# Main.\n\
TEX t0, fragment.texcoord[0], texture[0], RECT;\
TEX t1, fragment.texcoord[1], texture[1], RECT;\
TEX t2, fragment.texcoord[2], texture[2], RECT;\
TEX t3, fragment.texcoord[3], texture[3], RECT;\
\
MUL r0, t0, Weight;\
MAD r0, t1, Weight, r0;\
MAD r0, t2, Weight, r0;\
MAD r0, t3, Weight, r0;\
\
MOV oColor, r0;\
\
END"
};
static const char *gammaCorrectVtxShader =
"!!ARBvp1.0\
MOV result.position, vertex.position;\
MOV result.texcoord[0], vertex.texcoord[0];\
END";
static const char *gammaCorrectPxShader =
"!!ARBfp1.0\
TEMP r0;\
TEX r0, fragment.texcoord[0], texture[0], RECT;\
TEX result.color, r0, texture[1], 3D;\
END";
/***********************************************************************************************************/
#define GL_PROGRAM_ERROR_STRING_ARB 0x8874
#define GL_PROGRAM_ERROR_POSITION_ARB 0x864B
void ARB_InitGPUShaders(void) {
if ( !qglGenProgramsARB )
{
return;
}
// Allocate and Load the global 'Glow' Vertex Program. - AReis
qglGenProgramsARB( 1, &tr.glowVShader );
qglBindProgramARB( GL_VERTEX_PROGRAM_ARB, tr.glowVShader );
qglProgramStringARB( GL_VERTEX_PROGRAM_ARB, GL_PROGRAM_FORMAT_ASCII_ARB, ( GLsizei ) strlen( ( char * ) g_strGlowVShaderARB ), g_strGlowVShaderARB );
// const GLubyte *strErr = qglGetString( GL_PROGRAM_ERROR_STRING_ARB );
int iErrPos = 0;
qglGetIntegerv( GL_PROGRAM_ERROR_POSITION_ARB, &iErrPos );
assert( iErrPos == -1 );
// NOTE: I make an assumption here. If you have (current) nvidia hardware, you obviously support register combiners instead of fragment
// programs, so use those. The problem with this is that nv30 WILL support fragment shaders, breaking this logic. The good thing is that
// if you always ask for regcoms before fragment shaders, you'll always just use regcoms (problem solved... for now). - AReis
// Load Pixel Shaders (either regcoms or fragprogs).
if ( qglCombinerParameteriNV )
{
// The purpose of this regcom is to blend all the pixels together from the 4 texture units, but with their
// texture coordinates offset by 1 (or more) texels, effectively letting us blend adjoining pixels. The weight is
// used to either strengthen or weaken the pixel intensity. The more it diffuses (the higher the radius of the glow),
// the higher the intensity should be for a noticable effect.
// Regcom result is: ( tex1 * fBlurWeight ) + ( tex2 * fBlurWeight ) + ( tex2 * fBlurWeight ) + ( tex2 * fBlurWeight )
// VV guys, this is the pixel shader you would use instead :-)
/*
// c0 is the blur weight.
ps 1.1
tex t0
tex t1
tex t2
tex t3
mul r0, c0, t0;
madd r0, c0, t1, r0;
madd r0, c0, t2, r0;
madd r0, c0, t3, r0;
*/
tr.glowPShader = qglGenLists( 1 );
qglNewList( tr.glowPShader, GL_COMPILE );
qglCombinerParameteriNV( GL_NUM_GENERAL_COMBINERS_NV, 2 );
// spare0 = fBlend * tex0 + fBlend * tex1.
qglCombinerInputNV( GL_COMBINER0_NV, GL_RGB, GL_VARIABLE_A_NV, GL_TEXTURE0_ARB, GL_UNSIGNED_IDENTITY_NV, GL_RGB );
qglCombinerInputNV( GL_COMBINER0_NV, GL_RGB, GL_VARIABLE_B_NV, GL_CONSTANT_COLOR0_NV, GL_UNSIGNED_IDENTITY_NV, GL_RGB );
qglCombinerInputNV( GL_COMBINER0_NV, GL_RGB, GL_VARIABLE_C_NV, GL_TEXTURE1_ARB, GL_UNSIGNED_IDENTITY_NV, GL_RGB );
qglCombinerInputNV( GL_COMBINER0_NV, GL_RGB, GL_VARIABLE_D_NV, GL_CONSTANT_COLOR0_NV, GL_UNSIGNED_IDENTITY_NV, GL_RGB );
qglCombinerOutputNV( GL_COMBINER0_NV, GL_RGB, GL_DISCARD_NV, GL_DISCARD_NV, GL_SPARE0_NV, GL_NONE, GL_NONE, GL_FALSE, GL_FALSE, GL_FALSE );
// spare1 = fBlend * tex2 + fBlend * tex3.
