mirror of
https://github.com/DrBeef/JKXR.git
synced 2024-12-11 13:11:58 +00:00
4597b03873
Opens in Android Studio but haven't even tried to build it yet (it won't.. I know that much!)
457 lines
16 KiB
C
457 lines
16 KiB
C
/**
|
|
* OpenAL cross platform audio library
|
|
* Copyright (C) 2011 by Chris Robinson
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Library General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Library General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Library General Public
|
|
* License along with this library; if not, write to the
|
|
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
* Boston, MA 02111-1307, USA.
|
|
* Or go to http://www.gnu.org/copyleft/lgpl.html
|
|
*/
|
|
|
|
#include "config.h"
|
|
|
|
#include <stdlib.h>
|
|
#include <ctype.h>
|
|
|
|
#include "AL/al.h"
|
|
#include "AL/alc.h"
|
|
#include "alMain.h"
|
|
#include "alSource.h"
|
|
|
|
|
|
static const ALchar magicMarker[8] = "MinPHR00";
|
|
|
|
#define HRIR_COUNT 828
|
|
#define ELEV_COUNT 19
|
|
|
|
static const ALushort evOffset[ELEV_COUNT] = { 0, 1, 13, 37, 73, 118, 174, 234, 306, 378, 450, 522, 594, 654, 710, 755, 791, 815, 827 };
|
|
static const ALubyte azCount[ELEV_COUNT] = { 1, 12, 24, 36, 45, 56, 60, 72, 72, 72, 72, 72, 60, 56, 45, 36, 24, 12, 1 };
|
|
|
|
|
|
static const struct Hrtf {
|
|
ALuint sampleRate;
|
|
ALshort coeffs[HRIR_COUNT][HRIR_LENGTH];
|
|
ALubyte delays[HRIR_COUNT];
|
|
} DefaultHrtf = {
|
|
44100,
|
|
#include "hrtf_tables.inc"
|
|
};
|
|
|
|
static struct Hrtf *LoadedHrtfs = NULL;
|
|
static ALuint NumLoadedHrtfs = 0;
|
|
|
|
|
|
// Calculate the elevation indices given the polar elevation in radians.
|
|
// This will return two indices between 0 and (ELEV_COUNT-1) and an
|
|
// interpolation factor between 0.0 and 1.0.
|
|
static void CalcEvIndices(ALfloat ev, ALuint *evidx, ALfloat *evmu)
|
|
{
|
|
ev = (F_PI_2 + ev) * (ELEV_COUNT-1) / F_PI;
|
|
evidx[0] = fastf2u(ev);
|
|
evidx[1] = minu(evidx[0] + 1, ELEV_COUNT-1);
|
|
*evmu = ev - evidx[0];
|
|
}
|
|
|
|
// Calculate the azimuth indices given the polar azimuth in radians. This
|
|
// will return two indices between 0 and (azCount [ei] - 1) and an
|
|
// interpolation factor between 0.0 and 1.0.
|
|
static void CalcAzIndices(ALuint evidx, ALfloat az, ALuint *azidx, ALfloat *azmu)
|
|
{
|
|
az = (F_PI*2.0f + az) * azCount[evidx] / (F_PI*2.0f);
|
|
azidx[0] = fastf2u(az) % azCount[evidx];
|
|
azidx[1] = (azidx[0] + 1) % azCount[evidx];
|
|
*azmu = az - aluFloor(az);
|
|
}
|
|
|
|
// Calculates the normalized HRTF transition factor (delta) from the changes
|
|
// in gain and listener to source angle between updates. The result is a
|
|
// normalized delta factor than can be used to calculate moving HRIR stepping
|
|
// values.
|
|
ALfloat CalcHrtfDelta(ALfloat oldGain, ALfloat newGain, const ALfloat olddir[3], const ALfloat newdir[3])
|
|
{
|
|
ALfloat gainChange, angleChange, change;
|
|
|
|
// Calculate the normalized dB gain change.
|
|
newGain = maxf(newGain, 0.0001f);
|
|
oldGain = maxf(oldGain, 0.0001f);
|
|
gainChange = aluFabs(aluLog10(newGain / oldGain) / aluLog10(0.0001f));
|
|
|
|
// Calculate the normalized listener to source angle change when there is
|
|
// enough gain to notice it.
|
|
angleChange = 0.0f;
|
|
if(gainChange > 0.0001f || newGain > 0.0001f)
|
|
{
|
|
// No angle change when the directions are equal or degenerate (when
|
|
// both have zero length).
