/* =========================================================================== Copyright (C) 1999 - 2005, Id Software, Inc. Copyright (C) 2000 - 2013, Raven Software, Inc. Copyright (C) 2001 - 2013, Activision, Inc. Copyright (C) 2005 - 2015, ioquake3 contributors Copyright (C) 2013 - 2015, OpenJK contributors This file is part of the OpenJK source code. OpenJK is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License version 2 as published by the Free Software Foundation. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, see . =========================================================================== */ // tr_main.c -- main control flow for each frame #include "../server/exe_headers.h" #include "tr_local.h" #include #if !defined(G2_H_INC) #include "../ghoul2/G2.h" #endif trGlobals_t tr; vr_client_info_t *vr; static float s_flipMatrix[16] = { // convert from our coordinate system (looking down X) // to OpenGL's coordinate system (looking down -Z) 0, 0, -1, 0, -1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1 }; refimport_t ri; // entities that will have procedurally generated surfaces will just // point at this for their sorting surface surfaceType_t entitySurface = SF_ENTITY; /* ================= R_CullLocalBox Returns CULL_IN, CULL_CLIP, or CULL_OUT ================= */ int R_CullLocalBox (const vec3_t bounds[2]) { int i, j; vec3_t transformed[8]; float dists[8]; vec3_t v; cplane_t *frust; int anyBack; int front, back; if ( r_nocull->integer==1 ) { return CULL_CLIP; } // transform into world space for (i = 0 ; i < 8 ; i++) { v[0] = bounds[i&1][0]; v[1] = bounds[(i>>1)&1][1]; v[2] = bounds[(i>>2)&1][2]; VectorCopy( tr.ori.origin, transformed[i] ); VectorMA( transformed[i], v[0], tr.ori.axis[0], transformed[i] ); VectorMA( transformed[i], v[1], tr.ori.axis[1], transformed[i] ); VectorMA( transformed[i], v[2], tr.ori.axis[2], transformed[i] ); } // check against frustum planes anyBack = 0; for (i = 0 ; i < 5 ; i++) { frust = &tr.viewParms.frustum[i]; front = back = 0; for (j = 0 ; j < 8 ; j++) { dists[j] = DotProduct(transformed[j], frust->normal); if ( dists[j] > frust->dist ) { front = 1; if ( back ) { break; // a point is in front } } else { back = 1; } } if ( !front ) { // all points were behind one of the planes return CULL_OUT; } anyBack |= back; } if ( !anyBack ) { return CULL_IN; // completely inside frustum } return CULL_CLIP; // partially clipped } /* ** R_CullLocalPointAndRadius */ int R_CullLocalPointAndRadius( const vec3_t pt, float radius ) { vec3_t transformed; R_LocalPointToWorld( pt, transformed ); return R_CullPointAndRadius( transformed, radius ); } /* ** R_CullPointAndRadius */ int R_CullPointAndRadius( const vec3_t pt, float radius ) { int i; float dist; cplane_t *frust; qboolean mightBeClipped = qfalse; if ( r_nocull->integer==1 ) { return CULL_CLIP; } // check against frustum planes #ifdef JK2_MODE // They used 4 frustrum planes in JK2, and 5 in JKA --eez for (i = 0 ; i < 4 ; i++) { frust = &tr.viewParms.frustum[i]; dist = DotProduct( pt, frust->normal) - frust->dist; if ( dist < -radius ) { return CULL_OUT; } else if ( dist <= radius ) { mightBeClipped = qtrue; } } #else for (i = 0 ; i < 5 ; i++) { frust = &tr.viewParms.frustum[i]; dist = DotProduct( pt, frust->normal) - frust->dist; if ( dist < -radius ) { return CULL_OUT; } else if ( dist <= radius ) { mightBeClipped = qtrue; } } #endif if ( mightBeClipped ) { return CULL_CLIP; } return CULL_IN; // completely inside frustum } /* ================= R_LocalNormalToWorld ================= */ void R_LocalNormalToWorld (const vec3_t local, vec3_t world) { world[0] = local[0] * tr.ori.axis[0][0] + local[1] * tr.ori.axis[1][0] + local[2] * tr.ori.axis[2][0]; world[1] = local[0] * tr.ori.axis[0][1] + local[1] * tr.ori.axis[1][1] + local[2] * tr.ori.axis[2][1]; world[2] = local[0] * tr.ori.axis[0][2] + local[1] * tr.ori.axis[1][2] + local[2] * tr.ori.axis[2][2]; } /* ================= R_LocalPointToWorld ================= */ void R_LocalPointToWorld (const vec3_t local, vec3_t world) { world[0] = local[0] * tr.ori.axis[0][0] + local[1] * tr.ori.axis[1][0] + local[2] * tr.ori.axis[2][0] + tr.ori.origin[0]; world[1] = local[0] * tr.ori.axis[0][1] + local[1] * tr.ori.axis[1][1] + local[2] * tr.ori.axis[2][1] + tr.ori.origin[1]; world[2] = local[0] * tr.ori.axis[0][2] + local[1] * tr.ori.axis[1][2] + local[2] * tr.ori.axis[2][2] + tr.ori.origin[2]; } float preTransEntMatrix[16]; void R_InvertMatrix(float *sourcemat, float *destmat) { int i, j, temp=0; for (i = 0; i < 3; i++) { for (j = 0; j < 3; j++) { destmat[j*4 + i] = sourcemat[temp++]; } } for (i = 0; i < 3; i++) { temp = i*4; destmat[temp+3]=0; // destmat[destmat[i][3]=0; for (j = 0; j < 3; j++) { destmat[temp+3]-=destmat[temp+j]*sourcemat[j*4+3]; // dest->matrix[i][3]-=dest->matrix[i][j]*src->matrix[j][3]; } } } /* ================= R_WorldNormalToEntity ================= */ void R_WorldNormalToEntity (const vec3_t worldvec, vec3_t entvec) { entvec[0] = -worldvec[0] * preTransEntMatrix[0] - worldvec[1] * preTransEntMatrix[4] + worldvec[2] * preTransEntMatrix[8]; entvec[1] = -worldvec[0] * preTransEntMatrix[1] - worldvec[1] * preTransEntMatrix[5] + worldvec[2] * preTransEntMatrix[9]; entvec[2] = -worldvec[0] * preTransEntMatrix[2] - worldvec[1] * preTransEntMatrix[6] + worldvec[2] * preTransEntMatrix[10]; } /* ================= R_WorldPointToEntity ================= */ /*void R_WorldPointToEntity (vec3_t worldvec, vec3_t entvec) { entvec[0] = worldvec[0] * preTransEntMatrix[0] + worldvec[1] * preTransEntMatrix[4] + worldvec[2] * preTransEntMatrix[8]+preTransEntMatrix[12]; entvec[1] = worldvec[0] * preTransEntMatrix[1] + worldvec[1] * preTransEntMatrix[5] + worldvec[2] * preTransEntMatrix[9]+preTransEntMatrix[13]; entvec[2] = worldvec[0] * preTransEntMatrix[2] + worldvec[1] * preTransEntMatrix[6] + worldvec[2] * preTransEntMatrix[10]+preTransEntMatrix[14]; } */ /* ================= R_WorldToLocal ================= */ void R_WorldToLocal (vec3_t world, vec3_t local) { local[0] = DotProduct(world, tr.ori.axis[0]); local[1] = DotProduct(world, tr.ori.axis[1]); local[2] = DotProduct(world, tr.ori.axis[2]); } /* ========================== R_TransformModelToClip ========================== */ void R_TransformModelToClip( const vec3_t src, const float *modelMatrix, const float *projectionMatrix, vec4_t eye, vec4_t dst ) { int i; for ( i = 0 ; i < 4 ; i++ ) { eye[i] = src[0] * modelMatrix[ i + 0 * 4 ] + src[1] * modelMatrix[ i + 1 * 4 ] + src[2] * modelMatrix[ i + 2 * 4 ] + 1 * modelMatrix[ i + 3 * 4 ]; } for ( i = 0 ; i < 4 ; i++ ) { dst[i] = eye[0] * projectionMatrix[ i + 0 * 4 ] + eye[1] * projectionMatrix[ i + 1 * 4 ] + eye[2] * projectionMatrix[ i + 2 * 4 ] + eye[3] * projectionMatrix[ i + 3 * 4 ]; } } /* ========================== R_TransformClipToWindow ========================== */ void R_TransformClipToWindow( const vec4_t clip, const viewParms_t *view, vec4_t normalized, vec4_t window ) { normalized[0] = clip[0] / clip[3]; normalized[1] = clip[1] / clip[3]; normalized[2] = ( clip[2] + clip[3] ) / ( 2 * clip[3] ); window[0] = 0.5 * ( 1.0 + normalized[0] ) * view->viewportWidth; window[1] = 0.5 * ( 1.0 + normalized[1] ) * view->viewportHeight; window[2] = normalized[2]; window[0] = (int) ( window[0] + 0.5 ); window[1] = (int) ( window[1] + 0.5 ); } /* ========================== myGlMultMatrix ========================== */ void myGlMultMatrix( const float *a, const float *b, float *out ) { int i, j; for ( i = 0 ; i < 4 ; i++ ) { for ( j = 0 ; j < 4 ; j++ ) { out[ i * 4 + j ] = a [ i * 4 + 0 ] * b [ 0 * 4 + j ] + a [ i * 4 + 1 ] * b [ 1 * 4 + j ] + a [ i * 4 + 2 ] * b [ 2 * 4 + j ] + a [ i * 4 + 3 ] * b [ 3 * 4 + j ]; } } } /* ================= R_RotateForEntity Generates an orientation for an entity and viewParms Does NOT produce any GL calls Called by both the front end and the back end ================= */ void R_RotateForEntity( const trRefEntity_t *ent, const viewParms_t *viewParms, orientationr_t *ori ) { // float glMatrix[16]; vec3_t delta; float axisLength; if ( ent->e.reType != RT_MODEL ) { *ori = viewParms->world; return; } VectorCopy( ent->e.origin, ori->origin ); VectorCopy( ent->e.axis[0], ori->axis[0] ); VectorCopy( ent->e.axis[1], ori->axis[1] ); VectorCopy( ent->e.axis[2], ori->axis[2] ); preTransEntMatrix[0] = ori->axis[0][0]; preTransEntMatrix[4] = ori->axis[1][0]; preTransEntMatrix[8] = ori->axis[2][0]; preTransEntMatrix[12] = ori->origin[0]; preTransEntMatrix[1] = ori->axis[0][1]; preTransEntMatrix[5] = ori->axis[1][1]; preTransEntMatrix[9] = ori->axis[2][1]; preTransEntMatrix[13] = ori->origin[1]; preTransEntMatrix[2] = ori->axis[0][2]; preTransEntMatrix[6] = ori->axis[1][2]; preTransEntMatrix[10] = ori->axis[2][2]; preTransEntMatrix[14] = ori->origin[2]; preTransEntMatrix[3] = 0; preTransEntMatrix[7] = 0; preTransEntMatrix[11] = 0; preTransEntMatrix[15] = 1; myGlMultMatrix( preTransEntMatrix, viewParms->world.modelMatrix, ori->modelMatrix ); // calculate the viewer origin in the model's space // needed for fog, specular, and environment mapping VectorSubtract( viewParms->ori.origin, ori->origin, delta ); // compensate for scale in the axes if necessary if ( ent->e.nonNormalizedAxes ) { axisLength = VectorLength( ent->e.axis[0] ); if ( !axisLength ) { axisLength = 0; } else { axisLength = 1.0 / axisLength; } } else { axisLength = 1.0; } ori->viewOrigin[0] = DotProduct( delta, ori->axis[0] ) * axisLength; ori->viewOrigin[1] = DotProduct( delta, ori->axis[1] ) * axisLength; ori->viewOrigin[2] = DotProduct( delta, ori->axis[2] ) * axisLength; } /* ================= R_RotateForViewer Sets up the modelview matrix for a given viewParm ================= */ void R_RotateForViewer (void) { float viewerMatrix[16]; vec3_t origin; memset (&tr.ori, 