mirror of
https://github.com/DrBeef/JKXR.git
synced 2024-12-11 21:21:47 +00:00
4597b03873
Opens in Android Studio but haven't even tried to build it yet (it won't.. I know that much!)
1798 lines
52 KiB
C++
1798 lines
52 KiB
C++
/*
|
|
===========================================================================
|
|
Copyright (C) 2000 - 2013, Raven Software, Inc.
|
|
Copyright (C) 2001 - 2013, Activision, Inc.
|
|
Copyright (C) 2013 - 2015, OpenJK contributors
|
|
|
|
This file is part of the OpenJK source code.
|
|
|
|
OpenJK is free software; you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License version 2 as
|
|
published by the Free Software Foundation.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, see <http://www.gnu.org/licenses/>.
|
|
===========================================================================
|
|
*/
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////
|
|
// RAVEN STANDARD TEMPLATE LIBRARY
|
|
// (c) 2002 Activision
|
|
//
|
|
//
|
|
// Graph
|
|
// -----
|
|
// A Graph object is one of the most generic data structures. Theoretically, a graph
|
|
// could be used to make a tree, list, or any other standard structure. A graph has
|
|
// two data types: NODE and EDGE, and maintains connection information how edges can
|
|
// link two nodes.
|
|
//
|
|
// One of the most intuitive uses of a graph class is a navigation bouy system. In such
|
|
// a use, the nodes would probably be vector based objects with positional information
|
|
// and the edges might contain portal information (door is open / closed / locked).
|
|
//
|
|
// Another example might be a web page, or decision tree, or any other problem space
|
|
// which requires object connection data.
|
|
//
|
|
//
|
|
//
|
|
//
|
|
// Implimentation
|
|
// --------------
|
|
// This template allocates a pool for NODES, a pool for EDGES, and a grid2_vs<int> to serve
|
|
// as an Adjacency Matrix (called Links). The Adj. Matrix stores indicies to EDGE objects
|
|
// in the EDGE pool.
|
|
//
|
|
//
|
|
//
|
|
//
|
|
// What If You Do Not Need Any Edge Objects?
|
|
// -----------------------------------------
|
|
// It's fairly common to have a graph with no connection information other than the
|
|
// existance of the link. For this case, you should be able to create a graph with a
|
|
// MAXEDGES of 1. You will want to call the version of connect_node() which does not
|
|
// take an edge object, and uses 1 as the "index" in the Adj. Matrix.
|
|
//
|
|
//
|
|
//
|
|
//
|
|
// How Do You Search?
|
|
// -------------------
|
|
// This graph supports 3 search methods:
|
|
// Breadth First - Exausts as many links close to start as possible
|
|
// Depth First - Gets as far from start as quickly as possible
|
|
// A* - Uses a distance heuristic toward end point
|
|
//
|
|
// First, create a (graph_vs::search) object with the start and end points that you want
|
|
// to search for. Then, call either bfs(), dfs(), or astar(). When you get the
|
|
// object back, it will have a vector of all the nodes that were visited and methods
|
|
// for iterating over that vector to get the path.
|
|
//
|
|
// for (TestSearch.path_begin(); !TestSearch.path_end(); TestSearch.path_inc())
|
|
// {
|
|
// sprintf(Buf, "(%d)", TestSearch.path_at());
|
|
// OutputDebugString(Buf);
|
|
// }
|
|
//
|
|
//
|
|
//
|
|
//
|
|
// Complexity Analisis
|
|
// -------------------
|
|
// All data operations except remove_node() are O(1) constant time.
|
|
// remove_node() can be O(n) where n is the number of NODES in the graph.
|
|
//
|
|
// Search routines:
|
|
// BFS -
|
|
// DFS -
|
|
// A* -
|
|
//
|
|
//
|
|
//
|
|
//
|
|
////////////////////////////////////////////////////////////////////////////////////////
|
|
#if !defined(RAGL_GRAPH_VS_INC)
|
|
#define RAGL_GRAPH_VS_INC
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////
|
|
// Includes
|
|
////////////////////////////////////////////////////////////////////////////////////////
|
|
#if defined(RA_DEBUG_LINKING)
|
|
#pragma message("...including graph_vs.h")
|
|
#endif
|
|
#if !defined(RAGL_COMMON_INC)
|
|
#include "ragl_common.h"
|
|
#endif
|
|
#if !defined(RATL_ARRAY_VS_INC)
|
|
#include "../Ratl/array_vs.h"
|
|
#endif
|
|
#if !defined(RATL_VECTOR_VS_INC)
|
|
#include "../Ratl/vector_vs.h"
|
|
#endif
|
|
#if !defined(RATL_BITS_INC)
|
|
#include "../Ratl/bits_vs.h"
|
|
#endif
|
|
#if !defined(RATL_QUEUE_VS_INC)
|
|
#include "../Ratl/queue_vs.h"
|
|
#endif
|
|
#if !defined(RATL_STACK_VS_INC)
|
|
#include "../Ratl/stack_vs.h"
|
|
#endif
|
|
#if !defined(RBTREE_MAP_VS_INC)
|
|
#include "../Ratl/map_vs.h"
|
|
#endif
|
|
#if !defined(RATL_POOL_VS_INC)
|
|
#include "../Ratl/pool_vs.h"
|
|
#endif
|
|
#if !defined(RATL_GRID_VS_INC)
|
|
#include "../Ratl/grid_vs.h"
|
|
#endif
|
|
namespace ragl
|
|
{
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////
|
|
// The Graph Class
|
|
////////////////////////////////////////////////////////////////////////////////////////
|
|
template <class TNODE, int MAXNODES, class TEDGE, int MAXEDGES, int MAXNODENEIGHBORS>
|
|
class graph_vs : public ratl::ratl_base
|
|
{
|
|
public:
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
// The Graph User Class
|
|
//
|
|
// When executing a search (in particular an A* search), you may want to derive your
|
|
// own user class so that you can provide specific functionality to the search. For
|
|
// example, you might want characters on one team to bias the cost of going to nodes
|
|
// which are occupied by the other team. Or you might want to allow specific
|
|
// characters to access some edges where others cannot. Perhaps one can fly or has
|
|
// a special key to a door...