|
|
if(newdir[0]-olddir[0] || newdir[1]-olddir[1] || newdir[2]-olddir[2])
|
|
angleChange = aluAcos(olddir[0]*newdir[0] +
|
|
olddir[1]*newdir[1] +
|
|
olddir[2]*newdir[2]) / F_PI;
|
|
|
|
}
|
|
|
|
// Use the largest of the two changes for the delta factor, and apply a
|
|
// significance shaping function to it.
|
|
change = maxf(angleChange, gainChange) * 2.0f;
|
|
return minf(change, 1.0f);
|
|
}
|
|
|
|
// Calculates static HRIR coefficients and delays for the given polar
|
|
// elevation and azimuth in radians. Linear interpolation is used to
|
|
// increase the apparent resolution of the HRIR dataset. The coefficients
|
|
// are also normalized and attenuated by the specified gain.
|
|
void GetLerpedHrtfCoeffs(const struct Hrtf *Hrtf, ALfloat elevation, ALfloat azimuth, ALfloat gain, ALfloat (*coeffs)[2], ALuint *delays)
|
|
{
|
|
ALuint evidx[2], azidx[2];
|
|
ALfloat mu[3];
|
|
ALuint lidx[4], ridx[4];
|
|
ALuint i;
|
|
|
|
// Claculate elevation indices and interpolation factor.
|
|
CalcEvIndices(elevation, evidx, &mu[2]);
|
|
|
|
// Calculate azimuth indices and interpolation factor for the first
|
|
// elevation.
|
|
CalcAzIndices(evidx[0], azimuth, azidx, &mu[0]);
|
|
|
|
// Calculate the first set of linear HRIR indices for left and right
|
|
// channels.
|
|
lidx[0] = evOffset[evidx[0]] + azidx[0];
|
|
lidx[1] = evOffset[evidx[0]] + azidx[1];
|
|
ridx[0] = evOffset[evidx[0]] + ((azCount[evidx[0]]-azidx[0]) % azCount[evidx[0]]);
|
|
ridx[1] = evOffset[evidx[0]] + ((azCount[evidx[0]]-azidx[1]) % azCount[evidx[0]]);
|
|
|
|
// Calculate azimuth indices and interpolation factor for the second
|
|
// elevation.
|
|
CalcAzIndices(evidx[1], azimuth, azidx, &mu[1]);
|
|
|
|
// Calculate the second set of linear HRIR indices for left and right
|
|
// channels.
|
|
lidx[2] = evOffset[evidx[1]] + azidx[0];
|
|
lidx[3] = evOffset[evidx[1]] + azidx[1];
|
|
ridx[2] = evOffset[evidx[1]] + ((azCount[evidx[1]]-azidx[0]) % azCount[evidx[1]]);
|
|
ridx[3] = evOffset[evidx[1]] + ((azCount[evidx[1]]-azidx[1]) % azCount[evidx[1]]);
|
|
|
|
// Calculate the normalized and attenuated HRIR coefficients using linear
|
|
// interpolation when there is enough gain to warrant it. Zero the
|
|
// coefficients if gain is too low.
|
|
if(gain > 0.0001f)
|
|
{
|
|
gain *= 1.0f/32767.0f;
|
|
for(i = 0;i < HRIR_LENGTH;i++)
|
|
{
|
|
coeffs[i][0] = lerp(lerp(Hrtf->coeffs[lidx[0]][i], Hrtf->coeffs[lidx[1]][i], mu[0]),
|
|
lerp(Hrtf->coeffs[lidx[2]][i], Hrtf->coeffs[lidx[3]][i], mu[1]),
|
|
mu[2]) * gain;
|
|
coeffs[i][1] = lerp(lerp(Hrtf->coeffs[ridx[0]][i], Hrtf->coeffs[ridx[1]][i], mu[0]),
|
|
lerp(Hrtf->coeffs[ridx[2]][i], Hrtf->coeffs[ridx[3]][i], mu[1]),
|
|
mu[2]) * gain;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for(i = 0;i < HRIR_LENGTH;i++)
|
|
{
|
|
coeffs[i][0] = 0.0f;
|
|
coeffs[i][1] = 0.0f;
|
|
}
|
|
}
|
|
|
|
// Calculate the HRIR delays using linear interpolation.
