/*
===========================================================================
Copyright (C) 2000 - 2013, Raven Software, Inc.
Copyright (C) 2001 - 2013, Activision, Inc.
Copyright (C) 2013 - 2015, OpenJK contributors
This file is part of the OpenJK source code.
OpenJK is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License version 2 as
published by the Free Software Foundation.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, see .
===========================================================================
*/
#include "g_headers.h"
#include
#include "b_local.h"
#include "g_navigator.h"
#include "g_nav.h"
extern int NAVNEW_ClearPathBetweenPoints(vec3_t start, vec3_t end, vec3_t mins, vec3_t maxs, int ignore, int clipmask);
extern qboolean NAV_CheckNodeFailedForEnt( gentity_t *ent, int nodeNum );
extern qboolean G_EntIsUnlockedDoor( int entityNum );
extern qboolean G_EntIsDoor( int entityNum );
extern qboolean G_EntIsBreakable( int entityNum );
extern qboolean G_EntIsRemovableUsable( int entNum );
extern cvar_t *d_altRoutes;
extern cvar_t *d_patched;
static vec3_t wpMaxs = { 16, 16, 32 };
static vec3_t wpMins = { -16, -16, -24+STEPSIZE };//WTF: was 16??!!!
static byte CHECKED_NO = 0;
static byte CHECKED_FAILED = 1;
static byte CHECKED_PASSED = 2;
/*
-------------------------
CEdge
-------------------------
*/
CEdge::CEdge( void )
{
CEdge( -1, -1, -1 );
}
CEdge::CEdge( int first, int second, int cost )
{
m_first = first;
m_second = second;
m_cost = cost;
}
CEdge::~CEdge( void )
{
}
/*
-------------------------
CNode
-------------------------
*/
CNode::CNode( void )
{
m_numEdges = 0;
m_radius = 0;
m_ranks = NULL;
}
CNode::~CNode( void )
{
m_edges.clear();
if ( m_ranks )
delete [] m_ranks;
}
/*
-------------------------
Create
-------------------------
*/
CNode *CNode::Create( vec3_t position, int flags, int radius, int ID )
{
CNode *node = new CNode;
VectorCopy( position, node->m_position );
node->m_flags = flags;
node->m_ID = ID;
node->m_radius = radius;
return node;
}
/*
-------------------------
Create
-------------------------
*/
CNode *CNode::Create( void )
{
return new CNode;
}
/*
-------------------------
AddEdge
-------------------------
*/
void CNode::AddEdge( int ID, int cost, int flags )
{
if ( m_numEdges )
{//already have at least 1
//see if it exists already
edge_v::iterator ei;
STL_ITERATE( ei, m_edges )
{
if ( (*ei).ID == ID )
{//found it
(*ei).cost = cost;
(*ei).flags = flags;
return;
}
}
}
edge_t edge;
edge.ID = ID;
edge.cost = cost;
edge.flags = flags;
STL_INSERT( m_edges, edge );
m_numEdges++;
assert( m_numEdges < 9 );//8 is the max
}
/*
-------------------------
GetEdge
-------------------------
*/
int CNode::GetEdgeNumToNode( int ID )
{
int count = 0;
edge_v::iterator ei;
STL_ITERATE( ei, m_edges )
{
if ( (*ei).ID == ID )
{
return count;
}
count++;
}
return -1;
}
/*
-------------------------
AddRank
-------------------------
*/
void CNode::AddRank( int ID, int rank )
{
assert( m_ranks );
m_ranks[ ID ] = rank;
}
/*
-------------------------
Draw
-------------------------
*/
void CNode::Draw( qboolean showRadius )
{
CG_DrawNode( m_position, NODE_NORMAL );
if( showRadius )
{
CG_DrawRadius( m_position, m_radius, NODE_NORMAL );
}
}
/*
-------------------------
GetEdge
-------------------------
*/
int CNode::GetEdge( int edgeNum )
{
if ( edgeNum > m_numEdges )
return -1;
int count = 0;
edge_v::iterator ei;
STL_ITERATE( ei, m_edges )
{
if ( count == edgeNum )
{
return (*ei).ID;
}
count++;
}
return -1;
}
/*
-------------------------
GetEdgeCost
-------------------------
*/
int CNode::GetEdgeCost( int edgeNum )
{
if ( edgeNum > m_numEdges )
return Q3_INFINITE; // return -1;
int count = 0;
edge_v::iterator ei;
STL_ITERATE( ei, m_edges )
{
if ( count == edgeNum )
{
return (*ei).cost;
}
count++;
}
return Q3_INFINITE; // return -1;
}
/*
-------------------------
GetEdgeFlags
-------------------------
*/
unsigned char CNode::GetEdgeFlags( int edgeNum )
{
if ( edgeNum > m_numEdges )
return 0;
int count = 0;
edge_v::iterator ei;
STL_ITERATE( ei, m_edges )
{
if ( count == edgeNum )
{
return (*ei).flags;
}
count++;
}
return 0;
}
/*
-------------------------
SetEdgeFlags
-------------------------
*/
void CNode::SetEdgeFlags( int edgeNum, int newFlags )
{
if ( edgeNum > m_numEdges )
return;
int count = 0;
edge_v::iterator ei;
STL_ITERATE( ei, m_edges )
{
if ( count == edgeNum )
{
(*ei).flags = newFlags;
return;
}
count++;
}
}
/*
-------------------------
InitRanks
-------------------------
*/
void CNode::InitRanks( int size )
{
//Clear it if it's already allocated