|
|
//
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
class user
|
|
{
|
|
public:
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
// can be invalid edge (For Region)
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
virtual bool can_be_invalid(const TEDGE& Edge) const = 0;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
// valid edge (For A* and Region)
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
virtual bool is_valid(TEDGE& Edge, int EndPoint=0) const = 0;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
// cost estimate from A to B (For A*)
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
virtual float cost(const TNODE& A, const TNODE& B) const = 0;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
// cost estimate of Edge (For A*)
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
virtual float cost(const TEDGE& Edge, const TNODE& B) const = 0;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
// same floor check (For Triangulation)
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
virtual bool on_same_floor(const TNODE& A, const TNODE& B) const = 0;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
// setup the edge (For Triangulation)
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
virtual void setup_edge(TEDGE& Edge, int A, int B, bool OnHull, const TNODE& NodeA, const TNODE& NodeB, bool CanBeInvalid=false) = 0;
|
|
};
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
// Capacity Enum
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
enum
|
|
{
|
|
CAPACITY = MAXNODES,
|
|
NULLEDGE = -1,
|
|
};
|
|
|
|
|
|
typedef typename ratl::pool_vs<TNODE, MAXNODES> TNodes;
|
|
typedef typename ratl::pool_vs<TEDGE, MAXEDGES> TEdges;
|
|
struct SNodeNeighbor
|
|
{
|
|
short mEdge;
|
|
short mNode;
|
|
};
|
|
typedef typename ratl::vector_vs<SNodeNeighbor, MAXNODENEIGHBORS> TNodeNeighbors;
|
|
typedef typename ratl::array_vs< TNodeNeighbors, MAXNODES> TLinks;
|
|
|
|
|
|
typedef typename ragl::graph_vs<TNODE, MAXNODES, TEDGE, MAXEDGES, MAXNODENEIGHBORS> TGraph;
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
// cells class
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
template <int NODESPERCELL, int CELLSX, int CELLSY>
|
|
class cells : public ratl::ratl_base
|
|
{
|
|
public:
|
|
enum
|
|
{
|
|
SIZEX = CELLSX,
|
|
SIZEY = CELLSY,
|
|
SIZENODES = NODESPERCELL
|
|
};
|
|
|
|
|
|
struct SSortNode
|
|
{
|
|
float mCost;
|
|
short mHandle;
|
|
bool operator<(const SSortNode& t) const
|
|
{
|
|
return (mCost<t.mCost);
|
|
}
|
|
};
|
|
typedef typename ratl::vector_vs<SSortNode, (NODESPERCELL*25)> TSortNodes;
|
|
typedef typename ratl::vector_vs<short, NODESPERCELL> TCellNodes;
|
|
struct SCell
|
|
{
|
|
TCellNodes mNodes;
|
|
TCellNodes mEdges;
|
|
};
|
|
typedef typename ratl::grid2_vs<SCell, CELLSX, CELLSY> TCells;
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
cells(TGraph& g) : mGraph(g)
|
|
{
|
|
}
|
|
|
|
void clear()
|
|
{
|
|
mCells.clear();
|
|
SCell EmptyCell;
|
|
mCells.init(EmptyCell);
|
|
}
|
|
|
|
void get_cell_upperleft(int x, int y, float& xReal, float& yReal)
|
|
{
|
|
mCells.get_cell_upperleft(x,y,xReal,yReal);
|
|
}
|
|
void get_cell_lowerright(int x, int y, float& xReal, float& yReal)
|
|
{
|
|
mCells.get_cell_lowerright(x,y,xReal,yReal);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
void expand_bounds(int nodeHandle)
|
|
{
|
|
TNODE& node = mGraph.get_node(nodeHandle);
|
|
mCells.expand_bounds(node[0], node[1]);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
SCell& get_cell(float x, float y)
|
|
{
|
|
return mCells.get(x,y);
|
|
}
|
|
SCell& get_cell(int x, int y)
|
|
{
|
|
return mCells.get(x,y);
|
|
}
|
|
void convert_to_cell_coords(float x, float y, int& xint, int& yint)
|
|
{
|
|
mCells.get_cell_coords(x, y, xint, yint);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
void fill_cells_nodes(float range)
|
|
{
|
|
// I. Fill All The Cells With The Points Contained By Those Cells
|
|
//----------------------------------------------------------------
|
|
bool full = false;
|
|
for (typename TNodes::iterator it=mGraph.nodes_begin(); it!=mGraph.nodes_end() && !full; it++)
|
|
{
|
|
TNODE& node = (*it);
|
|
SCell& cell = mCells.get(node[0], node[1]);
|
|
|
|
cell.mNodes.push_back(it.index());
|
|
full = cell.mNodes.full();
|
|
assert(!full || "Cell Filled On Inital Containment"==0);
|
|
}
|
|
|
|
mCells.scale_by_largest_axis(range);
|
|
|
|
|
|
// II. Go To All Neighboring Cells And Get Them
|
|
//==============================================
|
|
int iRange = (int)(range) + 1;
|
|
typename TCells::riterator rcell;
|
|
typename TCells::riterator rcellend;
|
|
CVec3 cellCenter(0,0,0);
|
|
CVec3 nodeCenter(0,0,0);
|
|
|
|
TSortNodes *sortnodes = new TSortNodes;
|
|
SSortNode sortnode;
|
|
|
|
TCells *sortcells = new TCells;
|
|
sortcells->copy_bounds(mCells);
|
|
|
|
|
|
|
|
// For Every Cell
|
|
//----------------
|
|
for (int x=0; x<CELLSX; x++)
|
|
{
|
|
for (int y=0; y<CELLSY; y++)
|
|
{
|
|
// Setup the Sortnodes vector And Range Iterators
|
|
//------------------------------------------------
|
|
sortnodes->clear();
|
|
|
|
mCells.get_cell_position(x,y, cellCenter.v[0], cellCenter.v[1]);
|
|
|
|
for (rcell = mCells.rangeBegin(iRange,x,y); !rcell.at_end(); rcell++)
|
|
{
|
|
SCell& cell = (*rcell);
|
|
|
|
// Add The Nodes To The Sort List
|
|
//--------------------------------
|
|
for (int i=0; i<cell.mNodes.size() && !sortnodes->full(); i++)
|
|
{
|
|
int nodeHandle = cell.mNodes[i];
|
|
|
|
TNODE& node = mGraph.get_node(nodeHandle);
|
|
nodeCenter[0] = node[0];
|
|
nodeCenter[1] = node[1];
|
|
|
|
sortnode.mHandle = nodeHandle;
|
|
sortnode.mCost = cellCenter.Dist2(nodeCenter);
|
|
sortnodes->push_back(sortnode);
|
|
}
|
|
}
|
|
|
|
// Sort The Results
|
|
//------------------
|
|
sortnodes->sort();
|
|
|
|
|
|
// Copy The Sorted Nodes Vector Into The Sorted Cell (Of The Sorted Cell Grid)
|
|
