/*
===========================================================================
Copyright (C) 1999 - 2005, Id Software, Inc.
Copyright (C) 2000 - 2013, Raven Software, Inc.
Copyright (C) 2001 - 2013, Activision, Inc.
Copyright (C) 2005 - 2015, ioquake3 contributors
Copyright (C) 2013 - 2015, OpenJK contributors
This file is part of the OpenJK source code.
OpenJK is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License version 2 as
published by the Free Software Foundation.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, see .
===========================================================================
*/
// tr_main.c -- main control flow for each frame
#include "../server/exe_headers.h"
#include "tr_local.h"
#include
#if !defined(G2_H_INC)
#include "../ghoul2/G2.h"
#endif
trGlobals_t tr;
vr_client_info_t *vr;
static float s_flipMatrix[16] = {
// convert from our coordinate system (looking down X)
// to OpenGL's coordinate system (looking down -Z)
0, 0, -1, 0,
-1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 0, 1
};
refimport_t ri;
// entities that will have procedurally generated surfaces will just
// point at this for their sorting surface
surfaceType_t entitySurface = SF_ENTITY;
/*
=================
R_CullLocalBox
Returns CULL_IN, CULL_CLIP, or CULL_OUT
=================
*/
int R_CullLocalBox (const vec3_t bounds[2]) {
int i, j;
vec3_t transformed[8];
float dists[8];
vec3_t v;
cplane_t *frust;
int anyBack;
int front, back;
if ( r_nocull->integer==1 ) {
return CULL_CLIP;
}
// transform into world space
for (i = 0 ; i < 8 ; i++) {
v[0] = bounds[i&1][0];
v[1] = bounds[(i>>1)&1][1];
v[2] = bounds[(i>>2)&1][2];
VectorCopy( tr.ori.origin, transformed[i] );
VectorMA( transformed[i], v[0], tr.ori.axis[0], transformed[i] );
VectorMA( transformed[i], v[1], tr.ori.axis[1], transformed[i] );
VectorMA( transformed[i], v[2], tr.ori.axis[2], transformed[i] );
}
// check against frustum planes
anyBack = 0;
for (i = 0 ; i < 5 ; i++) {
frust = &tr.viewParms.frustum[i];
front = back = 0;
for (j = 0 ; j < 8 ; j++) {
dists[j] = DotProduct(transformed[j], frust->normal);
if ( dists[j] > frust->dist ) {
front = 1;
if ( back ) {
break; // a point is in front
}
} else {
back = 1;
}
}
if ( !front ) {
// all points were behind one of the planes
return CULL_OUT;
}
anyBack |= back;
}
if ( !anyBack ) {
return CULL_IN; // completely inside frustum
}
return CULL_CLIP; // partially clipped
}
/*
** R_CullLocalPointAndRadius
*/
int R_CullLocalPointAndRadius( const vec3_t pt, float radius )
{
vec3_t transformed;
R_LocalPointToWorld( pt, transformed );
return R_CullPointAndRadius( transformed, radius );
}
/*
** R_CullPointAndRadius
*/
int R_CullPointAndRadius( const vec3_t pt, float radius )
{
int i;
float dist;
cplane_t *frust;
qboolean mightBeClipped = qfalse;
if ( r_nocull->integer==1 ) {
return CULL_CLIP;
}
// check against frustum planes
#ifdef JK2_MODE
// They used 4 frustrum planes in JK2, and 5 in JKA --eez
for (i = 0 ; i < 4 ; i++)
{
frust = &tr.viewParms.frustum[i];
dist = DotProduct( pt, frust->normal) - frust->dist;
if ( dist < -radius )
{
return CULL_OUT;
}
else if ( dist <= radius )
{
mightBeClipped = qtrue;
}
}
#else
for (i = 0 ; i < 5 ; i++)
{
frust = &tr.viewParms.frustum[i];
dist = DotProduct( pt, frust->normal) - frust->dist;
if ( dist < -radius )
{
return CULL_OUT;
}
else if ( dist <= radius )
{
mightBeClipped = qtrue;
}
}
#endif
if ( mightBeClipped )
{
return CULL_CLIP;
}
return CULL_IN; // completely inside frustum
}
/*
=================
R_LocalNormalToWorld
=================
*/
void R_LocalNormalToWorld (const vec3_t local, vec3_t world) {
world[0] = local[0] * tr.ori.axis[0][0] + local[1] * tr.ori.axis[1][0] + local[2] * tr.ori.axis[2][0];
world[1] = local[0] * tr.ori.axis[0][1] + local[1] * tr.ori.axis[1][1] + local[2] * tr.ori.axis[2][1];
world[2] = local[0] * tr.ori.axis[0][2] + local[1] * tr.ori.axis[1][2] + local[2] * tr.ori.axis[2][2];
}
/*
=================
R_LocalPointToWorld
=================
*/
void R_LocalPointToWorld (const vec3_t local, vec3_t world) {
world[0] = local[0] * tr.ori.axis[0][0] + local[1] * tr.ori.axis[1][0] + local[2] * tr.ori.axis[2][0] + tr.ori.origin[0];
world[1] = local[0] * tr.ori.axis[0][1] + local[1] * tr.ori.axis[1][1] + local[2] * tr.ori.axis[2][1] + tr.ori.origin[1];
world[2] = local[0] * tr.ori.axis[0][2] + local[1] * tr.ori.axis[1][2] + local[2] * tr.ori.axis[2][2] + tr.ori.origin[2];
}
float preTransEntMatrix[16];
void R_InvertMatrix(float *sourcemat, float *destmat)
{
int i, j, temp=0;
for (i = 0; i < 3; i++)
{
for (j = 0; j < 3; j++)
{
destmat[j*4 + i] = sourcemat[temp++];
}
}
for (i = 0; i < 3; i++)
{
temp = i*4;
destmat[temp+3]=0; // destmat[destmat[i][3]=0;
for (j = 0; j < 3; j++)
{
destmat[temp+3]-=destmat[temp+j]*sourcemat[j*4+3]; // dest->matrix[i][3]-=dest->matrix[i][j]*src->matrix[j][3];
}
}
}
/*
=================
R_WorldNormalToEntity
=================
*/
void R_WorldNormalToEntity (const vec3_t worldvec, vec3_t entvec)
{