0, sizeof(tr.ori)); tr.ori.axis[0][0] = 1; tr.ori.axis[1][1] = 1; tr.ori.axis[2][2] = 1; VectorCopy (tr.viewParms.ori.origin, tr.ori.viewOrigin); // transform by the camera placement VectorCopy( tr.viewParms.ori.origin, origin ); viewerMatrix[0] = tr.viewParms.ori.axis[0][0]; viewerMatrix[4] = tr.viewParms.ori.axis[0][1]; viewerMatrix[8] = tr.viewParms.ori.axis[0][2]; viewerMatrix[12] = -origin[0] * viewerMatrix[0] + -origin[1] * viewerMatrix[4] + -origin[2] * viewerMatrix[8]; viewerMatrix[1] = tr.viewParms.ori.axis[1][0]; viewerMatrix[5] = tr.viewParms.ori.axis[1][1]; viewerMatrix[9] = tr.viewParms.ori.axis[1][2]; viewerMatrix[13] = -origin[0] * viewerMatrix[1] + -origin[1] * viewerMatrix[5] + -origin[2] * viewerMatrix[9]; viewerMatrix[2] = tr.viewParms.ori.axis[2][0]; viewerMatrix[6] = tr.viewParms.ori.axis[2][1]; viewerMatrix[10] = tr.viewParms.ori.axis[2][2]; viewerMatrix[14] = -origin[0] * viewerMatrix[2] + -origin[1] * viewerMatrix[6] + -origin[2] * viewerMatrix[10]; viewerMatrix[3] = 0; viewerMatrix[7] = 0; viewerMatrix[11] = 0; viewerMatrix[15] = 1; // convert from our coordinate system (looking down X) // to OpenGL's coordinate system (looking down -Z) myGlMultMatrix( viewerMatrix, s_flipMatrix, tr.ori.modelMatrix ); tr.viewParms.world = tr.ori; } /* ** SetFarClip */ static void SetFarClip( void ) { float farthestCornerDistance = 0; int i; // if not rendering the world (icons, menus, etc) // set a 2k far clip plane if ( tr.refdef.rdflags & RDF_NOWORLDMODEL ) { tr.viewParms.zFar = 2048; return; } // // set far clipping planes dynamically // for ( i = 0; i < 8; i++ ) { vec3_t v; float distance; if ( i & 1 ) { v[0] = tr.viewParms.visBounds[0][0]; } else { v[0] = tr.viewParms.visBounds[1][0]; } if ( i & 2 ) { v[1] = tr.viewParms.visBounds[0][1]; } else { v[1] = tr.viewParms.visBounds[1][1]; } if ( i & 4 ) { v[2] = tr.viewParms.visBounds[0][2]; } else { v[2] = tr.viewParms.visBounds[1][2]; } distance = DistanceSquared(tr.viewParms.ori.origin, v); if ( distance > farthestCornerDistance ) { farthestCornerDistance = distance; } } // Bring in the zFar to the distanceCull distance // The sky renders at zFar so need to move it out a little // ...and make sure there is a minimum zfar to prevent problems tr.viewParms.zFar = Com_Clamp(2048.0f, tr.distanceCull * (1.732), sqrtf( farthestCornerDistance )); } /* =============== R_SetupProjection =============== */ void R_SetupProjection( void ) { float xmin, xmax, ymin, ymax; float width, height, depth; float zNear, zFar; // dynamically compute far clip plane distance SetFarClip(); // // set up projection matrix // zNear = r_znear->value; zFar = tr.viewParms.zFar; if (!tr.refdef.override_fov && ri.TBXR_GetVRProjection((int)tr.stereoFrame, zNear, zFar, tr.viewParms.projectionMatrix)) { return; } ymax = zNear * tan( tr.refdef.fov_y * M_PI / 360.0f ); ymin = -ymax; xmax = zNear * tan( tr.refdef.fov_x * M_PI / 360.0f ); xmin = -xmax; width = xmax - xmin; height = ymax - ymin; depth = zFar - zNear; tr.viewParms.projectionMatrix[0] = 2 * zNear / width; tr.viewParms.projectionMatrix[4] = 0; tr.viewParms.projectionMatrix[8] = ( xmax + xmin ) / width; // normally 0 tr.viewParms.projectionMatrix[12] = 0; tr.viewParms.projectionMatrix[1] = 0; tr.viewParms.projectionMatrix[5] = 2 * zNear / height; tr.viewParms.projectionMatrix[9] = ( ymax + ymin ) / height; // normally 0 tr.viewParms.projectionMatrix[13] = 0; tr.viewParms.projectionMatrix[2] = 0; tr.viewParms.projectionMatrix[6] = 0; tr.viewParms.projectionMatrix[10] = -( zFar + zNear ) / depth; tr.viewParms.projectionMatrix[14] = -2 * zFar * zNear / depth; tr.viewParms.projectionMatrix[3] = 0; tr.viewParms.projectionMatrix[7] = 0; tr.viewParms.projectionMatrix[11] = -1; tr.viewParms.projectionMatrix[15] = 0; } /* ================= R_SetupFrustum Setup that culling frustum planes for the current view ================= */ void R_SetupFrustum (void) { int i; float xs, xc; float ang; ang = tr.viewParms.fovX / 180 * M_PI * 0.5; xs = sin( ang ); xc = cos( ang ); VectorScale( tr.viewParms.ori.axis[0], xs, tr.viewParms.frustum[0].normal ); VectorMA( tr.viewParms.frustum[0].normal, xc, tr.viewParms.ori.axis[1], tr.viewParms.frustum[0].normal ); VectorScale( tr.viewParms.ori.axis[0], xs, tr.viewParms.frustum[1].normal ); VectorMA( tr.viewParms.frustum[1].normal, -xc, tr.viewParms.ori.axis[1], tr.viewParms.frustum[1].normal ); ang = tr.viewParms.fovY / 180 * M_PI * 0.5; xs = sin( ang ); xc = cos( ang ); VectorScale( tr.viewParms.ori.axis[0], xs, tr.viewParms.frustum[2].normal ); VectorMA( tr.viewParms.frustum[2].normal, xc, tr.viewParms.ori.axis[2], tr.viewParms.frustum[2].normal ); VectorScale( tr.viewParms.ori.axis[0], xs, tr.viewParms.frustum[3].normal ); VectorMA( tr.viewParms.frustum[3].normal, -xc, tr.viewParms.ori.axis[2], tr.viewParms.frustum[3].normal ); // this is the far plane