qglCombinerInputNV( GL_COMBINER1_NV, GL_RGB, GL_VARIABLE_A_NV, GL_TEXTURE2_ARB, GL_UNSIGNED_IDENTITY_NV, GL_RGB );
qglCombinerInputNV( GL_COMBINER1_NV, GL_RGB, GL_VARIABLE_B_NV, GL_CONSTANT_COLOR0_NV, GL_UNSIGNED_IDENTITY_NV, GL_RGB );
qglCombinerInputNV( GL_COMBINER1_NV, GL_RGB, GL_VARIABLE_C_NV, GL_TEXTURE3_ARB, GL_UNSIGNED_IDENTITY_NV, GL_RGB );
qglCombinerInputNV( GL_COMBINER1_NV, GL_RGB, GL_VARIABLE_D_NV, GL_CONSTANT_COLOR0_NV, GL_UNSIGNED_IDENTITY_NV, GL_RGB );
qglCombinerOutputNV( GL_COMBINER1_NV, GL_RGB, GL_DISCARD_NV, GL_DISCARD_NV, GL_SPARE1_NV, GL_NONE, GL_NONE, GL_FALSE, GL_FALSE, GL_FALSE );
// ( A * B ) + ( ( 1 - A ) * C ) + D = ( spare0 * 1 ) + ( ( 1 - spare0 ) * 0 ) + spare1 == spare0 + spare1.
qglFinalCombinerInputNV( GL_VARIABLE_A_NV, GL_SPARE0_NV, GL_UNSIGNED_IDENTITY_NV, GL_RGB );
qglFinalCombinerInputNV( GL_VARIABLE_B_NV, GL_ZERO, GL_UNSIGNED_INVERT_NV, GL_RGB );
qglFinalCombinerInputNV( GL_VARIABLE_C_NV, GL_ZERO, GL_UNSIGNED_IDENTITY_NV, GL_RGB );
qglFinalCombinerInputNV( GL_VARIABLE_D_NV, GL_SPARE1_NV, GL_UNSIGNED_IDENTITY_NV, GL_RGB );
qglEndList();
}
else
{
qglGenProgramsARB( 1, &tr.glowPShader );
qglBindProgramARB( GL_FRAGMENT_PROGRAM_ARB, tr.glowPShader );
qglProgramStringARB( GL_FRAGMENT_PROGRAM_ARB, GL_PROGRAM_FORMAT_ASCII_ARB, ( GLsizei ) strlen( ( char * ) g_strGlowPShaderARB ), g_strGlowPShaderARB );
// const GLubyte *strErr = qglGetString( GL_PROGRAM_ERROR_STRING_ARB );
int iErrPos = 0;
qglGetIntegerv( GL_PROGRAM_ERROR_POSITION_ARB, &iErrPos );
assert( iErrPos == -1 );
}
qglGenProgramsARB(1, &tr.gammaCorrectVtxShader);
qglBindProgramARB(GL_VERTEX_PROGRAM_ARB, tr.gammaCorrectVtxShader);
qglProgramStringARB(GL_VERTEX_PROGRAM_ARB, GL_PROGRAM_FORMAT_ASCII_ARB, strlen(gammaCorrectVtxShader), gammaCorrectVtxShader);
int errorChar;
qglGetIntegerv(GL_PROGRAM_ERROR_POSITION_ARB, &errorChar);
if ( errorChar != -1 )
{
Com_Printf(S_COLOR_RED "ERROR: Failed to compile gamma correction vertex shader. Error at character %d\n", errorChar);
glConfigExt.doGammaCorrectionWithShaders = qfalse;
}
else
{
qglGenProgramsARB(1, &tr.gammaCorrectPxShader);
qglBindProgramARB(GL_FRAGMENT_PROGRAM_ARB, tr.gammaCorrectPxShader);
qglProgramStringARB(GL_FRAGMENT_PROGRAM_ARB, GL_PROGRAM_FORMAT_ASCII_ARB, strlen(gammaCorrectPxShader), gammaCorrectPxShader);
qglGetIntegerv(GL_PROGRAM_ERROR_POSITION_ARB, &errorChar);
if ( errorChar != -1 )
{
Com_Printf(S_COLOR_RED "Failed to compile gamma correction pixel shader. Error at character %d\n", errorChar);
glConfigExt.doGammaCorrectionWithShaders = qfalse;
}
}
}