entvec[0] = -worldvec[0] * preTransEntMatrix[0] - worldvec[1] * preTransEntMatrix[4] + worldvec[2] * preTransEntMatrix[8];
entvec[1] = -worldvec[0] * preTransEntMatrix[1] - worldvec[1] * preTransEntMatrix[5] + worldvec[2] * preTransEntMatrix[9];
entvec[2] = -worldvec[0] * preTransEntMatrix[2] - worldvec[1] * preTransEntMatrix[6] + worldvec[2] * preTransEntMatrix[10];
}
/*
=================
R_WorldPointToEntity
=================
*/
/*void R_WorldPointToEntity (vec3_t worldvec, vec3_t entvec)
{
entvec[0] = worldvec[0] * preTransEntMatrix[0] + worldvec[1] * preTransEntMatrix[4] + worldvec[2] * preTransEntMatrix[8]+preTransEntMatrix[12];
entvec[1] = worldvec[0] * preTransEntMatrix[1] + worldvec[1] * preTransEntMatrix[5] + worldvec[2] * preTransEntMatrix[9]+preTransEntMatrix[13];
entvec[2] = worldvec[0] * preTransEntMatrix[2] + worldvec[1] * preTransEntMatrix[6] + worldvec[2] * preTransEntMatrix[10]+preTransEntMatrix[14];
}
*/
/*
=================
R_WorldToLocal
=================
*/
void R_WorldToLocal (vec3_t world, vec3_t local) {
local[0] = DotProduct(world, tr.ori.axis[0]);
local[1] = DotProduct(world, tr.ori.axis[1]);
local[2] = DotProduct(world, tr.ori.axis[2]);
}
/*
==========================
R_TransformModelToClip
==========================
*/
void R_TransformModelToClip( const vec3_t src, const float *modelMatrix, const float *projectionMatrix,
vec4_t eye, vec4_t dst ) {
int i;
for ( i = 0 ; i < 4 ; i++ ) {
eye[i] =
src[0] * modelMatrix[ i + 0 * 4 ] +
src[1] * modelMatrix[ i + 1 * 4 ] +
src[2] * modelMatrix[ i + 2 * 4 ] +
1 * modelMatrix[ i + 3 * 4 ];
}
for ( i = 0 ; i < 4 ; i++ ) {
dst[i] =
eye[0] * projectionMatrix[ i + 0 * 4 ] +
eye[1] * projectionMatrix[ i + 1 * 4 ] +
eye[2] * projectionMatrix[ i + 2 * 4 ] +
eye[3] * projectionMatrix[ i + 3 * 4 ];
}
}
/*
==========================
R_TransformClipToWindow
==========================
*/
void R_TransformClipToWindow( const vec4_t clip, const viewParms_t *view, vec4_t normalized, vec4_t window ) {
normalized[0] = clip[0] / clip[3];
normalized[1] = clip[1] / clip[3];
normalized[2] = ( clip[2] + clip[3] ) / ( 2 * clip[3] );
window[0] = 0.5 * ( 1.0 + normalized[0] ) * view->viewportWidth;
window[1] = 0.5 * ( 1.0 + normalized[1] ) * view->viewportHeight;
window[2] = normalized[2];
window[0] = (int) ( window[0] + 0.5 );
window[1] = (int) ( window[1] + 0.5 );
}
/*
==========================
myGlMultMatrix
==========================
*/
void myGlMultMatrix( const float *a, const float *b, float *out ) {
int i, j;
for ( i = 0 ; i < 4 ; i++ ) {
for ( j = 0 ; j < 4 ; j++ ) {
out[ i * 4 + j ] =
a [ i * 4 + 0 ] * b [ 0 * 4 + j ]
+ a [ i * 4 + 1 ] * b [ 1 * 4 + j ]
+ a [ i * 4 + 2 ] * b [ 2 * 4 + j ]
+ a [ i * 4 + 3 ] * b [ 3 * 4 + j ];
}
}
}
/*
=================
R_RotateForEntity
Generates an orientation for an entity and viewParms
Does NOT produce any GL calls
Called by both the front end and the back end
=================
*/
void R_RotateForEntity( const trRefEntity_t *ent, const viewParms_t *viewParms,
orientationr_t *ori ) {
// float glMatrix[16];
vec3_t delta;
float axisLength;
if ( ent->e.reType != RT_MODEL ) {
*ori = viewParms->world;
return;
}
VectorCopy( ent->e.origin, ori->origin );
VectorCopy( ent->e.axis[0], ori->axis[0] );
VectorCopy( ent->e.axis[1], ori->axis[1] );
VectorCopy( ent->e.axis[2], ori->axis[2] );
preTransEntMatrix[0] = ori->axis[0][0];
preTransEntMatrix[4] = ori->axis[1][0];
preTransEntMatrix[8] = ori->axis[2][0];
preTransEntMatrix[12] = ori->origin[0];
preTransEntMatrix[1] = ori->axis[0][1];
preTransEntMatrix[5] = ori->axis[1][1];
preTransEntMatrix[9] = ori->axis[2][1];
preTransEntMatrix[13] = ori->origin[1];
preTransEntMatrix[2] = ori->axis[0][2];
preTransEntMatrix[6] = ori->axis[1][2];
preTransEntMatrix[10] = ori->axis[2][2];
preTransEntMatrix[14] = ori->origin[2];
preTransEntMatrix[3] = 0;
preTransEntMatrix[7] = 0;
preTransEntMatrix[11] = 0;
preTransEntMatrix[15] = 1;
myGlMultMatrix( preTransEntMatrix, viewParms->world.modelMatrix, ori->modelMatrix );
// calculate the viewer origin in the model's space
// needed for fog, specular, and environment mapping
VectorSubtract( viewParms->ori.origin, ori->origin, delta );
// compensate for scale in the axes if necessary
if ( ent->e.nonNormalizedAxes ) {
axisLength = VectorLength( ent->e.axis[0] );
if ( !axisLength ) {
axisLength = 0;
} else {
axisLength = 1.0 / axisLength;
}
} else {
axisLength = 1.0;
}
ori->viewOrigin[0] = DotProduct( delta, ori->axis[0] ) * axisLength;
ori->viewOrigin[1] = DotProduct( delta, ori->axis[1] ) * axisLength;
ori->viewOrigin[2] = DotProduct( delta, ori->axis[2] ) * axisLength;
}
/*
=================
R_RotateForViewer
Sets up the modelview matrix for a given viewParm
=================
*/
void R_RotateForViewer (void)
{
float viewerMatrix[16];
vec3_t origin;
memset (&tr.ori, 0, sizeof(tr.ori));
tr.ori.axis[0][0] = 1;
tr.ori.axis[1][1] = 1;
tr.ori.axis[2][2] = 1;
VectorCopy (tr.viewParms.ori.origin, tr.ori.viewOrigin);
// transform by the camera placement
