/* =========================================================================== Copyright (C) 1999 - 2005, Id Software, Inc. Copyright (C) 2000 - 2013, Raven Software, Inc. Copyright (C) 2001 - 2013, Activision, Inc. Copyright (C) 2013 - 2015, OpenJK contributors This file is part of the OpenJK source code. OpenJK is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License version 2 as published by the Free Software Foundation. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, see . =========================================================================== */ // this is only used for visualization tools in cm_ debug functions #include "cm_local.h" // counters are only bumped when running single threaded, // because they are an awefull coherence problem int c_active_windings; int c_peak_windings; int c_winding_allocs; int c_winding_points; void pw(winding_t *w) { int i; for (i=0 ; inumpoints ; i++) printf ("(%5.1f, %5.1f, %5.1f)\n",w->p[i][0], w->p[i][1],w->p[i][2]); } /* ============= AllocWinding ============= */ winding_t *AllocWinding (int points) { winding_t *w; int s; c_winding_allocs++; c_winding_points += points; c_active_windings++; if (c_active_windings > c_peak_windings) c_peak_windings = c_active_windings; s = sizeof(vec_t)*3*points + sizeof(int); w = (winding_t *) Z_Malloc (s,TAG_BSP, qtrue);//TAG_WINDING); // memset (w, 0, s); // qtrue above does this return w; } void FreeWinding (winding_t *w) { if (*(unsigned *)w == 0xdeaddead) Com_Error (ERR_FATAL, "FreeWinding: freed a freed winding"); *(unsigned *)w = 0xdeaddead; c_active_windings--; Z_Free (w); } void WindingBounds (winding_t *w, vec3_t mins, vec3_t maxs) { vec_t v; int i,j; mins[0] = mins[1] = mins[2] = WORLD_SIZE; // 99999; // WORLD_SIZE instead of MAX_WORLD_COORD so that... maxs[0] = maxs[1] = maxs[2] = -WORLD_SIZE; //-99999; // ... it's guaranteed to be outide of legal for (i=0 ; inumpoints ; i++) { for (j=0 ; j<3 ; j++) { v = w->p[i][j]; if (v < mins[j]) mins[j] = v; if (v > maxs[j]) maxs[j] = v; } } } /* ================= BaseWindingForPlane ================= */ winding_t *BaseWindingForPlane (vec3_t normal, vec_t dist) { int i, x; vec_t max, v; vec3_t org, vright, vup; winding_t *w; // find the major axis max = -MAX_MAP_BOUNDS; x = -1; for (i=0 ; i<3; i++) { v = fabs(normal[i]); if (v > max) { x = i; max = v; } } if (x==-1) Com_Error (ERR_DROP, "BaseWindingForPlane: no axis found"); VectorCopy (vec3_origin, vup); switch (x) { case 0: case 1: vup[2] = 1; break; case 2: vup[0] = 1; break; } v = DotProduct (vup, normal); VectorMA (vup, -v, normal, vup); VectorNormalize2(vup, vup); VectorScale (normal, dist, org); CrossProduct (vup, normal, vright); VectorScale (vup, MAX_MAP_BOUNDS, vup); VectorScale (vright, MAX_MAP_BOUNDS, vright); // project a really big axis aligned box onto the plane w = AllocWinding (4); VectorSubtract (org, vright, w->p[0]); VectorAdd (w->p[0], vup, w->p[0]); VectorAdd (org, vright, w->p[1]); VectorAdd (w->p[1], vup, w->p[1]); VectorAdd (org, vright, w->p[2]); VectorSubtract (w->p[2], vup, w->p[2]); VectorSubtract (org, vright, w->p[3]); VectorSubtract (w->p[3], vup, w->p[3]); w->numpoints = 4; return w; } /* ================== CopyWinding ================== */ winding_t *CopyWinding (winding_t *w) { intptr_t size; winding_t *c; c = AllocWinding (w->numpoints); size = (intptr_t)((winding_t *)0)->p[w->numpoints]; memcpy (c, w, size); return c; } /* ============= ChopWindingInPlace ============= */ void ChopWindingInPlace (winding_t **inout, vec3_t normal, vec_t dist, vec_t epsilon) { winding_t *in; vec_t dists[MAX_POINTS_ON_WINDING+4]; int sides[MAX_POINTS_ON_WINDING+4]; int counts[3]; static vec_t dot; // VC 4.2 optimizer bug if not static int i, j; vec_t *p1, *p2; vec3_t mid; winding_t *f; int maxpts; in = *inout; counts[0] = counts[1] = counts[2] = 0; // determine sides for each point for (i=0 ; inumpoints ; i++) { dot = DotProduct (in->p[i], normal); dot -= dist; dists[i] = dot; if (dot > epsilon) sides[i] = SIDE_FRONT; else if (dot < -epsilon) sides[i] = SIDE_BACK; else { sides[i] = SIDE_ON; } counts[sides[i]]++; } sides[i] = sides[0]; dists[i] = dists[0]; if (!counts[0]) { FreeWinding (in); *inout = NULL; return; } if (!counts[1]) return; // inout stays the same maxpts = in->numpoints+4; // cant use counts[0]+2 because // of fp grouping errors f = AllocWinding (maxpts); for (i=0 ; inumpoints ; i++) { p1 = in->p[i]; if (sides[i] == SIDE_ON) { VectorCopy (p1, f->p[f->numpoints]); f->numpoints++; continue; } if (sides[i] == SIDE_FRONT) { VectorCopy (p1, f->p[f->numpoints]); f->numpoints++; } if (sides[i+1] == SIDE_ON || sides[i+1] == sides[i]) continue; // generate a split point p2 = in->p[(i+1)%in->numpoints]; dot = dists[i] / (dists[i]-dists[i+1]); for (j=0 ; j<3 ; j++) { // avoid round off error when possible if (normal[j] == 1) mid[j] = dist; else if (normal[j] == -1) mid[j] = -dist; else mid[j] = p1[j] + dot*(p2[j]-p1[j]); } VectorCopy (mid, f->p[f->numpoints]); f->numpoints++; } if (f->numpoints > maxpts) Com_Error (ERR_DROP, "ClipWinding: points exceeded estimate"); if (f->numpoints > MAX_POINTS_ON_WINDING) Com_Error (ERR_DROP, "ClipWinding: MAX_POINTS_ON_WINDING"); FreeWinding (in); *inout = f; }