//----------------------------------------------------------------------------
|
|
SCell& cell = sortcells->get(x,y);
|
|
cell.mNodes.clear();
|
|
for (int i=0; i<sortnodes->size() && i<NODESPERCELL; i++)
|
|
{
|
|
cell.mNodes.push_back((*sortnodes)[i].mHandle);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Now Copy The Sorted Results To The Main Cells
|
|
//-----------------------------------------------
|
|
for (int xb=0; xb<CELLSX; xb++)
|
|
{
|
|
for (int yb=0; yb<CELLSY; yb++)
|
|
{
|
|
SCell& scell = sortcells->get(xb,yb);
|
|
SCell& mcell = mCells.get(xb,yb);
|
|
mcell.mNodes = scell.mNodes;
|
|
}
|
|
}
|
|
|
|
delete sortnodes;
|
|
delete sortcells;
|
|
}
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
void fill_cells_edges(float range)
|
|
{
|
|
// I. Fill All The Cells With The Points Contained By Those Cells
|
|
//----------------------------------------------------------------
|
|
bool full = false;
|
|
for (typename TEdges::iterator eit=mGraph.edges_begin(); eit!=mGraph.edges_end() && !full; eit++)
|
|
{
|
|
TEDGE& edge = (*eit);
|
|
SCell& cell = mCells.get(edge[0], edge[1]);
|
|
|
|
cell.mEdges.push_back(eit.index());
|
|
full = cell.mEdges.full();
|
|
assert(!full || "Cell Filled On Inital Containment"==0);
|
|
}
|
|
|
|
|
|
mCells.scale_by_largest_axis(range);
|
|
|
|
|
|
// II. Go To All Neighboring Cells And Get Them
|
|
//==============================================
|
|
int iRange = (int)(range) + 1;
|
|
typename TCells::riterator rcell;
|
|
typename TCells::riterator rcellend;
|
|
CVec3 cellCenter(0,0,0);
|
|
CVec3 nodeCenter(0,0,0);
|
|
|
|
TSortNodes *sortedges = new TSortNodes;
|
|
SSortNode sortnode;
|
|
|
|
TCells *sortcells = new TCells;
|
|
sortcells->copy_bounds(mCells);
|
|
|
|
|
|
// For Every Cell
|
|
//----------------
|
|
for (int x=0; x<CELLSX; x++)
|
|
{
|
|
for (int y=0; y<CELLSY; y++)
|
|
{
|
|
// Setup the Sortnodes vector And Range Iterators
|
|
//------------------------------------------------
|
|
sortedges->clear();
|
|
|
|
mCells.get_cell_position(x,y, cellCenter.v[0], cellCenter.v[1]);
|
|
|
|
for (rcell = mCells.rangeBegin(iRange,x,y); !rcell.at_end(); rcell++)
|
|
{
|
|
SCell& cell = (*rcell);
|
|
|
|
// Add The Edges To The Sort List
|
|
//--------------------------------
|
|
for (int e=0; e<cell.mEdges.size() && !sortedges->full(); e++)
|
|
{
|
|
int edgeHandle = cell.mEdges[e];
|
|
|
|
TEDGE& edge = mGraph.get_edge(edgeHandle);
|
|
nodeCenter[0] = edge[0];
|
|
nodeCenter[1] = edge[1];
|
|
|
|
sortnode.mHandle = edgeHandle;
|
|
sortnode.mCost = cellCenter.Dist2(nodeCenter);
|
|
sortedges->push_back(sortnode);
|
|
}
|
|
}
|
|
|
|
// Sort The Results
|
|
//------------------
|
|
sortedges->sort();
|
|
|
|
|
|
// Copy The Sorted Nodes Vector Into The Sorted Cell (Of The Sorted Cell Grid)
|
|
//----------------------------------------------------------------------------
|
|
SCell& cell = sortcells->get(x,y);
|
|
cell.mEdges.clear();
|
|
for (int j=0; j<sortedges->size() && j<NODESPERCELL; j++)
|
|
{
|
|
cell.mEdges.push_back((*sortedges)[j].mHandle);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Now Copy The Sorted Results To The Main Cells
|
|
//-----------------------------------------------
|
|
for (int xb=0; xb<CELLSX; xb++)
|
|
{
|
|
for (int yb=0; yb<CELLSY; yb++)
|
|
{
|
|
SCell& scell = sortcells->get(xb,yb);
|
|
SCell& mcell = mCells.get(xb,yb);
|
|
mcell.mEdges = scell.mEdges;
|
|
}
|
|
}
|
|
|
|
delete sortedges;
|
|
delete sortcells;
|
|
}
|
|
|
|
|
|
private:
|
|
TGraph& mGraph;
|
|
TCells mCells;
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
// Remove All Edges
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
void clear_edges()
|
|
{
|
|
mEdges.clear();
|
|
mEdges.alloc(); // Alloc a dummy edge at location 0
|
|
for (int i=0; i<MAXNODES; i++)
|
|
{
|
|
mLinks[i].clear();
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
// Clear Out All Nodes And Edges
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
void clear()
|
|
{
|
|
mNodes.clear();
|
|
mNodes.alloc(); // Alloc A dummy node at location 0
|
|
clear_edges();
|
|
|
|
#if !defined(FINAL_BUILD)
|
|
mSearchCount = 0;
|
|
mSearchMemorySize = 0;
|
|
|
|
mSearchSuccess = 0;
|
|
mSearchSuccessVisited = 0;
|
|
mSearchSuccessPathLen = 0;
|
|
|
|
mSearchFail = 0;
|
|
mSearchFailVisited = 0;
|
|
#endif
|
|
}
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
// Constructor
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
graph_vs()
|
|
{
|
|
clear();
|
|
}
|
|
|
|
~graph_vs()
|
|
{
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
// Number Of Nodes
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
int size_nodes()
|
|
{
|
|
return (mNodes.size()-1);
|
|
}
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
// Access A Node
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
TNODE& get_node(int i)
|
|
{
|
|
return mNodes[i];
|
|
}
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
// Access The Beginning Of The Nodes List
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
typename TNodes::iterator nodes_begin()
|
|
{
|
|
typename TNodes::iterator x = mNodes.begin();
|
|
x++;
|
|
return x;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
// Access The End Of The Nodes List
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
typename TNodes::iterator nodes_end()
|
|
{
|
|
return mNodes.end();
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
// Number Of Edges
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
int size_edges()
|
|
{
|
|
return (mEdges.size()-1);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
// Access An Edge
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
TEDGE& get_edge(int i)
|
|
{
|
|
return mEdges[i];
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
// Get The Edge That Connects nodeA to nodeB
|
|
//
|
|
// NOTE: This is now a linear scan witout the adjacency matrix (worst case 8 depth)