VectorCopy( tr.viewParms.ori.origin, origin );
viewerMatrix[0] = tr.viewParms.ori.axis[0][0];
viewerMatrix[4] = tr.viewParms.ori.axis[0][1];
viewerMatrix[8] = tr.viewParms.ori.axis[0][2];
viewerMatrix[12] = -origin[0] * viewerMatrix[0] + -origin[1] * viewerMatrix[4] + -origin[2] * viewerMatrix[8];
viewerMatrix[1] = tr.viewParms.ori.axis[1][0];
viewerMatrix[5] = tr.viewParms.ori.axis[1][1];
viewerMatrix[9] = tr.viewParms.ori.axis[1][2];
viewerMatrix[13] = -origin[0] * viewerMatrix[1] + -origin[1] * viewerMatrix[5] + -origin[2] * viewerMatrix[9];
viewerMatrix[2] = tr.viewParms.ori.axis[2][0];
viewerMatrix[6] = tr.viewParms.ori.axis[2][1];
viewerMatrix[10] = tr.viewParms.ori.axis[2][2];
viewerMatrix[14] = -origin[0] * viewerMatrix[2] + -origin[1] * viewerMatrix[6] + -origin[2] * viewerMatrix[10];
viewerMatrix[3] = 0;
viewerMatrix[7] = 0;
viewerMatrix[11] = 0;
viewerMatrix[15] = 1;
// convert from our coordinate system (looking down X)
// to OpenGL's coordinate system (looking down -Z)
myGlMultMatrix( viewerMatrix, s_flipMatrix, tr.ori.modelMatrix );
tr.viewParms.world = tr.ori;
}
/*
** SetFarClip
*/
static void SetFarClip( void )
{
float farthestCornerDistance = 0;
int i;
// if not rendering the world (icons, menus, etc)
// set a 2k far clip plane
if ( tr.refdef.rdflags & RDF_NOWORLDMODEL ) {
tr.viewParms.zFar = 2048;
return;
}
//
// set far clipping planes dynamically
//
for ( i = 0; i < 8; i++ )
{
vec3_t v;
float distance;
if ( i & 1 )
{
v[0] = tr.viewParms.visBounds[0][0];
}
else
{
v[0] = tr.viewParms.visBounds[1][0];
}
if ( i & 2 )
{
v[1] = tr.viewParms.visBounds[0][1];
}
else
{
v[1] = tr.viewParms.visBounds[1][1];
}
if ( i & 4 )
{
v[2] = tr.viewParms.visBounds[0][2];
}
else
{
v[2] = tr.viewParms.visBounds[1][2];
}
distance = DistanceSquared(tr.viewParms.ori.origin, v);
if ( distance > farthestCornerDistance )
{
farthestCornerDistance = distance;
}
}
// Bring in the zFar to the distanceCull distance
// The sky renders at zFar so need to move it out a little
// ...and make sure there is a minimum zfar to prevent problems
tr.viewParms.zFar = Com_Clamp(2048.0f, tr.distanceCull * (1.732), sqrtf( farthestCornerDistance ));
}
/*
===============
R_SetupProjection
===============
*/
void R_SetupProjection( void ) {
float xmin, xmax, ymin, ymax;
float width, height, depth;
float zNear, zFar;
// dynamically compute far clip plane distance
SetFarClip();
//
// set up projection matrix
//
zNear = r_znear->value;
zFar = tr.viewParms.zFar;
if (!tr.refdef.override_fov &&
ri.TBXR_GetVRProjection((int)tr.stereoFrame, zNear, zFar, tr.viewParms.projectionMatrix))
{
return;
}
ymax = zNear * tan( tr.refdef.fov_y * M_PI / 360.0f );
ymin = -ymax;
xmax = zNear * tan( tr.refdef.fov_x * M_PI / 360.0f );
xmin = -xmax;
width = xmax - xmin;
height = ymax - ymin;
depth = zFar - zNear;
tr.viewParms.projectionMatrix[0] = 2 * zNear / width;
tr.viewParms.projectionMatrix[4] = 0;
tr.viewParms.projectionMatrix[8] = ( xmax + xmin ) / width; // normally 0
tr.viewParms.projectionMatrix[12] = 0;
tr.viewParms.projectionMatrix[1] = 0;
tr.viewParms.projectionMatrix[5] = 2 * zNear / height;
tr.viewParms.projectionMatrix[9] = ( ymax + ymin ) / height; // normally 0
tr.viewParms.projectionMatrix[13] = 0;
tr.viewParms.projectionMatrix[2] = 0;
tr.viewParms.projectionMatrix[6] = 0;
tr.viewParms.projectionMatrix[10] = -( zFar + zNear ) / depth;
tr.viewParms.projectionMatrix[14] = -2 * zFar * zNear / depth;
tr.viewParms.projectionMatrix[3] = 0;
tr.viewParms.projectionMatrix[7] = 0;
tr.viewParms.projectionMatrix[11] = -1;
tr.viewParms.projectionMatrix[15] = 0;
}
/*
=================
R_SetupFrustum
Setup that culling frustum planes for the current view
=================
*/
void R_SetupFrustum (void) {
int i;
float xs, xc;
float ang;
ang = tr.viewParms.fovX / 180 * M_PI * 0.5;
xs = sin( ang );
xc = cos( ang );
VectorScale( tr.viewParms.ori.axis[0], xs, tr.viewParms.frustum[0].normal );
VectorMA( tr.viewParms.frustum[0].normal, xc, tr.viewParms.ori.axis[1], tr.viewParms.frustum[0].normal );
VectorScale( tr.viewParms.ori.axis[0], xs, tr.viewParms.frustum[1].normal );
VectorMA( tr.viewParms.frustum[1].normal, -xc, tr.viewParms.ori.axis[1], tr.viewParms.frustum[1].normal );
ang = tr.viewParms.fovY / 180 * M_PI * 0.5;
xs = sin( ang );
xc = cos( ang );
VectorScale( tr.viewParms.ori.axis[0], xs, tr.viewParms.frustum[2].normal );
VectorMA( tr.viewParms.frustum[2].normal, xc, tr.viewParms.ori.axis[2], tr.viewParms.frustum[2].normal );
VectorScale( tr.viewParms.ori.axis[0], xs, tr.viewParms.frustum[3].normal );
VectorMA( tr.viewParms.frustum[3].normal, -xc, tr.viewParms.ori.axis[2], tr.viewParms.frustum[3].normal );
// this is the far plane
VectorScale( tr.viewParms.ori.axis[0],-1.0f, tr.viewParms.frustum[4].normal );
for (i=0 ; i<5 ; i++) {
tr.viewParms.frustum[i].type = PLANE_NON_AXIAL;
tr.viewParms.frustum[i].dist = DotProduct (tr.viewParms.ori.origin, tr.viewParms.frustum[i].normal);
if (i==4)
{
// far plane does not go through the view point, it goes alot farther..