|
|
delays[0] = fastf2u(lerp(lerp(Hrtf->delays[lidx[0]], Hrtf->delays[lidx[1]], mu[0]),
|
|
lerp(Hrtf->delays[lidx[2]], Hrtf->delays[lidx[3]], mu[1]),
|
|
mu[2]) * 65536.0f);
|
|
delays[1] = fastf2u(lerp(lerp(Hrtf->delays[ridx[0]], Hrtf->delays[ridx[1]], mu[0]),
|
|
lerp(Hrtf->delays[ridx[2]], Hrtf->delays[ridx[3]], mu[1]),
|
|
mu[2]) * 65536.0f);
|
|
}
|
|
|
|
// Calculates the moving HRIR target coefficients, target delays, and
|
|
// stepping values for the given polar elevation and azimuth in radians.
|
|
// Linear interpolation is used to increase the apparent resolution of the
|
|
// HRIR dataset. The coefficients are also normalized and attenuated by the
|
|
// specified gain. Stepping resolution and count is determined using the
|
|
// given delta factor between 0.0 and 1.0.
|
|
ALuint GetMovingHrtfCoeffs(const struct Hrtf *Hrtf, ALfloat elevation, ALfloat azimuth, ALfloat gain, ALfloat delta, ALint counter, ALfloat (*coeffs)[2], ALuint *delays, ALfloat (*coeffStep)[2], ALint *delayStep)
|
|
{
|
|
ALuint evidx[2], azidx[2];
|
|
ALuint lidx[4], ridx[4];
|
|
ALfloat left, right;
|
|
ALfloat mu[3];
|
|
ALfloat step;
|
|
ALuint i;
|
|
|
|
// Claculate elevation indices and interpolation factor.
|
|
CalcEvIndices(elevation, evidx, &mu[2]);
|
|
|
|
// Calculate azimuth indices and interpolation factor for the first
|
|
// elevation.
|
|
CalcAzIndices(evidx[0], azimuth, azidx, &mu[0]);
|
|
|
|
// Calculate the first set of linear HRIR indices for left and right
|
|
// channels.
|
|
lidx[0] = evOffset[evidx[0]] + azidx[0];
|
|
lidx[1] = evOffset[evidx[0]] + azidx[1];
|
|
ridx[0] = evOffset[evidx[0]] + ((azCount[evidx[0]]-azidx[0]) % azCount[evidx[0]]);
|
|
ridx[1] = evOffset[evidx[0]] + ((azCount[evidx[0]]-azidx[1]) % azCount[evidx[0]]);
|
|
|
|
// Calculate azimuth indices and interpolation factor for the second
|
|
// elevation.
|
|
CalcAzIndices(evidx[1], azimuth, azidx, &mu[1]);
|
|
|
|
// Calculate the second set of linear HRIR indices for left and right
|
|
// channels.
|
|
lidx[2] = evOffset[evidx[1]] + azidx[0];
|
|
lidx[3] = evOffset[evidx[1]] + azidx[1];
|
|
ridx[2] = evOffset[evidx[1]] + ((azCount[evidx[1]]-azidx[0]) % azCount[evidx[1]]);
|
|
ridx[3] = evOffset[evidx[1]] + ((azCount[evidx[1]]-azidx[1]) % azCount[evidx[1]]);
|
|
|
|
// Calculate the stepping parameters.
|
|
delta = maxf(aluFloor(delta*(Hrtf->sampleRate*0.015f) + 0.5f), 1.0f);
|
|
step = 1.0f / delta;
|
|
|
|
// Calculate the normalized and attenuated target HRIR coefficients using
|
|
// linear interpolation when there is enough gain to warrant it. Zero
|
|
// the target coefficients if gain is too low. Then calculate the
|
|
// coefficient stepping values using the target and previous running
|
|
// coefficients.
