/* =========================================================================== Copyright (C) 1999 - 2005, Id Software, Inc. Copyright (C) 2000 - 2013, Raven Software, Inc. Copyright (C) 2001 - 2013, Activision, Inc. Copyright (C) 2013 - 2015, OpenJK contributors This file is part of the OpenJK source code. OpenJK is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License version 2 as published by the Free Software Foundation. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, see . =========================================================================== */ #include "../server/exe_headers.h" #include "tr_local.h" /* ================= R_CullTriSurf Returns true if the grid is completely culled away. Also sets the clipped hint bit in tess ================= */ static qboolean R_CullTriSurf( srfTriangles_t *cv ) { int boxCull; boxCull = R_CullLocalBox( cv->bounds ); if ( boxCull == CULL_OUT ) { return qtrue; } return qfalse; } /* ================= R_CullGrid Returns true if the grid is completely culled away. Also sets the clipped hint bit in tess ================= */ static qboolean R_CullGrid( srfGridMesh_t *cv ) { int boxCull; int sphereCull; if ( r_nocurves->integer ) { return qtrue; } if ( tr.currentEntityNum != REFENTITYNUM_WORLD ) { sphereCull = R_CullLocalPointAndRadius( cv->localOrigin, cv->meshRadius ); } else { sphereCull = R_CullPointAndRadius( cv->localOrigin, cv->meshRadius ); } boxCull = CULL_OUT; // check for trivial reject if ( sphereCull == CULL_OUT ) { tr.pc.c_sphere_cull_patch_out++; return qtrue; } // check bounding box if necessary else if ( sphereCull == CULL_CLIP ) { tr.pc.c_sphere_cull_patch_clip++; boxCull = R_CullLocalBox( cv->meshBounds ); if ( boxCull == CULL_OUT ) { tr.pc.c_box_cull_patch_out++; return qtrue; } else if ( boxCull == CULL_IN ) { tr.pc.c_box_cull_patch_in++; } else { tr.pc.c_box_cull_patch_clip++; } } else { tr.pc.c_sphere_cull_patch_in++; } return qfalse; } /* ================ R_CullSurface Tries to back face cull surfaces before they are lighted or added to the sorting list. This will also allow mirrors on both sides of a model without recursion. ================ */ static qboolean R_CullSurface( surfaceType_t *surface, shader_t *shader ) { srfSurfaceFace_t *sface; float d; if ( r_nocull->integer==1 ) { return qfalse; } if ( *surface == SF_GRID ) { return R_CullGrid( (srfGridMesh_t *)surface ); } if ( *surface == SF_TRIANGLES ) { return R_CullTriSurf( (srfTriangles_t *)surface ); } if ( *surface != SF_FACE ) { return qfalse; } if ( shader->cullType == CT_TWO_SIDED ) { return qfalse; } // face culling if ( !r_facePlaneCull->integer ) { return qfalse; } sface = ( srfSurfaceFace_t * ) surface; d = DotProduct (tr.ori.viewOrigin, sface->plane.normal); // don't cull exactly on the plane, because there are levels of rounding // through the BSP, ICD, and hardware that may cause pixel gaps if an // epsilon isn't allowed here if ( shader->cullType == CT_FRONT_SIDED ) { if ( d < sface->plane.dist - 8 ) { return qtrue; } } else { if ( d > sface->plane.dist + 8 ) { return qtrue; } } return qfalse; } static int R_DlightFace( srfSurfaceFace_t *face, int dlightBits ) { float d; int i; dlight_t *dl; for ( i = 0 ; i < tr.refdef.num_dlights ; i++ ) { if ( ! ( dlightBits & ( 1 << i ) ) ) { continue; } dl = &tr.refdef.dlights[i]; d = DotProduct( dl->origin, face->plane.normal ) - face->plane.dist; if ( !VectorCompare(face->plane.normal, vec3_origin) && (d < -dl->radius || d > dl->radius) ) { // dlight doesn't reach the plane dlightBits &= ~( 1 << i ); } } if ( !dlightBits ) { tr.pc.c_dlightSurfacesCulled++; } face->dlightBits = dlightBits; return dlightBits; } static int R_DlightGrid( srfGridMesh_t *grid, int dlightBits ) { int i; dlight_t *dl; for ( i = 0 ; i < tr.refdef.num_dlights ; i++ ) { if ( ! ( dlightBits & ( 1 << i ) ) ) { continue; } dl = &tr.refdef.dlights[i]; if ( dl->origin[0] - dl->radius > grid->meshBounds[1][0] || dl->origin[0] + dl->radius < grid->meshBounds[0][0] || dl->origin[1] - dl->radius > grid->meshBounds[1][1] || dl->origin[1] + dl->radius < grid->meshBounds[0][1] || dl->origin[2] - dl->radius > grid->meshBounds[1][2] || dl->origin[2] + dl->radius < grid->meshBounds[0][2] ) { // dlight doesn't reach the bounds dlightBits &= ~( 1 << i ); } } if ( !dlightBits ) { tr.pc.c_dlightSurfacesCulled++; } grid->dlightBits = dlightBits; return dlightBits; } static int R_DlightTrisurf( srfTriangles_t *surf, int dlightBits ) { // FIXME: more dlight culling to trisurfs... surf->dlightBits = dlightBits; return dlightBits; #if 0 int i; dlight_t *dl; for ( i = 0 ; i < tr.refdef.num_dlights ; i++ ) { if ( ! ( dlightBits & ( 1 << i ) ) ) { continue; } dl = &tr.refdef.dlights[i]; if ( dl->origin[0] - dl->radius > grid->meshBounds[1][0] || dl->origin[0] + dl->radius < grid->meshBounds[0][0] || dl->origin[1] - dl->radius > grid->meshBounds[1][1] || dl->origin[1] + dl->radius < grid->meshBounds[0][1] || dl->origin[2] - dl->radius > grid->meshBounds[1][2] || dl->origin[2] + dl->radius < grid->meshBounds[0][2] ) { // dlight doesn't reach the bounds dlightBits &= ~( 1 << i ); } } if ( !dlightBits ) { tr.pc.c_dlightSurfacesCulled++; } grid->dlightBits = dlightBits; return dlightBits; #endif } /* ==================== R_DlightSurface The given surface is going to be drawn, and it touches a leaf that is touched by one or more dlights, so try to throw out more dlights if possible. ==================== */ static int R_DlightSurface( msurface_t *surf, int dlightBits ) { if ( *surf->data == SF_FACE ) { dlightBits = R_DlightFace( (srfSurfaceFace_t *)surf->data, dlightBits ); } else if ( *surf->data == SF_GRID ) { dlightBits = R_DlightGrid( (srfGridMesh_t *)surf->data, dlightBits ); } else if ( *surf->data == SF_TRIANGLES ) { dlightBits = R_DlightTrisurf( (srfTriangles_t *)surf->data, dlightBits ); } else { dlightBits = 0; } if ( dlightBits ) { tr.pc.c_dlightSurfaces++; } return dlightBits; } /* ====================== R_AddWorldSurface ====================== */ static void R_AddWorldSurface( msurface_t *surf, int dlightBits, qboolean noViewCount = qfalse ) { /* if ( surf->viewCount == tr.viewCount ) { return; // already in this view } */ //rww - changed this to be like sof2mp's so RMG will look right. //Will this affect anything that is non-rmg? if (!noViewCount) { if ( surf->viewCount == tr.viewCount ) { // already in this view, but lets make sure all the dlight bits are set if ( *surf->data == SF_FACE ) { ((srfSurfaceFace_t *)surf->data)->dlightBits |= dlightBits; } else if ( *surf->data == SF_GRID ) { ((srfGridMesh_t *)surf->data)->dlightBits |= dlightBits; } else if ( *surf->data == SF_TRIANGLES ) { ((srfTriangles_t *)surf->data)->dlightBits |= dlightBits; } return; } surf->viewCount = tr.viewCount; // FIXME: bmodel fog? } // surf->viewCount = tr.viewCount; // FIXME: bmodel fog? // try to cull before dlighting