tr.viewParms.frustum[i].dist -= tr.distanceCull*1.02f; // a little slack so we don't cull stuff
}
SetPlaneSignbits( &tr.viewParms.frustum[i] );
}
}
/*
=================
R_MirrorPoint
=================
*/
void R_MirrorPoint (vec3_t in, orientation_t *surface, orientation_t *camera, vec3_t out) {
int i;
vec3_t local;
vec3_t transformed;
float d;
VectorSubtract( in, surface->origin, local );
VectorClear( transformed );
for ( i = 0 ; i < 3 ; i++ ) {
d = DotProduct(local, surface->axis[i]);
VectorMA( transformed, d, camera->axis[i], transformed );
}
VectorAdd( transformed, camera->origin, out );
}
void R_MirrorVector (vec3_t in, orientation_t *surface, orientation_t *camera, vec3_t out) {
int i;
float d;
VectorClear( out );
for ( i = 0 ; i < 3 ; i++ ) {
d = DotProduct(in, surface->axis[i]);
VectorMA( out, d, camera->axis[i], out );
}
}
/*
=============
R_PlaneForSurface
=============
*/
void R_PlaneForSurface (surfaceType_t *surfType, cplane_t *plane) {
srfTriangles_t *tri;
srfGridMesh_t *grid;
srfPoly_t *poly;
drawVert_t *v1, *v2, *v3;
vec4_t plane4;
if (!surfType) {
memset (plane, 0, sizeof(*plane));
plane->normal[0] = 1;
return;
}
switch (*surfType) {
case SF_FACE:
*plane = ((srfSurfaceFace_t *)surfType)->plane;
return;
case SF_TRIANGLES:
tri = (srfTriangles_t *)surfType;
v1 = tri->verts + tri->indexes[0];
v2 = tri->verts + tri->indexes[1];
v3 = tri->verts + tri->indexes[2];
PlaneFromPoints( plane4, v1->xyz, v2->xyz, v3->xyz );
VectorCopy( plane4, plane->normal );
plane->dist = plane4[3];
return;
case SF_POLY:
poly = (srfPoly_t *)surfType;
PlaneFromPoints( plane4, poly->verts[0].xyz, poly->verts[1].xyz, poly->verts[2].xyz );
VectorCopy( plane4, plane->normal );
plane->dist = plane4[3];
return;
case SF_GRID:
grid = (srfGridMesh_t *)surfType;
v1 = &grid->verts[0];
v2 = &grid->verts[1];
v3 = &grid->verts[2];
PlaneFromPoints( plane4, v3->xyz, v2->xyz, v1->xyz );
VectorCopy( plane4, plane->normal );
plane->dist = plane4[3];
return;
default:
memset (plane, 0, sizeof(*plane));
plane->normal[0] = 1;
return;
}
}
/*
=================
R_GetPortalOrientation
entityNum is the entity that the portal surface is a part of, which may
be moving and rotating.
Returns qtrue if it should be mirrored
=================
*/
qboolean R_GetPortalOrientations( drawSurf_t *drawSurf, int entityNum,
orientation_t *surface, orientation_t *camera,
vec3_t pvsOrigin, qboolean *mirror ) {
int i;
cplane_t originalPlane, plane;
trRefEntity_t *e;
float d;
vec3_t transformed;
// create plane axis for the portal we are seeing
R_PlaneForSurface( drawSurf->surface, &originalPlane );
// rotate the plane if necessary
if ( entityNum != REFENTITYNUM_WORLD ) {
tr.currentEntityNum = entityNum;
tr.currentEntity = &tr.refdef.entities[entityNum];
// get the orientation of the entity
R_RotateForEntity( tr.currentEntity, &tr.viewParms, &tr.ori );
// rotate the plane, but keep the non-rotated version for matching
// against the portalSurface entities
R_LocalNormalToWorld( originalPlane.normal, plane.normal );
plane.dist = originalPlane.dist + DotProduct( plane.normal, tr.ori.origin );
// translate the original plane
originalPlane.dist = originalPlane.dist + DotProduct( originalPlane.normal, tr.ori.origin );
} else {
plane = originalPlane;
}
VectorCopy( plane.normal, surface->axis[0] );
PerpendicularVector( surface->axis[1], surface->axis[0] );
CrossProduct( surface->axis[0], surface->axis[1], surface->axis[2] );
// locate the portal entity closest to this plane.