VectorScale( tr.viewParms.ori.axis[0],-1.0f, tr.viewParms.frustum[4].normal ); for (i=0 ; i<5 ; i++) { tr.viewParms.frustum[i].type = PLANE_NON_AXIAL; tr.viewParms.frustum[i].dist = DotProduct (tr.viewParms.ori.origin, tr.viewParms.frustum[i].normal); if (i==4) { // far plane does not go through the view point, it goes alot farther.. tr.viewParms.frustum[i].dist -= tr.distanceCull*1.02f; // a little slack so we don't cull stuff } SetPlaneSignbits( &tr.viewParms.frustum[i] ); } } /* ================= R_MirrorPoint ================= */ void R_MirrorPoint (vec3_t in, orientation_t *surface, orientation_t *camera, vec3_t out) { int i; vec3_t local; vec3_t transformed; float d; VectorSubtract( in, surface->origin, local ); VectorClear( transformed ); for ( i = 0 ; i < 3 ; i++ ) { d = DotProduct(local, surface->axis[i]); VectorMA( transformed, d, camera->axis[i], transformed ); } VectorAdd( transformed, camera->origin, out ); } void R_MirrorVector (vec3_t in, orientation_t *surface, orientation_t *camera, vec3_t out) { int i; float d; VectorClear( out ); for ( i = 0 ; i < 3 ; i++ ) { d = DotProduct(in, surface->axis[i]); VectorMA( out, d, camera->axis[i], out ); } } /* ============= R_PlaneForSurface ============= */ void R_PlaneForSurface (surfaceType_t *surfType, cplane_t *plane) { srfTriangles_t *tri; srfGridMesh_t *grid; srfPoly_t *poly; drawVert_t *v1, *v2, *v3; vec4_t plane4; if (!surfType) { memset (plane, 0, sizeof(*plane)); plane->normal[0] = 1; return; } switch (*surfType) { case SF_FACE: *plane = ((srfSurfaceFace_t *)surfType)->plane; return; case SF_TRIANGLES: tri = (srfTriangles_t *)surfType; v1 = tri->verts + tri->indexes[0]; v2 = tri->verts + tri->indexes[1]; v3 = tri->verts + tri->indexes[2]; PlaneFromPoints( plane4, v1->xyz, v2->xyz, v3->xyz ); VectorCopy( plane4, plane->normal ); plane->dist = plane4[3]; return; case SF_POLY: poly = (srfPoly_t *)surfType; PlaneFromPoints( plane4, poly->verts[0].xyz, poly->verts[1].xyz, poly->verts[2].xyz ); VectorCopy( plane4, plane->normal ); plane->dist = plane4[3]; return; case SF_GRID: grid = (srfGridMesh_t *)surfType; v1 = &grid->verts[0]; v2 = &grid->verts[1]; v3 = &grid->verts[2]; PlaneFromPoints( plane4, v3->xyz, v2->xyz, v1->xyz ); VectorCopy( plane4, plane->normal ); plane->dist = plane4[3]; return; default: memset (plane, 0, sizeof(*plane)); plane->normal[0] = 1; return; } } /* ================= R_GetPortalOrientation entityNum is the entity that the portal surface is a part of, which may be moving and rotating. Returns qtrue if it should be mirrored ================= */ qboolean R_GetPortalOrientations( drawSurf_t *drawSurf, int entityNum, orientation_t *surface, orientation_t *camera, vec3_t pvsOrigin, qboolean *mirror ) { int i; cplane_t originalPlane, plane; trRefEntity_t *e; float d; vec3_t transformed; // create plane axis for the portal we are seeing R_PlaneForSurface( drawSurf->surface, &originalPlane ); // rotate the plane if necessary if ( entityNum != REFENTITYNUM_WORLD ) { tr.currentEntityNum = entityNum; tr.currentEntity = &tr.refdef.entities[entityNum]; // get the orientation of the entity R_RotateForEntity( tr.currentEntity, &tr.viewParms, &tr.ori ); // rotate the plane, but keep the non-rotated version for matching // against the portalSurface entities R_LocalNormalToWorld( originalPlane.normal, plane.normal ); plane.dist = originalPlane.dist + DotProduct( plane.normal, tr.ori.origin ); // translate the original plane originalPlane.dist = originalPlane.dist + DotProduct( originalPlane.normal, tr.ori.origin ); } else { plane = originalPlane; } VectorCopy( plane.normal, surface->axis[0] ); PerpendicularVector( surface->axis[1], surface->axis[0] ); CrossProduct( surface->axis[0], surface->axis[1], surface->axis[2] ); // locate the portal entity closest to this plane. // origin will be the origin of the portal, origin2 will be // the origin of the camera for ( i = 0 ; i < tr.refdef.num_entities ; i++ ) { e = &tr.refdef.entities[i]; if ( e->e.reType != RT_PORTALSURFACE ) { continue; } d = DotProduct( e->e.origin, originalPlane.normal ) - originalPlane.dist; if ( d > 64 || d < -64) { continue; } // get the pvsOrigin from the entity VectorCopy( e->e.oldorigin, pvsOrigin ); // if the entity is just a mirror, don't use as a camera point if ( e->e.oldorigin[0] == e->e.origin[0] && e->e.oldorigin[1] == e->e.origin[1] && e->e.oldorigin[2] == e->e.origin[2] ) { VectorScale( plane.normal, plane.dist, surface->origin ); VectorCopy( surface->origin, camera->origin ); VectorSubtract( vec3_origin, surface->axis[0], camera->axis[0] ); VectorCopy( surface->axis[1], camera->axis[1] ); VectorCopy( surface->axis[2], camera->axis[2] ); *mirror = qtrue; return qtrue; } // project the origin onto the surface plane to get // an origin point we can rotate around d = DotProduct( e->e.origin, plane.normal ) - plane.dist; VectorMA( e->e.origin, -d, surface->axis[0], surface->origin ); // now get the camera origin and orientation VectorCopy( e->e.oldorigin, camera->origin ); AxisCopy( e->e.axis, camera->axis ); VectorSubtract( vec3_origin, camera->axis[0], camera->axis[0] ); VectorSubtract( vec3_origin, camera->axis[1], camera->axis[1] ); // optionally rotate if ( e->e.frame ) { // continuous rotate d = (tr.refdef.time/1000.0f) * e->e.frame; VectorCopy( camera->axis[1], transformed ); RotatePointAroundVector( camera->axis[1], camera->axis[0], transformed, d ); CrossProduct( camera->axis[0], camera->axis[1], camera->axis[2] ); } else if (e->e.skinNum){ // bobbing rotate //d = 4 * sin( tr.refdef.time * 0.003 ); d = e->e.skinNum; VectorCopy( camera->axis[1], transformed ); RotatePointAroundVector( camera->axis[1], camera->axis[0], transformed, d ); CrossProduct( camera->axis[0], camera->axis[1], camera->axis[2] ); } *mirror = qfalse; return qtrue; } // if we didn't locate a portal entity, don't render anything. // We don't want to just treat it as a mirror, because without a // portal entity the server won't have communicated a proper entity set // in the snapshot // unfortunately, with local movement prediction it is easily possible // to see a surface before the server has communicated the matching // portal surface entity, so we don't want to print anything here... //ri.Printf( PRINT_ALL, "Portal surface without a portal entity\n" ); return qfalse; } static qboolean IsMirror( const drawSurf_t *drawSurf, int entityNum ) { int i; cplane_t originalPlane, plane; trRefEntity_t *e; float d; // create plane axis for the portal we are seeing R_PlaneForSurface( drawSurf->surface, &originalPlane ); // rotate the plane if necessary if ( entityNum != REFENTITYNUM_WORLD ) { tr.currentEntityNum = entityNum; tr.currentEntity = &tr.refdef.entities[entityNum]; // get the orientation of the entity R_RotateForEntity( tr.currentEntity, &tr.viewParms, &tr.ori ); // rotate the plane, but keep the non-rotated version for matching // against the portalSurface entities R_LocalNormalToWorld( originalPlane.normal, plane.normal ); plane.dist = originalPlane.dist + DotProduct( plane.normal, tr.ori.origin ); // translate the original plane originalPlane.dist = originalPlane.dist + DotProduct( originalPlane.normal, tr.ori.origin ); } else { plane = originalPlane; } // locate the portal entity closest to this plane. // origin will be the origin of the portal, origin2 will be // the origin of the camera for ( i = 0 ; i < tr.refdef.num_entities ; i++ ) { e = &tr.refdef.entities[i]; if ( e->e.reType != RT_PORTALSURFACE ) { continue; } d = DotProduct( e->e.origin, originalPlane.normal ) - originalPlane.dist; if ( d > 64 || d < -64) { continue; } // if the entity is just a mirror, don't use as a camera point if ( e->e.oldorigin[0] == e->e.origin[0] && e->e.oldorigin[1] == e->e.origin[1] && e->e.oldorigin[2] == e->e.origin[2] ) { return qtrue; } return qfalse; } return qfalse; } /* ** SurfIsOffscreen ** ** Determines if a surface is completely offscreen. */ static qboolean SurfIsOffscreen( const drawSurf_t *drawSurf, vec4_t clipDest[128] ) { float shortest = 1000000000; int entityNum; int numTriangles; jk_shader_t *shader; int fogNum; int dlighted; vec4_t clip, eye; int i; unsigned int pointOr = 0; unsigned int pointAnd = (unsigned int)~0; R_RotateForViewer(); R_DecomposeSort( drawSurf->sort, &entityNum, &shader, &fogNum, &dlighted ); RB_BeginSurface( shader, fogNum ); rb_surfaceTable[ *drawSurf->surface ]( drawSurf->surface ); assert( tess.numVertexes < 128 ); for ( i = 0; i < tess.numVertexes; i++ ) { int j; unsigned int pointFlags = 0; R_TransformModelToClip( tess.xyz[i], tr.ori.modelMatrix, tr.viewParms.projectionMatrix, eye, clip ); for ( j = 0; j < 3; j++ ) { if ( clip[j] >= clip[3] ) { pointFlags |= (1 << (j*2)); } else if ( clip[j] <= -clip[3] ) { pointFlags |= ( 1 << (j*2+1)); } } pointAnd &= pointFlags; pointOr |= pointFlags; } // trivially reject if ( pointAnd ) { return qtrue; } // determine if this surface is backfaced and also determine the distance // to the nearest vertex so we can cull based on portal range. Culling // based on vertex distance isn't 100% correct (we should be checking for // range to the surface), but it's good enough for the types of portals // we have in the game right now. numTriangles = tess.numIndexes / 3; for ( i = 0; i < tess.numIndexes; i += 3 ) { vec3_t normal; float dot; float len; VectorSubtract( tess.xyz[tess.indexes[i]], tr.viewParms.ori.origin, normal ); len = VectorLengthSquared( normal ); // lose the sqrt if ( len < shortest ) { shortest = len; } if ( ( dot = DotProduct( normal, tess.normal[tess.indexes[i]] ) ) >= 0 ) { numTriangles--; } } if ( !numTriangles ) { return qtrue; } // mirrors can early out at this point, since we don't do a fade over distance // with them (although we could) if ( IsMirror( drawSurf, entityNum ) ) { return qfalse; } if ( shortest > (tess.shader->portalRange * tess.shader->portalRange)) { return qtrue; } return qfalse; } /* ======================== R_MirrorViewBySurface Returns qtrue if another view has been rendered ======================== */ int recursivePortalCount; qboolean R_MirrorViewBySurface (drawSurf_t *drawSurf, int entityNum) { vec4_t clipDest[128]; viewParms_t newParms; viewParms_t oldParms; orientation_t surface, camera; // don't recursively mirror if (tr.viewParms.isPortal) { ri.Printf( PRINT_DEVELOPER, "WARNING: recursive mirror/portal found\n" ); return qfalse; } if ( r_noportals->integer || r_fastsky->integer ) { return qfalse; } // trivially reject portal/mirror if ( SurfIsOffscreen( drawSurf, clipDest ) ) { return qfalse; } // save old viewParms so we can return to it after the mirror view oldParms = tr.viewParms; newParms = tr.viewParms; newParms.isPortal = qtrue; if ( !R_GetPortalOrientations( drawSurf, entityNum, &surface, &camera, newParms.pvsOrigin, &newParms.isMirror ) ) { return qfalse; // bad portal, no portalentity } R_MirrorPoint (oldParms.ori.origin, &surface, &camera, newParms.ori.origin ); VectorSubtract( vec3_origin, camera.axis[0], newParms.portalPlane.normal ); newParms.portalPlane.dist = DotProduct( camera.origin, newParms.portalPlane.normal ); R_MirrorVector (oldParms.ori.axis[0], &surface, &camera, newParms.ori.axis[0]); R_MirrorVector (oldParms.ori.axis[1], &surface, &camera, newParms.ori.axis[1]); R_MirrorVector (oldParms.ori.axis[2], &surface, &camera, newParms.ori.axis[2]); // OPTIMIZE: restrict the viewport on the mirrored view // render the mirror view R_RenderView (&newParms); tr.viewParms = oldParms; return qtrue; } /* ================= R_SpriteFogNum See if a sprite is inside a fog volume ================= */ int R_SpriteFogNum( trRefEntity_t *ent ) { int i; jk_fog_t *fog; if ( tr.refdef.rdflags & RDF_NOWORLDMODEL ) { return 0; } if ( tr.refdef.doLAGoggles ) { return tr.world->numfogs; } int partialFog = 0; for ( i = 1 ; i < tr.world->numfogs ; i++ ) { fog = &tr.world->fogs[i]; if ( ent->e.origin[0] - ent->e.radius >= fog->bounds[0][0] && ent->e.origin[0] + ent->e.radius <= fog->bounds[1][0] && ent->e.origin[1] - ent->e.radius >= fog->bounds[0][1] && ent->e.origin[1] + ent->e.radius <= fog->bounds[1][1] && ent->e.origin[2] - ent->e.radius >= fog->bounds[0][2] && ent->e.origin[2] + ent->e.radius <= fog->bounds[1][2] ) {//totally inside it return i; break; } if ( ( ent->e.origin[0] - ent->e.radius >= fog->bounds[0][0] && ent->e.origin[1] - ent->e.radius >= fog->bounds[0][1] && ent->e.origin[2] - ent->e.radius >= fog->bounds[0][2] && ent->e.origin[0] - ent->e.radius <= fog->bounds[1][0] && ent->e.origin[1] - ent->e.radius <= fog->bounds[1][1] && ent->e.origin[2] - ent->e.radius <= fog->bounds[1][2] ) || ( ent->e.origin[0] + ent->e.radius >= fog->bounds[0][0] && ent->e.origin[1] + ent->e.radius >= fog->bounds[0][1] && ent->e.origin[2] + ent->e.radius >= fog->bounds[0][2] && ent->e.origin[0] + ent->e.radius <= fog->bounds[1][0] && ent->e.origin[1] + ent->e.radius <= fog->bounds[1][1] && ent->e.origin[2] + ent->e.radius <= fog->bounds[1][2] ) ) {//partially inside it if ( tr.refdef.fogIndex == i || R_FogParmsMatch( tr.refdef.fogIndex, i ) ) {//take new one only if it's the same one that the viewpoint is in return i; break; } else if ( !partialFog ) {//first partialFog partialFog = i; } } } return partialFog; } /* ========================================================================================== DRAWSURF SORTING ========================================================================================== */ /* =============== R_Radix =============== */ static QINLINE void R_Radix( int byte, int size, drawSurf_t *source, drawSurf_t *dest ) { int count[ 256 ] = { 0 }; int index[ 256 ]; int i; unsigned char *sortKey = NULL; unsigned char *end = NULL; sortKey = ( (unsigned char *)&source[ 0 ].sort ) + byte; end = sortKey + ( size * sizeof( drawSurf_t ) ); for( ; sortKey < end; sortKey += sizeof( drawSurf_t ) ) ++count[ *sortKey ]; index[ 0 ] = 0; for( i = 1; i < 256; ++i ) index[ i ] = index[ i - 1 ] + count[ i - 1 ]; sortKey = ( (unsigned char *)&source[ 0 ].sort ) + byte; for( i = 0; i < size; ++i, sortKey += sizeof( drawSurf_t ) ) dest[ index[ *sortKey ]++ ] = source[ i ]; } /* =============== R_RadixSort Radix sort with 4 byte size buckets =============== */ static void R_RadixSort( drawSurf_t *source, int size ) { static drawSurf_t scratch[ MAX_DRAWSURFS ]; #ifdef Q3_LITTLE_ENDIAN R_Radix( 0, size, source, scratch ); R_Radix( 1, size, scratch, source ); R_Radix( 2, size, source, scratch ); R_Radix( 3, size, scratch, source ); #else R_Radix( 3, size, source, scratch ); R_Radix( 2, size, scratch, source ); R_Radix( 1, size, source, scratch ); R_Radix( 0, size, scratch, source ); #endif //Q3_LITTLE_ENDIAN } //========================================================================================== /* ================= R_AddDrawSurf ================= */ void R_AddDrawSurf( const surfaceType_t *surface, const jk_shader_t *shader, int fogIndex, int dlightMap ) { int index; // instead of checking for overflow, we just mask the index // so it wraps around index = tr.refdef.numDrawSurfs & DRAWSURF_MASK; if ( tr.refdef.doLAGoggles ) { fogIndex = tr.world->numfogs; } if ( (shader->surfaceFlags & SURF_FORCESIGHT) && !