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
int get_edge_across(int nodeA, int nodeB)
|
|
{
|
|
int numNeighbors = mLinks[nodeA].size();
|
|
for (int curNeighbor=0; curNeighbor<numNeighbors; curNeighbor++)
|
|
{
|
|
if (mLinks[nodeA][curNeighbor].mNode==nodeB)
|
|
{
|
|
if (mLinks[nodeA][curNeighbor].mEdge)
|
|
{
|
|
return mLinks[nodeA][curNeighbor].mEdge;
|
|
}
|
|
return -1; // -1 signifies that a link exists with no edge
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
// Access The Beginning Of The Nodes List
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
typename TEdges::iterator edges_begin()
|
|
{
|
|
typename TEdges::iterator x = mEdges.begin();
|
|
x++;
|
|
return x;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
// Access The End Of The Nodes List
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
typename TEdges::iterator edges_end()
|
|
{
|
|
return mEdges.end();
|
|
}
|
|
|
|
int edge_index(const TEDGE& edge)
|
|
{
|
|
return mEdges.pointer_to_index(&edge);
|
|
}
|
|
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
// Get All The Neighbors Of A Given Node
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
TNodeNeighbors& get_node_neighbors(const int nodeA)
|
|
{
|
|
return mLinks[nodeA];
|
|
}
|
|
bool node_has_neighbors(const int nodeA)
|
|
{
|
|
return !(mLinks[nodeA].empty());
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
// Add A Node
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
int insert_node(const TNODE& t)
|
|
{
|
|
int nNode = mNodes.alloc();
|
|
mNodes[nNode] = t;
|
|
return nNode;
|
|
}
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
// Remove Node And Clear Out All Edges Once Connected To This Node
|
|
// Note: This is a fairly expensive operation, not to be done often
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
void remove_node(int node)
|
|
{
|
|
mNodes.free(node);
|
|
|
|
// For Each Link To A Neighboring Node
|
|
//--------------------------------------
|
|
for (int i=0; i<mLinks[node].size(); i++)
|
|
{
|
|
int curNeighbor = mLinks[node][i].mNode;
|
|
int curEdge = mLinks[node][i].mEdge;
|
|
|
|
// Free The Edge
|
|
//---------------
|
|
if (curEdge)
|
|
{
|
|
mEdges.free(curEdge);
|
|
}
|
|
|
|
|
|
// Remove The Edge From Any Recorded Neighbors
|
|
//---------------------------------------------
|
|
TNodeNeighbors& neighbors = mLinks[curNeighbor];
|
|
for (int j=0; j<neighbors.size(); j++)
|
|
{
|
|
if (neighbors[j].mNode==node)
|
|
{
|
|
neighbors.erase_swap(j);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
mLinks[node].clear();
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
// Connect Node With An Edge Object (A->B) if reflexive, also (B->A)
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
int connect_node(const TEDGE& t, int nodeA, int nodeB, bool reflexive=true)
|
|
{
|
|
if (nodeA==nodeB || !nodeA || !nodeB || !mNodes.is_used(nodeA) || !mNodes.is_used(nodeB))
|
|
{
|
|
assert("ERROR: Cannot Connect A and B!"==0);
|
|
return 0;
|
|
}
|
|
|
|
if (mLinks[nodeA].full() || (reflexive && mLinks[nodeB].full()))
|
|
{
|
|
assert("ERROR: Max edges per node exceeded!"==0);
|
|
return 0;
|
|
}
|
|
|
|
if (mEdges.full())
|
|
{
|
|
assert("ERROR: Max edges exceeded!"==0);
|
|
return 0;
|
|
}
|
|
|
|
SNodeNeighbor nNbr;
|
|
|
|
nNbr.mNode = nodeB;
|
|
nNbr.mEdge = mEdges.alloc();
|
|
mEdges[nNbr.mEdge] = t;
|
|
|
|
|
|
mLinks[nodeA].push_back(nNbr);
|
|
if (reflexive)
|
|
{
|
|
nNbr.mNode = nodeA;
|
|
mLinks[nodeB].push_back(nNbr);
|
|
}
|
|
|
|
return nNbr.mEdge;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
// Connect Node Without Allocating An Edge Object (A->B) if reflexive, also (B->A)
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
void connect_node(int nodeA, int nodeB, bool reflexive=true)
|
|
{
|
|
if (nodeA==nodeB || !nodeA || !nodeB || !mNodes.is_used(nodeA) || !mNodes.is_used(nodeB))
|
|
{
|
|
assert("ERROR: Cannot Connect A and B!"==0);
|
|
return;
|
|
}
|
|
|
|
if (mLinks[nodeA].full() || (reflexive && mLinks[nodeB].full()))
|
|
{
|
|
assert("ERROR: Max edges per node exceeded!"==0);
|
|
return;
|
|
}
|
|
|
|
|
|
SNodeNeighbor nNbr;
|
|
|
|
nNbr.mNode = nodeB;
|
|
nNbr.mEdge = 0;
|
|
|
|
|
|
mLinks[nodeA].push_back(nNbr);
|
|
if (reflexive)
|
|
{
|
|
nNbr.mNode = nodeA;
|
|
mLinks[nodeB].push_back(nNbr);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
// Remove Edge
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
void remove_edge(int nodeA, int nodeB, bool reflexive=true)
|
|
{
|
|
if (!mNodes.is_used(nodeA) || (!mNodes.is_used(nodeB) && nodeA==nodeB))
|
|
{
|
|
assert("Unable To Remove Edge"==0);
|
|
return;
|
|
}
|
|
|
|
int linkNum=0;
|
|
|
|
for (linkNum=0; linkNum<mLinks[nodeA].size(); linkNum++)
|
|
{
|
|
if (mLinks[nodeA][linkNum].mNode==nodeB)
|
|
{
|
|
if (mLinks[nodeA][linkNum].mEdge && mEdges.is_used(mLinks[nodeA][linkNum].mEdge))
|
|
{
|
|
mEdges.free(mLinks[nodeA][linkNum].mEdge);
|
|
}
|
|
mLinks[nodeA].erase_swap(linkNum);
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
for (linkNum=0; linkNum<mLinks[nodeB].size(); linkNum++)
|
|
{
|
|
if (mLinks[nodeB][linkNum].mNode==nodeA)
|
|
{
|
|
if (mLinks[nodeB][linkNum].mEdge && mEdges.is_used(mLinks[nodeB][linkNum].mEdge))
|
|
{
|
|
mEdges.free(mLinks[nodeB][linkNum].mEdge);
|
|
}
|
|
mLinks[nodeB].erase_swap(linkNum);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
// Data
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
private:
|
|
TNodes mNodes;
|
|
TEdges mEdges;
|
|
TLinks mLinks;
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////
|
|
// The Handle Heap Class
|
|
//
|
|
// A handle heap is a specially designed heap class which remembers the handle of any
|
|
// value that is inserted. Should the value of an already inserted object change, it is
|
|
// possible to reheapify around that value, no matter where the value lies inside the heap
|
|
// because of the additional memory to convert handle->index.