// origin will be the origin of the portal, origin2 will be
// the origin of the camera
for ( i = 0 ; i < tr.refdef.num_entities ; i++ ) {
e = &tr.refdef.entities[i];
if ( e->e.reType != RT_PORTALSURFACE ) {
continue;
}
d = DotProduct( e->e.origin, originalPlane.normal ) - originalPlane.dist;
if ( d > 64 || d < -64) {
continue;
}
// get the pvsOrigin from the entity
VectorCopy( e->e.oldorigin, pvsOrigin );
// if the entity is just a mirror, don't use as a camera point
if ( e->e.oldorigin[0] == e->e.origin[0] &&
e->e.oldorigin[1] == e->e.origin[1] &&
e->e.oldorigin[2] == e->e.origin[2] ) {
VectorScale( plane.normal, plane.dist, surface->origin );
VectorCopy( surface->origin, camera->origin );
VectorSubtract( vec3_origin, surface->axis[0], camera->axis[0] );
VectorCopy( surface->axis[1], camera->axis[1] );
VectorCopy( surface->axis[2], camera->axis[2] );
*mirror = qtrue;
return qtrue;
}
// project the origin onto the surface plane to get
// an origin point we can rotate around
d = DotProduct( e->e.origin, plane.normal ) - plane.dist;
VectorMA( e->e.origin, -d, surface->axis[0], surface->origin );
// now get the camera origin and orientation
VectorCopy( e->e.oldorigin, camera->origin );
AxisCopy( e->e.axis, camera->axis );
VectorSubtract( vec3_origin, camera->axis[0], camera->axis[0] );
VectorSubtract( vec3_origin, camera->axis[1], camera->axis[1] );
// optionally rotate
if ( e->e.frame ) {
// continuous rotate
d = (tr.refdef.time/1000.0f) * e->e.frame;
VectorCopy( camera->axis[1], transformed );
RotatePointAroundVector( camera->axis[1], camera->axis[0], transformed, d );
CrossProduct( camera->axis[0], camera->axis[1], camera->axis[2] );
} else if (e->e.skinNum){
// bobbing rotate
//d = 4 * sin( tr.refdef.time * 0.003 );
d = e->e.skinNum;
VectorCopy( camera->axis[1], transformed );
RotatePointAroundVector( camera->axis[1], camera->axis[0], transformed, d );
CrossProduct( camera->axis[0], camera->axis[1], camera->axis[2] );
}
*mirror = qfalse;
return qtrue;
}
// if we didn't locate a portal entity, don't render anything.
// We don't want to just treat it as a mirror, because without a
// portal entity the server won't have communicated a proper entity set
// in the snapshot
// unfortunately, with local movement prediction it is easily possible
// to see a surface before the server has communicated the matching
// portal surface entity, so we don't want to print anything here...
//ri.Printf( PRINT_ALL, "Portal surface without a portal entity\n" );
return qfalse;
}
static qboolean IsMirror( const drawSurf_t *drawSurf, int entityNum )
{
int i;
cplane_t originalPlane, plane;
trRefEntity_t *e;
float d;
// create plane axis for the portal we are seeing
R_PlaneForSurface( drawSurf->surface, &originalPlane );
// rotate the plane if necessary
if ( entityNum != REFENTITYNUM_WORLD )
{
tr.currentEntityNum = entityNum;
tr.currentEntity = &tr.refdef.entities[entityNum];
// get the orientation of the entity
R_RotateForEntity( tr.currentEntity, &tr.viewParms, &tr.ori );
// rotate the plane, but keep the non-rotated version for matching
// against the portalSurface entities
R_LocalNormalToWorld( originalPlane.normal, plane.normal );
plane.dist = originalPlane.dist + DotProduct( plane.normal, tr.ori.origin );
// translate the original plane
originalPlane.dist = originalPlane.dist + DotProduct( originalPlane.normal, tr.ori.origin );
}
else
{
plane = originalPlane;
}
// locate the portal entity closest to this plane.
// origin will be the origin of the portal, origin2 will be
// the origin of the camera
for ( i = 0 ; i < tr.refdef.num_entities ; i++ )
{
e = &tr.refdef.entities[i];
if ( e->e.reType != RT_PORTALSURFACE ) {
continue;
}
d = DotProduct( e->e.origin, originalPlane.normal ) - originalPlane.dist;
if ( d > 64 || d < -64) {
continue;
}
// if the entity is just a mirror, don't use as a camera point
if ( e->e.oldorigin[0] == e->e.origin[0] &&
e->e.oldorigin[1] == e->e.origin[1] &&
e->e.oldorigin[2] == e->e.origin[2] )
{
return qtrue;
}
return qfalse;
}
return qfalse;
}
/*
** SurfIsOffscreen
**
** Determines if a surface is completely offscreen.
*/
static qboolean SurfIsOffscreen( const drawSurf_t *drawSurf, vec4_t clipDest[128] ) {
float shortest = 1000000000;
int entityNum;
int numTriangles;
jk_shader_t *shader;
int fogNum;
int dlighted;
vec4_t clip, eye;
int i;
unsigned int pointOr = 0;
unsigned int pointAnd = (unsigned int)~0;
R_RotateForViewer();
R_DecomposeSort( drawSurf->sort, &entityNum, &shader, &fogNum, &dlighted );
RB_BeginSurface( shader, fogNum );
rb_surfaceTable[ *drawSurf->surface ]( drawSurf->surface );
assert( tess.numVertexes < 128 );
for ( i = 0; i < tess.numVertexes; i++ )
{
int j;
unsigned int pointFlags = 0;
R_TransformModelToClip( tess.xyz[i], tr.ori.modelMatrix, tr.viewParms.projectionMatrix, eye, clip );
for ( j = 0; j < 3; j++ )
{
if ( clip[j] >= clip[3] )
{
pointFlags |= (1 << (j*2));
}
else if ( clip[j] <= -clip[3] )
{
pointFlags |= ( 1 << (j*2+1));
}
}
pointAnd &= pointFlags;
pointOr |= pointFlags;
}
// trivially reject
if ( pointAnd )
{
return qtrue;
}
// determine if this surface is backfaced and also determine the distance
// to the nearest vertex so we can cull based on portal range. Culling
// based on vertex distance isn't 100% correct (we should be checking for
// range to the surface), but it's good enough for the types of portals
// we have in the game right now.