(tr.refdef.rdflags & RDF_ForceSightOn) ) { //if shader is only seen with ForceSight and we don't have ForceSight on, then don't draw return; } // the sort data is packed into a single 32 bit value so it can be // compared quickly during the qsorting process tr.refdef.drawSurfs[index].sort = (shader->sortedIndex << QSORT_SHADERNUM_SHIFT) | tr.shiftedEntityNum | ( fogIndex << QSORT_FOGNUM_SHIFT ) | (int)dlightMap; tr.refdef.drawSurfs[index].surface = (surfaceType_t *)surface; tr.refdef.numDrawSurfs++; } /* ================= R_DecomposeSort ================= */ void R_DecomposeSort( unsigned sort, int *entityNum, jk_shader_t **shader, int *fogNum, int *dlightMap ) { *fogNum = ( sort >> QSORT_FOGNUM_SHIFT ) & 31; *shader = tr.sortedShaders[ ( sort >> QSORT_SHADERNUM_SHIFT ) & (MAX_SHADERS-1) ]; *entityNum = ( sort >> QSORT_REFENTITYNUM_SHIFT ) & REFENTITYNUM_MASK; *dlightMap = sort & 3; } /* ================= R_SortDrawSurfs ================= */ void R_SortDrawSurfs( drawSurf_t *drawSurfs, int numDrawSurfs ) { jk_shader_t *shader; int fogNum; int entityNum; int dlighted; // it is possible for some views to not have any surfaces if ( numDrawSurfs < 1 ) { // we still need to add it for hyperspace cases R_AddDrawSurfCmd( drawSurfs, numDrawSurfs ); return; } // if we overflowed MAX_DRAWSURFS, the drawsurfs // wrapped around in the buffer and we will be missing // the first surfaces, not the last ones if ( numDrawSurfs > MAX_DRAWSURFS ) { numDrawSurfs = MAX_DRAWSURFS; } // sort the drawsurfs by sort type, then orientation, then shader R_RadixSort( drawSurfs, numDrawSurfs ); // check for any pass through drawing, which // may cause another view to be rendered first for ( int i = 0 ; i < numDrawSurfs ; i++ ) { R_DecomposeSort( (drawSurfs+i)->sort, &entityNum, &shader, &fogNum, &dlighted ); if ( shader->sort > SS_PORTAL ) { break; } // no shader should ever have this sort type if ( shader->sort == SS_BAD ) { Com_Error (ERR_DROP, "Shader '%s'with sort == SS_BAD", shader->name ); } // if the mirror was completely clipped away, we may need to check another surface if ( R_MirrorViewBySurface( (drawSurfs+i), entityNum) ) { // this is a debug option to see exactly what is being mirrored if ( r_portalOnly->integer ) { return; } break; // only one mirror view at a time } } R_AddDrawSurfCmd( drawSurfs, numDrawSurfs ); } /* ============= R_AddEntitySurfaces ============= */ void R_AddEntitySurfaces (void) { trRefEntity_t *ent; jk_shader_t *shader; if ( !r_drawentities->integer ) { return; } for ( tr.currentEntityNum = 0; tr.currentEntityNum < tr.refdef.num_entities; tr.currentEntityNum++ ) { ent = tr.currentEntity = &tr.refdef.entities[tr.currentEntityNum]; ent->needDlights = qfalse; // preshift the value we are going to OR into the drawsurf sort tr.shiftedEntityNum = tr.currentEntityNum << QSORT_REFENTITYNUM_SHIFT; if ((ent->e.renderfx & RF_ALPHA_FADE)) { // we need to make sure this is not sorted before the world..in fact we // want this to be sorted quite late...like how about last. // I don't want to use the highest bit, since no doubt someone fumbled // handling that as an unsigned quantity somewhere tr.shiftedEntityNum |= 0x80000000; } // // the weapon model must be handled special -- // we don't want the hacked weapon position showing in // mirrors, because the true body position will already be drawn // if ( (ent->e.renderfx & RF_FIRST_PERSON) && tr.viewParms.isPortal) { continue; } // simple generated models, like sprites and beams, are not culled switch ( ent->e.reType ) { case RT_PORTALSURFACE: break; // don't draw anything case RT_SPRITE: case RT_ORIENTED_QUAD: case RT_BEAM: case RT_CYLINDER: case RT_LATHE: case RT_CLOUDS: case RT_LINE: case RT_ELECTRICITY: case RT_SABER_GLOW: // self blood sprites, talk balloons, etc should not be drawn in the primary // view. We can't just do this check for all entities, because md3 // entities may still want to cast shadows from them if ( (ent->e.renderfx & RF_THIRD_PERSON) && !tr.viewParms.isPortal) { continue; } shader = R_GetShaderByHandle( ent->e.customShader ); R_AddDrawSurf( &entitySurface, shader, R_SpriteFogNum( ent ), 0 ); break; case RT_MODEL: // we must set up parts of tr.or for model culling R_RotateForEntity( ent, &tr.viewParms, &tr.ori ); tr.currentModel = R_GetModelByHandle( ent->e.hModel ); if (!tr.currentModel) { R_AddDrawSurf( &entitySurface, tr.defaultShader, 0, 0 ); } else { switch ( tr.currentModel->type ) { case MOD_MESH: R_AddMD3Surfaces( ent ); break; case MOD_BRUSH: R_AddBrushModelSurfaces( ent ); break; /* Ghoul2 Insert Start */ case MOD_MDXM: R_AddGhoulSurfaces( ent); break; case MOD_BAD: // null model axis if ( (ent->e.renderfx & RF_THIRD_PERSON) && !tr.viewParms.isPortal) { if (!