|
|
if(gain > 0.0001f)
|
|
{
|
|
gain *= 1.0f/32767.0f;
|
|
for(i = 0;i < HRIR_LENGTH;i++)
|
|
{
|
|
left = coeffs[i][0] - (coeffStep[i][0] * counter);
|
|
right = coeffs[i][1] - (coeffStep[i][1] * counter);
|
|
|
|
coeffs[i][0] = lerp(lerp(Hrtf->coeffs[lidx[0]][i], Hrtf->coeffs[lidx[1]][i], mu[0]),
|
|
lerp(Hrtf->coeffs[lidx[2]][i], Hrtf->coeffs[lidx[3]][i], mu[1]),
|
|
mu[2]) * gain;
|
|
coeffs[i][1] = lerp(lerp(Hrtf->coeffs[ridx[0]][i], Hrtf->coeffs[ridx[1]][i], mu[0]),
|
|
lerp(Hrtf->coeffs[ridx[2]][i], Hrtf->coeffs[ridx[3]][i], mu[1]),
|
|
mu[2]) * gain;
|
|
|
|
coeffStep[i][0] = step * (coeffs[i][0] - left);
|
|
coeffStep[i][1] = step * (coeffs[i][1] - right);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for(i = 0;i < HRIR_LENGTH;i++)
|
|
{
|
|
left = coeffs[i][0] - (coeffStep[i][0] * counter);
|
|
right = coeffs[i][1] - (coeffStep[i][1] * counter);
|
|
|
|
coeffs[i][0] = 0.0f;
|
|
coeffs[i][1] = 0.0f;
|
|
|
|
coeffStep[i][0] = step * -left;
|
|
coeffStep[i][1] = step * -right;
|
|
}
|
|
}
|
|
|
|
// Calculate the HRIR delays using linear interpolation. Then calculate
|
|
// the delay stepping values using the target and previous running
|
|
// delays.
|
|
left = (ALfloat)(delays[0] - (delayStep[0] * counter));
|
|
right = (ALfloat)(delays[1] - (delayStep[1] * counter));
|
|
|
|
delays[0] = fastf2u(lerp(lerp(Hrtf->delays[lidx[0]], Hrtf->delays[lidx[1]], mu[0]),
|
|
lerp(Hrtf->delays[lidx[2]], Hrtf->delays[lidx[3]], mu[1]),
|
|
mu[2]) * 65536.0f);
|
|
delays[1] = fastf2u(lerp(lerp(Hrtf->delays[ridx[0]], Hrtf->delays[ridx[1]], mu[0]),
|
|
lerp(Hrtf->delays[ridx[2]], Hrtf->delays[ridx[3]], mu[1]),
|
|
mu[2]) * 65536.0f);
|
|
|
|
delayStep[0] = fastf2i(step * (delays[0] - left));
|
|
delayStep[1] = fastf2i(step * (delays[1] - right));
|
|
|
|
// The stepping count is the number of samples necessary for the HRIR to
|
|
// complete its transition. The mixer will only apply stepping for this
|
|
// many samples.
|
|
return fastf2u(delta);
|
|
}
|
|
|
|
const struct Hrtf *GetHrtf(ALCdevice *device)
|
|
{
|
|
if(device->FmtChans == DevFmtStereo)
|
|
{
|
|
ALuint i;
|
|
for(i = 0;i < NumLoadedHrtfs;i++)
|
|
{
|
|
if(device->Frequency == LoadedHrtfs[i].sampleRate)
|
|
return &LoadedHrtfs[i];
|
|
}
|
|
if(device->Frequency == DefaultHrtf.sampleRate)
|
|
return &DefaultHrtf;
|
|
}
|
|
ERR("Incompatible format: %s %uhz\n",
|
|
DevFmtChannelsString(device->FmtChans), device->Frequency);
|
|
return NULL;
|
|
}
|
|
|
|
void InitHrtf(void)
|
|
{
|
|
char *fnamelist=NULL, *next=NULL;
|
|
const char *val;
|
|
|
|
if(ConfigValueStr(NULL, "hrtf_tables", &val))
|
|
next = fnamelist = strdup(val);
|
|
while(next && *next)
|
|
{
|
|
const ALubyte maxDelay = SRC_HISTORY_LENGTH-1;
|
|
struct Hrtf newdata;
|
|
ALboolean failed;
|
|
ALchar magic[9];
|
|
ALsizei i, j;
|
|
char *fname;
|
|
FILE *f;
|
|
|
|
fname = next;