numTriangles = tess.numIndexes / 3;
for ( i = 0; i < tess.numIndexes; i += 3 )
{
vec3_t normal;
float dot;
float len;
VectorSubtract( tess.xyz[tess.indexes[i]], tr.viewParms.ori.origin, normal );
len = VectorLengthSquared( normal ); // lose the sqrt
if ( len < shortest )
{
shortest = len;
}
if ( ( dot = DotProduct( normal, tess.normal[tess.indexes[i]] ) ) >= 0 )
{
numTriangles--;
}
}
if ( !numTriangles )
{
return qtrue;
}
// mirrors can early out at this point, since we don't do a fade over distance
// with them (although we could)
if ( IsMirror( drawSurf, entityNum ) )
{
return qfalse;
}
if ( shortest > (tess.shader->portalRange * tess.shader->portalRange))
{
return qtrue;
}
return qfalse;
}
/*
========================
R_MirrorViewBySurface
Returns qtrue if another view has been rendered
========================
*/
int recursivePortalCount;
qboolean R_MirrorViewBySurface (drawSurf_t *drawSurf, int entityNum) {
vec4_t clipDest[128];
viewParms_t newParms;
viewParms_t oldParms;
orientation_t surface, camera;
// don't recursively mirror
if (tr.viewParms.isPortal)
{
ri.Printf( PRINT_DEVELOPER, "WARNING: recursive mirror/portal found\n" );
return qfalse;
}
if ( r_noportals->integer || r_fastsky->integer ) {
return qfalse;
}
// trivially reject portal/mirror
if ( SurfIsOffscreen( drawSurf, clipDest ) ) {
return qfalse;
}
// save old viewParms so we can return to it after the mirror view
oldParms = tr.viewParms;
newParms = tr.viewParms;
newParms.isPortal = qtrue;
if ( !R_GetPortalOrientations( drawSurf, entityNum, &surface, &camera,
newParms.pvsOrigin, &newParms.isMirror ) ) {
return qfalse; // bad portal, no portalentity
}
R_MirrorPoint (oldParms.ori.origin, &surface, &camera, newParms.ori.origin );
VectorSubtract( vec3_origin, camera.axis[0], newParms.portalPlane.normal );
newParms.portalPlane.dist = DotProduct( camera.origin, newParms.portalPlane.normal );
R_MirrorVector (oldParms.ori.axis[0], &surface, &camera, newParms.ori.axis[0]);
R_MirrorVector (oldParms.ori.axis[1], &surface, &camera, newParms.ori.axis[1]);
R_MirrorVector (oldParms.ori.axis[2], &surface, &camera, newParms.ori.axis[2]);
// OPTIMIZE: restrict the viewport on the mirrored view
// render the mirror view
R_RenderView (&newParms);
tr.viewParms = oldParms;
return qtrue;
}
/*
=================
R_SpriteFogNum
See if a sprite is inside a fog volume
=================
*/
int R_SpriteFogNum( trRefEntity_t *ent ) {
int i;
jk_fog_t *fog;
if ( tr.refdef.rdflags & RDF_NOWORLDMODEL ) {
return 0;
}
if ( tr.refdef.doLAGoggles )
{
return tr.world->numfogs;
}
int partialFog = 0;
for ( i = 1 ; i < tr.world->numfogs ; i++ ) {
fog = &tr.world->fogs[i];
if ( ent->e.origin[0] - ent->e.radius >= fog->bounds[0][0]
&& ent->e.origin[0] + ent->e.radius <= fog->bounds[1][0]
&& ent->e.origin[1] - ent->e.radius >= fog->bounds[0][1]
&& ent->e.origin[1] + ent->e.radius <= fog->bounds[1][1]
&& ent->e.origin[2] - ent->e.radius >= fog->bounds[0][2]
&& ent->e.origin[2] + ent->e.radius <= fog->bounds[1][2] )
{//totally inside it
return i;
break;
}
if ( ( ent->e.origin[0] - ent->e.radius >= fog->bounds[0][0] && ent->e.origin[1] - ent->e.radius >= fog->bounds[0][1] && ent->e.origin[2] - ent->e.radius >= fog->bounds[0][2] &&
ent->e.origin[0] - ent->e.radius <= fog->bounds[1][0] && ent->e.origin[1] - ent->e.radius <= fog->bounds[1][1] && ent->e.origin[2] - ent->e.radius <= fog->bounds[1][2] ) ||
( ent->e.origin[0] + ent->e.radius >= fog->bounds[0][0] && ent->e.origin[1] + ent->e.radius >= fog->bounds[0][1] && ent->e.origin[2] + ent->e.radius >= fog->bounds[0][2] &&
ent->e.origin[0] + ent->e.radius <= fog->bounds[1][0] && ent->e.origin[1] + ent->e.radius <= fog->bounds[1][1] && ent->e.origin[2] + ent->e.radius <= fog->bounds[1][2] ) )
{//partially inside it
if ( tr.refdef.fogIndex == i || R_FogParmsMatch( tr.refdef.fogIndex, i ) )
{//take new one only if it's the same one that the viewpoint is in
return i;
break;
}
else if ( !partialFog )
{//first partialFog
partialFog = i;
}
}
}
return partialFog;
}
/*
==========================================================================================
DRAWSURF SORTING
==========================================================================================
*/
/*
===============
R_Radix
===============
*/
static QINLINE void R_Radix( int byte, int size, drawSurf_t *source, drawSurf_t *dest )
{
int count[ 256 ] = { 0 };
int index[ 256 ];
int i;
unsigned char *sortKey = NULL;
unsigned char *end = NULL;
sortKey = ( (unsigned char *)&source[ 0 ].sort ) + byte;
end = sortKey + ( size * sizeof( drawSurf_t ) );
for( ; sortKey < end; sortKey += sizeof( drawSurf_t ) )
++count[ *sortKey ];
index[ 0 ] = 0;
for( i = 1; i < 256; ++i )
index[ i ] = index[ i - 1 ] + count[ i - 1 ];
sortKey = ( (unsigned char *)&source[ 0 ].sort ) + byte;
for( i = 0; i < size; ++i, sortKey += sizeof( drawSurf_t ) )
dest[ index[ *sortKey ]++ ] = source[ i ];
}
/*
===============
R_RadixSort
Radix sort with 4 byte size buckets
===============
*/
static void R_RadixSort( drawSurf_t *source, int size )
{
static drawSurf_t scratch[ MAX_DRAWSURFS ];
#ifdef Q3_LITTLE_ENDIAN