|
|
//
|
|
// The handle heap is used by A* to sort the open list by cost.
|
|
//
|
|
////////////////////////////////////////////////////////////////////////////////////////
|
|
template<class T>
|
|
class handle_heap
|
|
{
|
|
public:
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
// Constructor
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
handle_heap(TNodes& Nodes) : mNodes(Nodes)
|
|
{
|
|
clear();
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
// Get The Size (The Difference Between The Push And Pop "Pointers")
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
int size() const
|
|
{
|
|
return (mPush);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
// Check To See If The Size Is Zero
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
bool empty() const
|
|
{
|
|
return (!size());
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
// Check To See If The Size Is Full
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
bool full() const
|
|
{
|
|
return (size()==MAXNODES);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
// Empty Out The Entire Heap
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
void clear()
|
|
{
|
|
mPush = 0;
|
|
for (int i=0; i<MAXNODES; i++)
|
|
{
|
|
mHandleToPos[i] = -1;
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
// Check If The Handle Has Been Added To This Heap
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
bool used(int handle)
|
|
{
|
|
return (mHandleToPos[handle]!=-1 && mData[mHandleToPos[handle]].handle()==handle);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
// Get The Data Value At The Top Of The Heap
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
T& top()
|
|
{
|
|
assert(mPush>0); // Don't Try To Look At This If There Is Nothing In Here
|
|
return (mData[0]);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
// Accessor
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
T& operator[](int handle)
|
|
{
|
|
// If You Hit This Assert, Then You Are Asking For Unallocated Data
|
|
//------------------------------------------------------------------
|
|
assert(used(handle));
|
|
return mData[mHandleToPos[handle]];
|
|
}
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
// Add A Value To The Queue
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
void push(const T& nValue)
|
|
{
|
|
assert(size()<MAXNODES);
|
|
|
|
// Get The Handle From The Value And Make Sure We Don't Already Have One Stored There
|
|
//------------------------------------------------------------------------------------
|
|
assert(mHandleToPos[nValue.handle()] == -1);
|
|
|
|
// Add It
|
|
//--------
|
|
mData[mPush] = nValue;
|
|
mHandleToPos[nValue.handle()] = mPush;
|
|
|
|
|
|
|
|
// Fix Possible Heap Inconsistancies
|
|
//-----------------------------------
|
|
reheapify_upward(mPush);
|
|
|
|
mPush++;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
// Remove A Value From The Queue
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
void pop()
|
|
{
|
|
assert(size()>0);
|
|
|
|
mPush--;
|
|
|
|
assert(mHandleToPos[mData[0].handle()]==0);
|
|
|
|
|
|
// Swap The Lowest Element Up To The Spot We Just "Erased"
|
|
//---------------------------------------------------------
|
|
swap(0, mPush);
|
|
|
|
mHandleToPos[mData[mPush].handle()] = -1; // Erase This Handles Marker
|
|
|
|
|
|
// Fix Possible Heap Inconsistancies
|
|
//-----------------------------------
|
|
reheapify_downward(0);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
// Call This Func If The Value At The Given Handle Has Changed & Needs Adjustment
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
void reheapify(int handle)
|
|
{
|
|
assert(used(handle));
|
|
|
|
int Pos = mHandleToPos[handle];
|
|
reheapify_upward(Pos);
|
|
reheapify_downward(Pos);
|
|
}
|
|
|
|
private:
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
// Returns The Location Of Node (i)'s Parent Node (The Parent Node Of Zero Is Zero)
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
int parent(int i)
|
|
{
|
|
return ((i-1)/2);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
// Returns The Location Of Node (i)'s Left Child (The Child Of A Leaf Is The Leaf)
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
int left(int i)
|
|
{
|
|
return (2*i)+1;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
// Returns The Location Of Node (i)'s Right Child (The Child Of A Leaf Is The Leaf)
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
int right(int i)
|
|
{
|
|
return (2*i)+2;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
// Returns The Location Of Largest Child Of Node (i)
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
int largest_child(int i)
|
|
{
|
|
if (left(i)<mPush)
|
|
{
|
|
if (right(i)<mPush)
|
|
{
|
|
return ( (mData[right(i)] < mData[left(i)]) ? (left(i)) : (right(i)) );
|
|
}
|
|
return left(i); // Node i only has a left child, so by default it is the biggest
|
|
}
|
|
return i; // Node i is a leaf, so just return it
|
|
}
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
// Swaps Two Element Locations
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
void swap(int a, int b)
|
|
{
|
|
if (a==b)
|
|
{
|
|
return;
|
|
}
|
|
|
|
assert(a>=0 && b>=0 && a<MAXNODES && b<MAXNODES);
|
|
assert(mHandleToPos[mData[a].handle()]==a);
|
|
assert(mHandleToPos[mData[b].handle()]==b);
|
|
|
|
// Swap Handles
|
|
//--------------
|
|
mHandleToPos[mData[a].handle()] = b;
|
|
mHandleToPos[mData[b].handle()] = a;
|
|
|
|
// Swap Data
|
|
//-----------
|
|
mData[MAXNODES] = mData[a]; // a->TEMP
|
|
mData[a] = mData[b]; // b->a
|
|
mData[b] = mData[MAXNODES]; // TEMP->B
|
|
|
|
assert(mHandleToPos[mData[a].handle()]==a);
|
|
assert(mHandleToPos[mData[b].handle()]==b);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
// Swaps The Data Up The Heap Until It Reaches A Valid Location
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
void reheapify_upward(int Pos)
|
|
{
|
|
while (Pos && mData[parent(Pos)]<mData[Pos])
|
|
{
|
|
swap(parent(Pos), Pos);
|
|
Pos = parent(Pos);
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
// Swaps The Data Down The Heap Until It Reaches A Valid Location
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
void reheapify_downward(int Pos)
|
|
{
|
|
int largestChild = largest_child(Pos);
|
|
while (largestChild!=Pos && mData[Pos]<mData[largestChild])
|
|
{
|
|
swap(largestChild, Pos);
|
|