|
|
next = strchr(fname, ',');
|
|
if(next)
|
|
{
|
|
while(next != fname)
|
|
{
|
|
next--;
|
|
if(!isspace(*next))
|
|
{
|
|
*(next++) = '\0';
|
|
break;
|
|
}
|
|
}
|
|
while(isspace(*next) || *next == ',')
|
|
next++;
|
|
}
|
|
|
|
if(!fname[0])
|
|
continue;
|
|
TRACE("Loading %s\n", fname);
|
|
f = fopen(fname, "rb");
|
|
if(f == NULL)
|
|
{
|
|
ERR("Could not open %s\n", fname);
|
|
continue;
|
|
}
|
|
|
|
failed = AL_FALSE;
|
|
if(fread(magic, 1, sizeof(magicMarker), f) != sizeof(magicMarker))
|
|
{
|
|
ERR("Failed to read magic marker\n");
|
|
failed = AL_TRUE;
|
|
}
|
|
else if(memcmp(magic, magicMarker, sizeof(magicMarker)) != 0)
|
|
{
|
|
magic[8] = 0;
|
|
ERR("Invalid magic marker: \"%s\"\n", magic);
|
|
failed = AL_TRUE;
|
|
}
|
|
|
|
if(!failed)
|
|
{
|
|
ALushort hrirCount, hrirSize;
|
|
ALubyte evCount;
|
|
|
|
newdata.sampleRate = fgetc(f);
|
|
newdata.sampleRate |= fgetc(f)<<8;
|
|
newdata.sampleRate |= fgetc(f)<<16;
|
|
newdata.sampleRate |= fgetc(f)<<24;
|
|
|
|
hrirCount = fgetc(f);
|
|
hrirCount |= fgetc(f)<<8;
|
|
|
|
hrirSize = fgetc(f);
|
|
hrirSize |= fgetc(f)<<8;
|
|
|
|
evCount = fgetc(f);
|
|
|
|
if(hrirCount != HRIR_COUNT || hrirSize != HRIR_LENGTH || evCount != ELEV_COUNT)
|
|
{
|
|
ERR("Unsupported value: hrirCount=%d (%d), hrirSize=%d (%d), evCount=%d (%d)\n",
|
|
hrirCount, HRIR_COUNT, hrirSize, HRIR_LENGTH, evCount, ELEV_COUNT);
|
|
failed = AL_TRUE;
|
|
}
|
|
}
|
|
|
|
if(!failed)
|
|
{
|
|
for(i = 0;i < ELEV_COUNT;i++)
|
|
{
|
|
ALushort offset;
|
|
offset = fgetc(f);
|
|
offset |= fgetc(f)<<8;
|
|
if(offset != evOffset[i])
|
|
{
|
|
ERR("Unsupported evOffset[%d] value: %d (%d)\n", i, offset, evOffset[i]);
|
|
failed = AL_TRUE;
|
|
}
|
|
}
|
|
}
|
|
|
|
if(!failed)
|
|
{
|
|
for(i = 0;i < HRIR_COUNT;i++)
|
|
{
|
|
for(j = 0;j < HRIR_LENGTH;j++)
|
|
{
|
|
ALshort coeff;
|
|
coeff = fgetc(f);
|
|
coeff |= fgetc(f)<<8;
|
|
newdata.coeffs[i][j] = coeff;
|
|
}
|
|
}
|
|
for(i = 0;i < HRIR_COUNT;i++)
|
|
{
|
|
ALubyte delay;
|
|
delay = fgetc(f);
|
|
newdata.delays[i] = delay;
|
|
if(delay > maxDelay)
|
|
{
|
|
ERR("Invalid delay[%d]: %d (%d)\n", i, delay, maxDelay);
|
|
failed = AL_TRUE;
|
|
}
|
|
}
|
|
|
|
if(feof(f))
|
|
{
|
|
ERR("Premature end of data\n");
|
|
failed = AL_TRUE;
|
|
}
|
|
}
|
|
|
|
fclose(f);
|
|
f = NULL;
|
|
|
|
if(!failed)
|
|
{
|
|
void *temp = realloc(LoadedHrtfs, (NumLoadedHrtfs+1)*sizeof(LoadedHrtfs[0]));
|
|
if(temp != NULL)
|
|
{
|
|
LoadedHrtfs = temp;
|
|
TRACE("Loaded HRTF support for format: %s %uhz\n",
|
|
DevFmtChannelsString(DevFmtStereo), newdata.sampleRate);
|
|
LoadedHrtfs[NumLoadedHrtfs++] = newdata;
|
|
}
|
|
}
|
|
else
|
|
ERR("Failed to load %s\n", fname);
|
|
}
|
|
free(fnamelist);
|
|
fnamelist = NULL;
|
|
}
|
|
|
|
void FreeHrtf(void)
|
|
{
|
|
NumLoadedHrtfs = 0;
|
|
free(LoadedHrtfs);
|
|
LoadedHrtfs = NULL;
|
|
}
|