R_Radix( 0, size, source, scratch );
R_Radix( 1, size, scratch, source );
R_Radix( 2, size, source, scratch );
R_Radix( 3, size, scratch, source );
#else
R_Radix( 3, size, source, scratch );
R_Radix( 2, size, scratch, source );
R_Radix( 1, size, source, scratch );
R_Radix( 0, size, scratch, source );
#endif //Q3_LITTLE_ENDIAN
}
//==========================================================================================
/*
=================
R_AddDrawSurf
=================
*/
void R_AddDrawSurf( const surfaceType_t *surface, const jk_shader_t *shader, int fogIndex, int dlightMap )
{
int index;
// instead of checking for overflow, we just mask the index
// so it wraps around
index = tr.refdef.numDrawSurfs & DRAWSURF_MASK;
if ( tr.refdef.doLAGoggles )
{
fogIndex = tr.world->numfogs;
}
if ( (shader->surfaceFlags & SURF_FORCESIGHT) && !(tr.refdef.rdflags & RDF_ForceSightOn) )
{ //if shader is only seen with ForceSight and we don't have ForceSight on, then don't draw
return;
}
// the sort data is packed into a single 32 bit value so it can be
// compared quickly during the qsorting process
tr.refdef.drawSurfs[index].sort = (shader->sortedIndex << QSORT_SHADERNUM_SHIFT)
| tr.shiftedEntityNum | ( fogIndex << QSORT_FOGNUM_SHIFT ) | (int)dlightMap;
tr.refdef.drawSurfs[index].surface = (surfaceType_t *)surface;
tr.refdef.numDrawSurfs++;
}
/*
=================
R_DecomposeSort
=================
*/
void R_DecomposeSort( unsigned sort, int *entityNum, jk_shader_t **shader,
int *fogNum, int *dlightMap ) {
*fogNum = ( sort >> QSORT_FOGNUM_SHIFT ) & 31;
*shader = tr.sortedShaders[ ( sort >> QSORT_SHADERNUM_SHIFT ) & (MAX_SHADERS-1) ];
*entityNum = ( sort >> QSORT_REFENTITYNUM_SHIFT ) & REFENTITYNUM_MASK;
*dlightMap = sort & 3;
}
/*
=================
R_SortDrawSurfs
=================
*/
void R_SortDrawSurfs( drawSurf_t *drawSurfs, int numDrawSurfs ) {
jk_shader_t *shader;
int fogNum;
int entityNum;
int dlighted;
// it is possible for some views to not have any surfaces
if ( numDrawSurfs < 1 ) {
// we still need to add it for hyperspace cases
R_AddDrawSurfCmd( drawSurfs, numDrawSurfs );
return;
}
// if we overflowed MAX_DRAWSURFS, the drawsurfs
// wrapped around in the buffer and we will be missing
// the first surfaces, not the last ones
if ( numDrawSurfs > MAX_DRAWSURFS ) {
numDrawSurfs = MAX_DRAWSURFS;
}
// sort the drawsurfs by sort type, then orientation, then shader
R_RadixSort( drawSurfs, numDrawSurfs );
// check for any pass through drawing, which
// may cause another view to be rendered first
for ( int i = 0 ; i < numDrawSurfs ; i++ ) {
R_DecomposeSort( (drawSurfs+i)->sort, &entityNum, &shader, &fogNum, &dlighted );
if ( shader->sort > SS_PORTAL ) {
break;
}
// no shader should ever have this sort type
if ( shader->sort == SS_BAD ) {
Com_Error (ERR_DROP, "Shader '%s'with sort == SS_BAD", shader->name );
}
// if the mirror was completely clipped away, we may need to check another surface
if ( R_MirrorViewBySurface( (drawSurfs+i), entityNum) ) {
// this is a debug option to see exactly what is being mirrored
if ( r_portalOnly->integer ) {
return;
}
break; // only one mirror view at a time
}
}
R_AddDrawSurfCmd( drawSurfs, numDrawSurfs );
}
/*
=============
R_AddEntitySurfaces
=============
*/
void R_AddEntitySurfaces (void) {
trRefEntity_t *ent;
jk_shader_t *shader;
if ( !r_drawentities->integer ) {
return;
}
for ( tr.currentEntityNum = 0;
tr.currentEntityNum < tr.refdef.num_entities;
tr.currentEntityNum++ ) {
ent = tr.currentEntity = &tr.refdef.entities[tr.currentEntityNum];
ent->needDlights = qfalse;
// preshift the value we are going to OR into the drawsurf sort
tr.shiftedEntityNum = tr.currentEntityNum << QSORT_REFENTITYNUM_SHIFT;
if ((ent->e.renderfx & RF_ALPHA_FADE))
{
// we need to make sure this is not sorted before the world..in fact we
// want this to be sorted quite late...like how about last.
// I don't want to use the highest bit, since no doubt someone fumbled
// handling that as an unsigned quantity somewhere
tr.shiftedEntityNum |= 0x80000000;
}
//
// the weapon model must be handled special --
// we don't want the hacked weapon position showing in
// mirrors, because the true body position will already be drawn
//
if ( (ent->e.renderfx & RF_FIRST_PERSON) && tr.viewParms.isPortal) {
continue;
}
// simple generated models, like sprites and beams, are not culled
switch ( ent->e.reType ) {
case RT_PORTALSURFACE:
break; // don't draw anything
case RT_SPRITE:
case RT_ORIENTED_QUAD:
case RT_BEAM:
case RT_CYLINDER:
case RT_LATHE:
case RT_CLOUDS:
case RT_LINE:
case RT_ELECTRICITY:
case RT_SABER_GLOW:
// self blood sprites, talk balloons, etc should not be drawn in the primary
// view. We can't just do this check for all entities, because md3
// entities may still want to cast shadows from them
if ( (ent->e.renderfx & RF_THIRD_PERSON) && !tr.viewParms.isPortal) {
continue;
}
shader = R_GetShaderByHandle( ent->e.customShader );
R_AddDrawSurf( &entitySurface, shader, R_SpriteFogNum( ent ), 0 );
break;
case RT_MODEL:
// we must set up parts of tr.or for model culling
R_RotateForEntity( ent, &tr.viewParms, &tr.ori );