or adding if ( R_CullSurface( surf->data, surf->shader ) ) { return; } // check for dlighting if ( dlightBits ) { dlightBits = R_DlightSurface( surf, dlightBits ); dlightBits = ( dlightBits != 0 ); } R_AddDrawSurf( surf->data, surf->shader, surf->fogIndex, dlightBits ); } /* ============================================================= BRUSH MODELS ============================================================= */ /* ================= R_AddBrushModelSurfaces ================= */ void R_AddBrushModelSurfaces ( trRefEntity_t *ent ) { bmodel_t *bmodel; int clip; model_t *pModel; int i; pModel = R_GetModelByHandle( ent->e.hModel ); bmodel = pModel->bmodel; clip = R_CullLocalBox( bmodel->bounds ); if ( clip == CULL_OUT ) { return; } if(pModel->bspInstance) { R_SetupEntityLighting(&tr.refdef, ent); } R_DlightBmodel( bmodel, qfalse ); for ( i = 0 ; i < bmodel->numSurfaces ; i++ ) { R_AddWorldSurface( bmodel->firstSurface + i, tr.currentEntity->dlightBits, qtrue ); } } float GetQuadArea( vec3_t v1, vec3_t v2, vec3_t v3, vec3_t v4 ) { vec3_t vec1, vec2, dis1, dis2; // Get area of tri1 VectorSubtract( v1, v2, vec1 ); VectorSubtract( v1, v4, vec2 ); CrossProduct( vec1, vec2, dis1 ); VectorScale( dis1, 0.25f, dis1 ); // Get area of tri2 VectorSubtract( v3, v2, vec1 ); VectorSubtract( v3, v4, vec2 ); CrossProduct( vec1, vec2, dis2 ); VectorScale( dis2, 0.25f, dis2 ); // Return addition of disSqr of each tri area return ( dis1[0] * dis1[0] + dis1[1] * dis1[1] + dis1[2] * dis1[2] + dis2[0] * dis2[0] + dis2[1] * dis2[1] + dis2[2] * dis2[2] ); } void RE_GetBModelVerts( int bmodelIndex, vec3_t *verts, vec3_t normal ) { msurface_t *surfs; srfSurfaceFace_t *face; bmodel_t *bmodel; model_t *pModel; int i; // Not sure if we really need to track the best two candidates int maxDist[2]={0,0}; int maxIndx[2]={0,0}; int dist = 0; float dot1, dot2; pModel = R_GetModelByHandle( bmodelIndex ); bmodel = pModel->bmodel; // Loop through all surfaces on the brush and find the best two candidates for ( i = 0 ; i < bmodel->numSurfaces; i++ ) { surfs = bmodel->firstSurface + i; face = ( srfSurfaceFace_t *)surfs->data; // It seems that the safest way to handle this is by finding the area of the faces dist = GetQuadArea( face->points[0], face->points[1], face->points[2], face->points[3] ); // Check against the highest max if ( dist > maxDist[0] ) { // Shuffle our current maxes down maxDist[1] = maxDist[0]; maxIndx[1] = maxIndx[0]; maxDist[0] = dist; maxIndx[0] = i; } // Check against the second highest max else if ( dist >= maxDist[1] ) { // just stomp the old maxDist[1] = dist; maxIndx[1] = i; } } // Hopefully we've found two best case candidates. Now we should see which of these faces the viewer surfs = bmodel->firstSurface + maxIndx[0]; face = ( srfSurfaceFace_t *)surfs->data; dot1 = DotProduct( face->plane.normal, tr.refdef.viewaxis[0] ); surfs = bmodel->firstSurface + maxIndx[1]; face = ( srfSurfaceFace_t *)surfs->data; dot2 = DotProduct( face->plane.normal, tr.refdef.viewaxis[0] ); if ( dot2 < dot1 && dot2 < 0.0f ) { i = maxIndx[1]; // use the second face } else if ( dot1 < dot2 && dot1 < 0.0f ) { i = maxIndx[0]; // use the first face } else { // Possibly only have one face, so may as well use the first face, which also should be the best one //i = rand() & 1; // ugh, we don't know which to use. I'd hope this would never happen i = maxIndx[0]; // use the first face } surfs = bmodel->firstSurface + i; face = ( srfSurfaceFace_t *)surfs->data; for ( int t = 0; t < 4; t++ ) { VectorCopy( face->points[t], verts[t] ); } } /* ============================================================= WORLD MODEL ============================================================= */ /* ================ R_RecursiveWorldNode ================ */ static void R_RecursiveWorldNode( mnode_t *node, int planeBits, int dlightBits ) { do { int newDlights[2]; // if the node wasn't marked as potentially visible, exit if (node->visframe != tr.visCount) { return; } // if the bounding volume is outside the frustum, nothing // inside can be visible OPTIMIZE: don't do this all the way to leafs? if ( r_nocull->integer!=1 ) { int r; if ( planeBits & 1 ) { r = BoxOnPlaneSide(node->mins, node->maxs, &tr.viewParms.frustum[0]); if (r == 2) { return; // culled } if ( r == 1 ) { planeBits &= ~1; // all descendants will also be in front } } if ( planeBits & 2 ) { r = BoxOnPlaneSide(node->mins, node->maxs, &tr.viewParms.frustum[1]); if (r == 2) { return; // culled } if ( r == 1 ) { planeBits &= ~2; // all descendants will also be in front } } if ( planeBits & 4 ) { r = BoxOnPlaneSide(node->mins, node->maxs, &tr.viewParms.frustum[2]); if (r == 2) { return; // culled } if ( r == 1 ) { planeBits &= ~4; // all descendants will also be in front } } if ( planeBits & 8 ) { r = BoxOnPlaneSide(node->mins, node->maxs, &tr.viewParms.frustum[3]); if (r == 2) { return; // culled } if ( r == 1 ) { planeBits &= ~8; // all descendants will also be in front } } if ( planeBits & 16 ) { r = BoxOnPlaneSide(node->mins, node->maxs, &tr.viewParms.frustum[4]); if (r == 2) { return; // culled } if ( r == 1 ) { planeBits &= ~16; // all descendants will also be in front } } } if ( node->contents != -1 ) { break; } // determine which dlights are needed if ( r_nocull->integer!=2 ) { newDlights[0] = 0; newDlights[1] = 0; if ( dlightBits ) { int i; for ( i = 0 ; i < tr.refdef.num_dlights ; i++ ) { dlight_t *dl; float dist; if ( dlightBits & ( 1 << i ) ) { dl = &tr.refdef.dlights[i]; dist = DotProduct( dl->origin, node->plane->normal ) - node->plane->dist; if ( dist > -dl->radius ) { newDlights[0] |= ( 1 << i ); } if ( dist < dl->radius ) { newDlights[1] |= ( 1 << i ); } } } } } else { newDlights[0] = dlightBits; newDlights[1] = dlightBits; } // recurse down the children, front side first R_RecursiveWorldNode (node->children[0], planeBits, newDlights[0] ); // tail recurse node = node->children[1]; dlightBits = newDlights[1]; } while ( 1 ); { // leaf node, so add mark surfaces int c; msurface_t *surf, **mark; tr.pc.c_leafs++; // add to z buffer bounds if ( node->mins[0] < tr.viewParms.visBounds[0][0] ) { tr.viewParms.visBounds[0][0] = node->mins[0]; } if ( node->mins[1] < tr.viewParms.visBounds[0][1] ) { tr.viewParms.visBounds[0][1] = node->mins[1]; } if ( node->mins[2] < tr.viewParms.visBounds[0][2] ) { tr.viewParms.visBounds[0][2] = node->mins[2]; } if ( node->maxs[0] > tr.viewParms.visBounds[1][0] ) { tr.viewParms.visBounds[1][0] = node->maxs[0]; } if ( node->maxs[1] > tr.viewParms.visBounds[1][1] ) { tr.viewParms.visBounds[1][1] = node->maxs[1]; } if ( node->maxs[2] > tr.viewParms.visBounds[1][2] ) { tr.viewParms.visBounds[1][2] = node->maxs[2]; } // add the individual surfaces mark = node->firstmarksurface; c = node->nummarksurfaces; while (c--) { // the surface may have already been added if it // spans multiple leafs surf = *mark; R_AddWorldSurface( surf, dlightBits ); mark++; } } } /* =============== R_PointInLeaf =============== */ static mnode_t *R_PointInLeaf( vec3_t p ) { mnode_t *node; float d; cplane_t *plane; if ( !tr.world ) { Com_Error (ERR_DROP, "R_PointInLeaf: bad model"); } node = tr.world->nodes; while( 1 ) { if (node->contents != -1) { break; } plane = node->plane; d = DotProduct (p,plane->normal) - plane->dist; if (d > 0) { node = node->children[0]; } else { node = node->children[1]; } } return node; } /* ============== R_ClusterPVS ============== */ static const byte *R_ClusterPVS (int cluster) { if (!tr.world || !tr.world->vis || cluster < 0 || cluster >= tr.world->numClusters ) { return tr.world->novis; } return tr.world->vis + cluster * tr.world->clusterBytes; } /* ================= R_inPVS ================= */ qboolean R_inPVS( vec3_t p1, vec3_t p2 ) { mnode_t *leaf; byte *vis; leaf = R_PointInLeaf( p1 ); vis = ri.CM_ClusterPVS( leaf->cluster ); leaf = R_PointInLeaf( p2 ); if ( !(vis[leaf->cluster>>3] & (1<<(leaf->cluster&7))) ) { return qfalse; } return qtrue; } /* =============== R_MarkLeaves Mark the leaves and nodes that are in the PVS for the current cluster =============== */ static void R_MarkLeaves (void) { const byte *vis; mnode_t *leaf, *parent; int i; int cluster; // lockpvs lets designers walk around to determine the // extent of the current pvs if ( r_lockpvs->integer ) { return; } // current viewcluster leaf = R_PointInLeaf( tr.viewParms.pvsOrigin ); cluster = leaf->cluster; // if the cluster is the same and the area visibility matrix // hasn't changed, we don't need to mark everything again // if r_showcluster was just turned on, remark everything if ( tr.viewCluster == cluster && !tr.refdef.areamaskModified && !r_showcluster->modified ) { return; } if ( r_showcluster->modified || r_showcluster->integer ) { r_showcluster->modified = qfalse; if ( r_showcluster->integer ) { ri.Printf( PRINT_ALL, "cluster:%i area:%i\n", cluster, leaf->area ); } } tr.visCount++; tr.viewCluster = cluster; if ( r_novis->integer || tr.viewCluster == -1 ) { for (i=0 ; inumnodes ; i++) { if (tr.world->nodes[i].contents != CONTENTS_SOLID) { tr.world->nodes[i].visframe = tr.visCount; } } return; } vis = R_ClusterPVS (tr.viewCluster); for (i=0,leaf=tr.world->nodes ; inumnodes ; i++, leaf++) { cluster = leaf->cluster; if ( cluster < 0 || cluster >= tr.world->numClusters ) { continue; } // check general pvs if ( !(vis[cluster>>3] & (1<<(cluster&7))) ) { continue; } // check for door connection if ( (tr.refdef.areamask[leaf->area>>3] & (1<<(leaf->area&7)) ) ) { continue; // not visible } parent = leaf; do { if (parent->visframe == tr.visCount) break; parent->visframe = tr.visCount; parent = parent->parent; } while (parent); } } /* ============= R_AddWorldSurfaces ============= */ void R_AddWorldSurfaces (void) { if ( !r_drawworld->integer ) { return; } if ( tr.refdef.rdflags & RDF_NOWORLDMODEL ) { return; } tr.currentEntityNum = REFENTITYNUM_WORLD; tr.shiftedEntityNum = tr.currentEntityNum << QSORT_REFENTITYNUM_SHIFT; // determine which leaves are in the PVS / areamask R_MarkLeaves (); // clear out the visible min/max ClearBounds( tr.viewParms.visBounds[0], tr.viewParms.visBounds[1] ); // perform frustum culling and add all the potentially visible surfaces if ( tr.refdef.num_dlights > 32 ) { tr.refdef.num_dlights = 32 ; } R_RecursiveWorldNode( tr.world->nodes, 31, ( 1 << tr.refdef.num_dlights ) - 1 ); }