Pos = largestChild;
|
|
largestChild = largest_child(Pos);
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
// Validate Will Run Through The Heap And Make Sure The Top Element Is Smallest
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
#ifdef _DEBUG
|
|
void validate()
|
|
{
|
|
for (int i=1; i<mPush; i++)
|
|
{
|
|
assert(mData[i]<mData[0]);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
// Data
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
private:
|
|
ratl::array_vs<T, MAXNODES+1> mData; // The Memory (Plus One For Temp Sort)
|
|
ratl::array_vs<int, MAXNODES> mHandleToPos; //
|
|
|
|
int mPush; // Address Of Next Add Location
|
|
|
|
TNodes& mNodes;
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
// A Search Node
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
class search_node
|
|
{
|
|
public:
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Constructors
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
search_node(int Node=-1, int Parent=-1) :
|
|
mNode(Node),
|
|
mParentVisit(Parent),
|
|
mCostToGoal(-1),
|
|
mCostFromStart(0)
|
|
{}
|
|
search_node(const search_node& t) :
|
|
mNode(t.mNode),
|
|
mParentVisit(t.mParentVisit),
|
|
mCostToGoal(t.mCostToGoal),
|
|
mCostFromStart(t.mCostFromStart)
|
|
{}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Assignment Operator
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
void operator=(const search_node& t)
|
|
{
|
|
mNode = (t.mNode);
|
|
mParentVisit = (t.mParentVisit);
|
|
mCostToGoal = (t.mCostToGoal);
|
|
mCostFromStart = (t.mCostFromStart);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
int handle() const
|
|
{
|
|
return mNode;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
float cost_estimate() const
|
|
{
|
|
return mCostFromStart+mCostToGoal;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
bool operator< (const search_node& t) const
|
|
{
|
|
return (cost_estimate() > t.cost_estimate());
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Data
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
int mNode; // Which Node Is This (Index To Pool mNodes)
|
|
int mParentVisit; // Which Search Node (In Visited)
|
|
|
|
float mCostToGoal; // How Far From The Start Of The Search Are We?
|
|
float mCostFromStart; // How Far From The End Of The Search Are We?
|
|
};
|
|
|
|
|
|
|
|
public:
|
|
typedef ratl::vector_vs<search_node, MAXNODES> TVisited;
|
|
typedef ratl::array_vs<int, MAXNODES> TVisitedHandles;
|
|
typedef ratl::bits_vs<MAXNODES> TNodeState;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
// The Search Data Object
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
class search
|
|
{
|
|
public:
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Constructor
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
search(int nodeStart=0, int nodeEnd=0) :
|
|
mStart(nodeStart),
|
|
mEnd(nodeEnd)
|
|
{
|
|
clear(true, false);
|
|
}
|
|
|
|
enum
|
|
{
|
|
NULL_NODE = 0,
|
|
NULL_NODE_INDEX = -1,
|
|
NULL_VISIT_INDEX = -1,
|
|
NULL_COST = -1,
|
|
};
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Reset All The Search Parameters
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
void clear(bool clearNodesPtr=true, bool clearStartAndEnd=true)
|
|
{
|
|
// Reset All Data
|
|
//----------------
|
|
mClosed.clear();
|
|
mVisited.clear();
|
|
mNodeIndexToVisited.fill(NULL_VISIT_INDEX);
|
|
|
|
|
|
mNext.mNode = NULL_NODE;
|
|
mNext.mParentVisit = NULL_VISIT_INDEX;
|
|
mNext.mCostToGoal = NULL_COST;
|
|
mNext.mCostFromStart= NULL_COST;
|
|
|
|
mPrevIndex = NULL_NODE_INDEX;
|
|
mNextIndex = NULL_NODE_INDEX;
|
|
|
|
mPathVisit = NULL_VISIT_INDEX;
|
|
|
|
if (clearNodesPtr)
|
|
{
|
|
mNodesPtr = 0;
|
|
}
|
|
|
|
// Clear Out The Start And End Handles
|
|
//-------------------------------------
|
|
if (clearStartAndEnd)
|
|
{
|
|
mStart = NULL_NODE;
|
|
mEnd = NULL_NODE;
|
|
}
|
|
|
|
// Otherwise, We Can Start The Next Index
|
|
//----------------------------------------
|
|
else if (mNodesPtr && mStart!=NULL_NODE && mEnd!=NULL_NODE)
|
|
{
|
|
mNextIndex = mStart;
|
|
}
|
|
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Call This Function To Clear Out Everything EXCEPT Start And End Points
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
void reset()
|
|
{
|
|
clear(false, false);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Mark This Node As Closed
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
void close(int node)
|
|
{
|
|
mClosed.set_bit(node);
|
|
}
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Mark This Node As Closed
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
void close(const TNodeState& AllNodesToClose)
|
|
{
|
|
mClosed |= AllNodesToClose;
|
|
}
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Return True If We Have Found The Node We Were Searching For
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
bool success()
|
|
{
|
|
if (mEnd && mPrevIndex!=NULL_NODE_INDEX)
|
|
{
|
|
return (mPrevIndex==mEnd);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Get An Index To The Beginning Of The Path
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
void path_begin()
|
|
{
|
|
if (success())
|
|
{
|
|
mPathVisit = (mVisited.size()-1);
|
|
}
|
|
else
|
|
{
|
|
mPathVisit = NULL_VISIT_INDEX;
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Check ForThe End Of The Path (Use In A for() Loop)
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
bool path_end()
|
|
{
|
|
return (mPathVisit==NULL_VISIT_INDEX);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Index Path Inc (Get The Old Path Node's Parent)
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
void path_inc()
|
|
{
|
|
assert(mPathVisit!=NULL_VISIT_INDEX);
|
|
mPathVisit = mVisited[mPathVisit].mParentVisit;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Get the node handle of the current node
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
int path_at()
|
|
{
|
|
assert(mPathVisit!=NULL_VISIT_INDEX);
|
|
return mVisited[mPathVisit].mNode;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// The Total Cost Of The Path
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
float path_cost()
|
|
{
|
|
if (success())
|
|
{
|
|
return (mVisited[(mVisited.size()-1)].mCostFromStart);
|
|
}
|
|
return NULL_COST;
|
|
}
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// How Many Nodes Were Looked At In This Search
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