tr.currentModel = R_GetModelByHandle( ent->e.hModel );
if (!tr.currentModel) {
R_AddDrawSurf( &entitySurface, tr.defaultShader, 0, 0 );
} else {
switch ( tr.currentModel->type ) {
case MOD_MESH:
R_AddMD3Surfaces( ent );
break;
case MOD_BRUSH:
R_AddBrushModelSurfaces( ent );
break;
/*
Ghoul2 Insert Start
*/
case MOD_MDXM:
R_AddGhoulSurfaces( ent);
break;
case MOD_BAD: // null model axis
if ( (ent->e.renderfx & RF_THIRD_PERSON) && !tr.viewParms.isPortal)
{
if (!(ent->e.renderfx & RF_SHADOW_ONLY))
{
break;
}
}
if (ent->e.ghoul2 && G2API_HaveWeGhoul2Models(*((CGhoul2Info_v *)ent->e.ghoul2)))
{
R_AddGhoulSurfaces( ent);
break;
}
R_AddDrawSurf( &entitySurface, tr.defaultShader, 0, false );
break;
/*
Ghoul2 Insert End
*/
default:
Com_Error( ERR_DROP, "R_AddEntitySurfaces: Bad modeltype" );
break;
}
}
break;
default:
Com_Error( ERR_DROP, "R_AddEntitySurfaces: Bad reType" );
}
}
}
/*
====================
R_GenerateDrawSurfs
====================
*/
void R_GenerateDrawSurfs( void ) {
R_AddWorldSurfaces ();
R_AddPolygonSurfaces();
// set the projection matrix with the minimum zfar
// now that we have the world bounded
// this needs to be done before entities are
// added, because they use the projection
// matrix for lod calculation
R_SetupProjection ();
R_AddEntitySurfaces ();
}
/*
================
R_DebugPolygon
================
*/
void R_DebugPolygon( int color, int numPoints, float *points ) {
int i;
GL_State( GLS_DEPTHMASK_TRUE | GLS_SRCBLEND_ONE | GLS_DSTBLEND_ONE );
// draw solid shade
#ifdef HAVE_GLES
qglColor4f( color&1, (color>>1)&1, (color>>2)&1, 1.0f );
qglVertexPointer ( 3, GL_FLOAT, 0, points );
qglDrawArrays( GL_TRIANGLE_FAN, 0, numPoints );
#else
qglColor3f( color&1, (color>>1)&1, (color>>2)&1 );
qglBegin( GL_POLYGON );
for ( i = 0 ; i < numPoints ; i++ ) {
qglVertex3fv( points + i * 3 );
}
qglEnd();
#endif
// draw wireframe outline
#ifndef HAVE_GLES
GL_State( GLS_POLYMODE_LINE | GLS_DEPTHMASK_TRUE | GLS_SRCBLEND_ONE | GLS_DSTBLEND_ONE );
#endif
qglDepthRange( 0, 0 );
#ifdef HAVE_GLES
qglColor4f( 1.0f, 1.0f, 1.0f, 1.0f );
qglVertexPointer ( 3, GL_FLOAT, 0, points );
qglDrawArrays( GL_LINES, 0, numPoints );
#else
qglColor3f( 1, 1, 1 );
qglBegin( GL_POLYGON );
for ( i = 0 ; i < numPoints ; i++ ) {
qglVertex3fv( points + i * 3 );
}
qglEnd();
#endif
qglDepthRange( 0, 1 );
}
/*
====================
R_DebugGraphics
Visualization aid for movement clipping debugging
====================
*/
void R_DebugGraphics( void ) {
if ( !r_debugSurface->integer ) {
return;
}
// the render thread can't make callbacks to the main thread
R_IssuePendingRenderCommands(); //
GL_Bind( tr.whiteImage);
GL_Cull( CT_FRONT_SIDED );
ri.CM_DrawDebugSurface( R_DebugPolygon );
}
qboolean R_FogParmsMatch( int fog1, int fog2 )
{
for ( int i = 0; i < 2; i++ )
{
if ( tr.world->fogs[fog1].parms.color[i] != tr.world->fogs[fog2].parms.color[i] )
{
return qfalse;
}
}
return qtrue;
}
void R_SetViewFogIndex (void)
{
if ( tr.world->numfogs > 1 )
{//more than just the LA goggles
jk_fog_t *fog;
int contents = ri.SV_PointContents( tr.refdef.vieworg, 0 );
if ( (contents&CONTENTS_FOG) )
{//only take a tr.refdef.fogIndex if the tr.refdef.vieworg is actually *in* that fog brush (assumption: checks pointcontents for any CONTENTS_FOG, not that particular brush...)
for ( tr.refdef.fogIndex = 1 ; tr.refdef.fogIndex < tr.world->numfogs ; tr.refdef.fogIndex++ )
{
fog = &tr.world->fogs[tr.refdef.fogIndex];
if ( tr.refdef.vieworg[0] >= fog->bounds[0][0]
&& tr.refdef.vieworg[1] >= fog->bounds[0][1]
&& tr.refdef.vieworg[2] >= fog->bounds[0][2]
&& tr.refdef.vieworg[0] <= fog->bounds[1][0]
&& tr.refdef.vieworg[1] <= fog->bounds[1][1]
&& tr.refdef.vieworg[2] <= fog->bounds[1][2] )
{
break;
}
}
if ( tr.refdef.fogIndex == tr.world->numfogs )
{
tr.refdef.fogIndex = 0;
}
}
else
{
tr.refdef.fogIndex = 0;
}
}
else
{
tr.refdef.fogIndex = 0;
}
}
void RE_SetLightStyle(int style, int colors );
/*
================
R_RenderView
A view may be either the actual camera view,
or a mirror / remote location
================
*/
void R_RenderView (viewParms_t *parms) {
int firstDrawSurf;
if ( parms->viewportWidth <= 0 || parms->viewportHeight <= 0 ) {
return;
}
if (r_debugStyle->integer >= 0)
{
int i;
color4ub_t whitecolor = {0xff, 0xff, 0xff, 0xff};
color4ub_t blackcolor = {0x00, 0x00, 0x00, 0xff};
byteAlias_t *ba = (byteAlias_t *)&blackcolor;
for ( i = 0; i < MAX_LIGHT_STYLES; i++ ) {
RE_SetLightStyle( i, ba->i );
}
ba = (byteAlias_t *)&whitecolor;
RE_SetLightStyle( r_debugStyle->integer, ba->i );
}
tr.viewCount++;
tr.viewParms = *parms;
tr.viewParms.frameSceneNum = tr.frameSceneNum;
tr.viewParms.frameCount = tr.frameCount;
firstDrawSurf = tr.refdef.numDrawSurfs;
tr.viewCount++;
// set viewParms.world
R_RotateForViewer ();
R_SetupFrustum ();
if (!(tr.refdef.rdflags & RDF_NOWORLDMODEL))
{ // Trying to do this with no world is not good.
R_SetViewFogIndex ();
}
R_GenerateDrawSurfs();
R_SortDrawSurfs( tr.refdef.drawSurfs + firstDrawSurf, tr.refdef.numDrawSurfs - firstDrawSurf );
// draw main system development information (surface outlines, etc)
R_DebugGraphics();
}