(ent->e.renderfx & RF_SHADOW_ONLY)) { break; } } if (ent->e.ghoul2 && G2API_HaveWeGhoul2Models(*((CGhoul2Info_v *)ent->e.ghoul2))) { R_AddGhoulSurfaces( ent); break; } R_AddDrawSurf( &entitySurface, tr.defaultShader, 0, false ); break; /* Ghoul2 Insert End */ default: Com_Error( ERR_DROP, "R_AddEntitySurfaces: Bad modeltype" ); break; } } break; default: Com_Error( ERR_DROP, "R_AddEntitySurfaces: Bad reType" ); } } } /* ==================== R_GenerateDrawSurfs ==================== */ void R_GenerateDrawSurfs( void ) { R_AddWorldSurfaces (); R_AddPolygonSurfaces(); // set the projection matrix with the minimum zfar // now that we have the world bounded // this needs to be done before entities are // added, because they use the projection // matrix for lod calculation R_SetupProjection (); R_AddEntitySurfaces (); } /* ================ R_DebugPolygon ================ */ void R_DebugPolygon( int color, int numPoints, float *points ) { int i; GL_State( GLS_DEPTHMASK_TRUE | GLS_SRCBLEND_ONE | GLS_DSTBLEND_ONE ); // draw solid shade #ifdef HAVE_GLES qglColor4f( color&1, (color>>1)&1, (color>>2)&1, 1.0f ); qglVertexPointer ( 3, GL_FLOAT, 0, points ); qglDrawArrays( GL_TRIANGLE_FAN, 0, numPoints ); #else qglColor3f( color&1, (color>>1)&1, (color>>2)&1 ); qglBegin( GL_POLYGON ); for ( i = 0 ; i < numPoints ; i++ ) { qglVertex3fv( points + i * 3 ); } qglEnd(); #endif // draw wireframe outline #ifndef HAVE_GLES GL_State( GLS_POLYMODE_LINE | GLS_DEPTHMASK_TRUE | GLS_SRCBLEND_ONE | GLS_DSTBLEND_ONE ); #endif qglDepthRange( 0, 0 ); #ifdef HAVE_GLES qglColor4f( 1.0f, 1.0f, 1.0f, 1.0f ); qglVertexPointer ( 3, GL_FLOAT, 0, points ); qglDrawArrays( GL_LINES, 0, numPoints ); #else qglColor3f( 1, 1, 1 ); qglBegin( GL_POLYGON ); for ( i = 0 ; i < numPoints ; i++ ) { qglVertex3fv( points + i * 3 ); } qglEnd(); #endif qglDepthRange( 0, 1 ); } /* ==================== R_DebugGraphics Visualization aid for movement clipping debugging ==================== */ void R_DebugGraphics( void ) { if ( !r_debugSurface->integer ) { return; } // the render thread can't make callbacks to the main thread R_IssuePendingRenderCommands(); // GL_Bind( tr.whiteImage); GL_Cull( CT_FRONT_SIDED ); ri.CM_DrawDebugSurface( R_DebugPolygon ); } qboolean R_FogParmsMatch( int fog1, int fog2 ) { for ( int i = 0; i < 2; i++ ) { if ( tr.world->fogs[fog1].parms.color[i] != tr.world->fogs[fog2].parms.color[i] ) { return qfalse; } } return qtrue; } void R_SetViewFogIndex (void) { if ( tr.world->numfogs > 1 ) {//more than just the LA goggles jk_fog_t *fog; int contents = ri.SV_PointContents( tr.refdef.vieworg, 0 ); if ( (contents&CONTENTS_FOG) ) {//only take a tr.refdef.fogIndex if the tr.refdef.vieworg is actually *in* that fog brush (assumption: checks pointcontents for any CONTENTS_FOG, not that particular brush...) for ( tr.refdef.fogIndex = 1 ; tr.refdef.fogIndex < tr.world->numfogs ; tr.refdef.fogIndex++ ) { fog = &tr.world->fogs[tr.refdef.fogIndex]; if ( tr.refdef.vieworg[0] >= fog->bounds[0][0] && tr.refdef.vieworg[1] >= fog->bounds[0][1] && tr.refdef.vieworg[2] >= fog->bounds[0][2] && tr.refdef.vieworg[0] <= fog->bounds[1][0] && tr.refdef.vieworg[1] <= fog->bounds[1][1] && tr.refdef.vieworg[2] <= fog->bounds[1][2] ) { break; } } if ( tr.refdef.fogIndex == tr.world->numfogs ) { tr.refdef.fogIndex = 0; } } else { tr.refdef.fogIndex = 0; } } else { tr.refdef.fogIndex = 0; } } void RE_SetLightStyle(int style, int colors ); /* ================ R_RenderView A view may be either the actual camera view, or a mirror / remote location ================ */ void R_RenderView (viewParms_t *parms) { int firstDrawSurf; if ( parms->viewportWidth <= 0 || parms->viewportHeight <= 0 ) { return; } if (r_debugStyle->integer >= 0) { int i; color4ub_t whitecolor = {0xff, 0xff, 0xff, 0xff}; color4ub_t blackcolor = {0x00, 0x00, 0x00, 0xff}; byteAlias_t *ba = (byteAlias_t *)&blackcolor; for ( i = 0; i < MAX_LIGHT_STYLES; i++ ) { RE_SetLightStyle( i, ba->i ); } ba = (byteAlias_t *)&whitecolor; RE_SetLightStyle( r_debugStyle->integer, ba->i ); } tr.viewCount++; tr.viewParms = *parms; tr.viewParms.frameSceneNum = tr.frameSceneNum; tr.viewParms.frameCount = tr.frameCount; firstDrawSurf = tr.refdef.numDrawSurfs; tr.viewCount++; // set viewParms.world R_RotateForViewer (); R_SetupFrustum (); if (!(tr.refdef.rdflags & RDF_NOWORLDMODEL)) { // Trying to do this with no world is not good. R_SetViewFogIndex (); } R_GenerateDrawSurfs(); R_SortDrawSurfs( tr.refdef.drawSurfs + firstDrawSurf, tr.refdef.numDrawSurfs - firstDrawSurf ); // draw main system development information (surface outlines, etc) R_DebugGraphics(); }