int num_visited()
|
|
{
|
|
return mVisited.size();
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Get An Iterator To The Beginning Of The Visited Pool
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
typename TVisited::iterator visited_begin()
|
|
{
|
|
return mVisited.begin();
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Get An Iterator To The End Of The Visited Pool
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
typename TVisited::iterator visited_end()
|
|
{
|
|
return mVisited.end();
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
private:
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Start At The First NON Closed Node
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
void setup(TNodes* nodesPtr)
|
|
{
|
|
mNodesPtr = nodesPtr;
|
|
clear(false, false);
|
|
}
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Pretend the next index is open, probably because we found a shorter route
|
|
// than the first time it was closed, and want it back on the open list
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
void reopen_next_index()
|
|
{
|
|
assert(mNextIndex!=NULL_NODE_INDEX);
|
|
|
|
mNodeIndexToVisited[mNextIndex] = NULL_VISIT_INDEX;
|
|
mClosed.clear_bit(mNextIndex);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// The current estimated cost of reaching a give node, if the node was never
|
|
// visited, but IS closed, it returns NULL cost
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
float visited_cost(int NodeIndex)
|
|
{
|
|
int VisitedIndex = mNodeIndexToVisited[NodeIndex];
|
|
if (VisitedIndex!=NULL_VISIT_INDEX)
|
|
{
|
|
return mVisited[VisitedIndex].cost_estimate();
|
|
}
|
|
return NULL_COST;
|
|
}
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Add This Search Node To The Visited List And Keep Track Of It For Later
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
void visit(search_node& t)
|
|
{
|
|
assert(mNodesPtr!=0);
|
|
mPrevIndex = t.mNode;
|
|
|
|
// Add It To The Visited List, And Mark The Location In The Node Index Array
|
|
//---------------------------------------------------------------------------
|
|
mVisited.push_back(t);
|
|
mNodeIndexToVisited[mPrevIndex] = (mVisited.size()-1);
|
|
mClosed.set_bit(mPrevIndex);
|
|
|
|
// Setup Our Next Node To Know It Came From The Last Location In The Visited Vector
|
|
//----------------------------------------------------------------------------------
|
|
mNext.mParentVisit = (mVisited.size()-1);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Check To See If The Next Index Has Already Been Closed
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
bool next_index_closed()
|
|
{
|
|
assert(mNextIndex!=NULL_NODE_INDEX);
|
|
|
|
return (mClosed.get_bit(mNextIndex));
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// The Simple "Get Next" Just Converts The Next Index To A Handle In mNext
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
search_node& get_next()
|
|
{
|
|
assert(mNodesPtr);
|
|
assert(mNextIndex!=NULL_NODE_INDEX);
|
|
|
|
mClosed.set_bit(mNextIndex);
|
|
|
|
mNext.mNode = mNextIndex;
|
|
mNext.mCostToGoal = 0;
|
|
mNext.mCostFromStart = 0;
|
|
|
|
return mNext;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// This "Get Next" Function Is For A* and Sets Up THe Costs Of The Search Node
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
search_node& get_next(const user& suser, TEDGE& edge_parent_to_next)
|
|
{
|
|
assert(mNodesPtr);
|
|
assert(mNextIndex!=NULL_NODE_INDEX);
|
|
|
|
//NOTE: we do not do a "mClosed.set_bit(mNextIndex);" here because A* only closes nodes that are visited
|
|
|
|
mNext.mNode = mNextIndex;
|
|
mNext.mCostToGoal = suser.cost((*mNodesPtr)[mNext.mNode], (*mNodesPtr)[mEnd]);
|
|
mNext.mCostFromStart = suser.cost(edge_parent_to_next, (*mNodesPtr)[mNext.mNode]);
|
|
|
|
if (mNext.mParentVisit!=NULL_VISIT_INDEX)
|
|
{
|
|
mNext.mCostFromStart += mVisited[mNext.mParentVisit].mCostFromStart;
|
|
}
|
|
return mNext;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Parameters (Start And End Are External Handles)
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
public:
|
|
int mStart;
|
|
int mEnd;
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Data
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
private:
|
|
TNodes* mNodesPtr;
|
|
|
|
int mPathVisit;
|
|
int mPrevIndex;
|
|
int mNextIndex;
|
|
search_node mNext;
|
|
|
|
ratl::bits_vs<MAXNODES> mClosed;
|
|
TVisited mVisited;
|
|
TVisitedHandles mNodeIndexToVisited;
|
|
|
|
friend class graph_vs<TNODE, MAXNODES, TEDGE, MAXEDGES, MAXNODENEIGHBORS>;
|
|
};
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
// Setup The Search Data
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
void setup_search(search& sdata)
|
|
{
|
|
sdata.setup(&mNodes);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
// A* Search
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
void astar(search& sdata, const user& suser)
|
|
{
|
|
// Make Sure The Nodes We Are Searching For Exist
|
|
//------------------------------------------------
|
|
assert(MAXEDGES>1);
|
|
sdata.setup(&mNodes);
|
|
|
|
// Allocate Our Data Structures
|
|
//------------------------------
|
|
handle_heap<search_node> open(mNodes);
|
|
int curNeighbor;
|
|
int curEdge;
|
|
float curCost;
|
|
|
|
// Run Through The Open List
|
|
//---------------------------
|
|
open.push(sdata.get_next());
|
|
while (!open.empty() && !sdata.success())
|
|
{
|
|
sdata.visit(open.top());
|
|
open.pop();
|
|
|
|
// Search Through The Non Closed Nodes Edges
|
|
//-------------------------------------------
|
|
TNodeNeighbors& curNeighbors = get_node_neighbors(sdata.mPrevIndex);
|
|
for (curNeighbor=0; curNeighbor<curNeighbors.size(); curNeighbor++)
|
|
{
|
|
curEdge = curNeighbors[curNeighbor].mEdge;
|
|
if (curEdge==-1 || suser.is_valid(mEdges[curEdge], sdata.mEnd))
|
|
{
|
|
sdata.mNextIndex = curNeighbors[curNeighbor].mNode;
|
|
search_node& snode = sdata.get_next(suser, mEdges[curEdge]);
|
|
curCost = snode.cost_estimate();
|
|
|
|
// Is It Already In The Open List?
|
|
//---------------------------------
|
|
if (open.used(snode.mNode))
|
|
{
|
|
if (curCost<(open[snode.mNode]).cost_estimate())
|
|
{
|
|
open[snode.mNode] = snode; // Use This As The Node (With New Parent & Cost)
|
|
open.reheapify(snode.mNode); // Resort the node in the heap
|
|
}
|
|
}
|
|
|
|
// Is It Already In The Closed List?
|
|
//-----------------------------------
|
|
else if (sdata.next_index_closed())
|
|
{
|
|
if (curCost < sdata.visited_cost(snode.mNode))
|
|
{
|
|
sdata.reopen_next_index(); // Pull it off the closed list
|
|
open.push(snode); // Add it to open
|
|
}
|
|
}
|
|
|
|
// It Must Be A Whole New Node
|
|
//------------------------------
|
|
else
|
|
{
|
|
open.push(snode);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
#if !defined(FINAL_BUILD)
|
|
mSearchCount++;
|
|
mSearchMemorySize += (sizeof(sdata) + sizeof(suser) + sizeof(open));
|
|
|
|
if (sdata.success())
|
|
{
|
|
mSearchSuccess++;
|
|
mSearchSuccessVisited += sdata.num_visited();
|
|
for (sdata.path_begin(); !sdata.path_end(); sdata.path_inc())
|
|
{
|
|
mSearchSuccessPathLen ++;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
mSearchFail++;
|
|
mSearchFailVisited += sdata.num_visited();
|
|
}
|
|
#endif
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
// Breadth First Search (Use Queue Open List)
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
void bfs(search& sdata)
|
|
{
|
|
sdata.setup(&mNodes);
|
|
|
|
// Allocate Our Data Structures
|
|
//------------------------------
|
|
ratl::queue_vs<search_node, MAXNODES> open;
|
|
|
|
// Run Through The Open List
|
|
//---------------------------
|
|
open.push(sdata.get_next());
|
|
while (open.size()>0 && !sdata.success())
|
|
{
|
|
sdata.visit(open.top());
|
|
open.pop();
|
|
|
|
|
|
// Search Through The Non Closed Nodes Edges
|
|
//-------------------------------------------
|
|
for (sdata.mNextIndex=0; sdata.mNextIndex<MAXNODES; sdata.mNextIndex++)
|
|
{
|
|
if (!sdata.next_index_closed())
|
|
{
|
|
if (get_edge_across(sdata.mPrevIndex, sdata.mNextIndex))
|
|
{
|
|
open.push(sdata.get_next());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#if !defined(FINAL_BUILD)
|
|
mSearchCount++;
|
|
mSearchMemorySize += (sizeof(sdata) + sizeof(open));
|
|
|
|
if (sdata.success())
|
|
{
|
|
mSearchSuccess++;
|
|
mSearchSuccessVisited += sdata.num_visited();
|
|
}
|
|
else
|
|
{
|
|
mSearchFail++;
|
|
mSearchFailVisited += sdata.num_visited();
|
|
}
|
|
#endif
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
// Depth First Search (Use Stack Open List)
|
|
////////////////////////////////////////////////////////////////////////////////////
|
|
void dfs(search& sdata)
|
|
{
|
|
sdata.setup(&mNodes);
|
|
|
|
// Allocate Our Data Structures
|
|
//------------------------------
|
|
ratl::stack_vs<search_node, MAXNODES> open;
|
|
|
|
// Run Through The Open List
|
|
//---------------------------
|
|
open.push(sdata.get_next());
|
|
while (open.size()>0 && !sdata.success())
|
|
{
|
|
sdata.visit(open.top());
|
|
open.pop();
|
|
|
|
|
|
// Search Through The Non Closed Nodes Edges
|
|
//-------------------------------------------
|
|
for (sdata.mNextIndex=0; sdata.mNextIndex<MAXNODES; sdata.mNextIndex++)
|
|
{
|
|
if (!sdata.next_index_closed())
|
|
{
|
|
if (get_edge_across(sdata.mPrevIndex, sdata.mNextIndex))
|
|
{
|
|
open.push(sdata.get_next());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#if !defined(FINAL_BUILD)
|
|
mSearchCount++;
|
|
mSearchMemorySize += (sizeof(sdata) + sizeof(open));
|
|
|
|
if (sdata.success())
|
|
{
|
|
mSearchSuccess++;
|
|
mSearchSuccessVisited += sdata.num_visited();
|
|
}
|
|
else
|
|
{
|
|
mSearchFail++;
|
|
mSearchFailVisited += sdata.num_visited();
|
|
}
|
|
#endif
|
|
}
|
|
|
|
|
|
|
|
#if !defined(FINAL_BUILD)
|
|
int mSearchCount;
|
|
int mSearchMemorySize;
|
|
|
|
int mSearchSuccess;
|
|
int mSearchSuccessVisited;
|
|
int mSearchSuccessPathLen;
|
|
|
|
int mSearchFail;
|
|
int mSearchFailVisited;
|
|
|
|
void ProfileSpew()
|
|
{
|
|
ProfilePrint("");
|
|
ProfilePrint("");
|
|
ProfilePrint("--------------------------------------------------------");
|
|
ProfilePrint("RAVEN STANDARD LIBRARY - COMPUTATIONAL GEOMETRY MODULE");
|
|
ProfilePrint(" Graph Profile Results ");
|
|
ProfilePrint("--------------------------------------------------------");
|
|
ProfilePrint("");
|
|
ProfilePrint("GRAPH SIZE (Bytes): (%d) (KiloBytes): (%5.3f) MeggaBytes(%3.3f)",
|
|
(sizeof(*this)),
|
|
((float)(sizeof(*this))/1024.0f),
|
|
((float)(sizeof(*this))/1048576.0f)
|
|
);
|
|
ProfilePrint("GRAPH COUNT: (%d) Nodes (%d) Edges", mNodes.size(), mEdges.size());
|
|
if (mNodes.size())
|
|
{
|
|
ProfilePrint("GRAPH COUNT: (%f) Edges/Node", (float)mEdges.size()/(float)mNodes.size());
|
|
}
|
|
ProfilePrint("");
|
|
if (mSearchCount)
|
|
{
|
|
ProfilePrint("SEARCH: (%d) Searches (%f) AveSize", mSearchCount, ((float)mSearchMemorySize/(float)mSearchCount));
|
|
if (mSearchSuccess)
|
|
{
|
|
ProfilePrint("SEARCH: (%d) Successes (%f) AveVisited (%f) AvePathLen",
|
|
mSearchSuccess,
|
|
((float)mSearchSuccessVisited/(float)mSearchSuccess),
|
|
((float)mSearchSuccessPathLen/(float)mSearchSuccess)
|
|
);
|
|
}
|
|
if (mSearchFail)
|
|
{
|
|
ProfilePrint("SEARCH: (%d) Failures (%f) AveVisited", mSearchFail, ((float)mSearchFailVisited/(float)mSearchFail));
|
|
}
|
|
}
|
|
ProfilePrint("");
|
|
};
|
|
#endif
|
|
};
|
|
|
|
}
|
|
#endif
|