if ( m_ranks != NULL )
{
delete [] m_ranks;
m_ranks = NULL;
}
m_ranks = new int[size];
memset( m_ranks, -1, sizeof(int)*size );
}
/*
-------------------------
GetRank
-------------------------
*/
int CNode::GetRank( int ID )
{
assert( m_ranks );
return m_ranks[ ID ];
}
/*
-------------------------
Save
-------------------------
*/
int CNode::Save( int numNodes, fileHandle_t file )
{
int i;
//Write out the header
uint32_t header = NODE_HEADER_ID;
gi.FS_Write( &header, sizeof( header ), file );
//Write out the basic information
for ( i = 0; i < 3; i++ )
gi.FS_Write( &m_position[i], sizeof( float ), file );
gi.FS_Write( &m_flags, sizeof( m_flags ), file );
gi.FS_Write( &m_ID, sizeof( m_ID ), file );
gi.FS_Write( &m_radius, sizeof( m_radius ), file );
//Write out the edge information
gi.FS_Write( &m_numEdges, sizeof( m_numEdges ), file );
edge_v::iterator ei;
STL_ITERATE( ei, m_edges )
{
gi.FS_Write( &(*ei), sizeof( edge_t ), file );
}
//Write out the node ranks
gi.FS_Write( &numNodes, sizeof( numNodes ), file );
for ( i = 0; i < numNodes; i++ )
{
gi.FS_Write( &m_ranks[i], sizeof( int ), file );
}
return true;
}
/*
-------------------------
Load
-------------------------
*/
int CNode::Load( int numNodes, fileHandle_t file )
{
uint32_t header;
int i;
gi.FS_Read( &header, sizeof(header), file );
//Validate the header
if ( header != NODE_HEADER_ID )
return false;
//Get the basic information
for ( i = 0; i < 3; i++ )
gi.FS_Read( &m_position[i], sizeof( float ), file );
gi.FS_Read( &m_flags, sizeof( m_flags ), file );
gi.FS_Read( &m_ID, sizeof( m_ID ), file );
gi.FS_Read( &m_radius, sizeof( m_radius ), file );
//Get the edge information
gi.FS_Read( &m_numEdges, sizeof( m_numEdges ), file );
for ( i = 0; i < m_numEdges; i++ )
{
edge_t edge;
gi.FS_Read( &edge, sizeof( edge_t ), file );
STL_INSERT( m_edges, edge );
}
//Read the node ranks
int numRanks;
gi.FS_Read( &numRanks, sizeof( numRanks ), file );
//Allocate the memory
InitRanks( numRanks );
for ( i = 0; i < numRanks; i++ )
{
gi.FS_Read( &m_ranks[i], sizeof( int ), file );
}
return true;
}
/*
-------------------------
CNavigator
-------------------------
*/
CNavigator::CNavigator( void )
{
}
CNavigator::~CNavigator( void )
{
}
/*
-------------------------
FlagAllNodes
-------------------------
*/
void CNavigator::FlagAllNodes( int newFlag )
{
node_v::iterator ni;
STL_ITERATE( ni, m_nodes )
{
(*ni)->AddFlag( newFlag );
}
}
/*
-------------------------
GetChar
-------------------------
*/
char CNavigator::GetChar( fileHandle_t file )
{
char value;
gi.FS_Read( &value, sizeof( value ), file );
return value;
}
/*
-------------------------
GetInt
-------------------------
*/
int CNavigator::GetInt( fileHandle_t file )
{
int value;
gi.FS_Read( &value, sizeof( value ), file );
return value;
}
/*
-------------------------
GetFloat
-------------------------
*/
float CNavigator::GetFloat( fileHandle_t file )
{
float value;
gi.FS_Read( &value, sizeof( value ), file );
return value;
}
/*
-------------------------
GetLong
-------------------------
*/
uint32_t CNavigator::GetLong( fileHandle_t file )
{
uint32_t value;
gi.FS_Read( &value, sizeof( value ), file );
return value;
}
/*
-------------------------
Init
-------------------------
*/
void CNavigator::Init( void )
{
Free();
}
/*
-------------------------
Free
-------------------------
*/
void CNavigator::Free( void )
{
node_v::iterator ni;
STL_ITERATE( ni, m_nodes )
{
delete (*ni);
}
m_nodes.clear();
}
/*
-------------------------
Load
-------------------------
*/
bool CNavigator::Load( const char *filename, int checksum )
{
fileHandle_t file;
//Attempt to load the file
gi.FS_FOpenFile( va( "maps/%s.nav", filename ), &file, FS_READ );
//See if we succeeded
if ( file == NULL_FILE )
return false;
//Check the header id
uint32_t navID = GetLong( file );
if ( navID != NAV_HEADER_ID )
{
gi.FS_FCloseFile( file );
return false;
}
//Check the checksum to see if this file is out of date
int check = GetInt( file );
if ( check != checksum )
{
gi.FS_FCloseFile( file );
return false;
}
int numNodes = GetInt( file );
for ( int i = 0; i < numNodes; i++ )
{
CNode *node = CNode::Create();
if ( node->Load( numNodes, file ) == false )
{
gi.FS_FCloseFile( file );
return false;
}
STL_INSERT( m_nodes, node );
}
//read in the failed edges
gi.FS_Read( &failedEdges, sizeof( failedEdges ), file );
for ( int j = 0; j < MAX_FAILED_EDGES; j++ )
{
m_edgeLookupMap.insert(std::pair(failedEdges[j].startID, j));
}
gi.FS_FCloseFile( file );
return true;
}
/*
-------------------------
Save
-------------------------
*/
bool CNavigator::Save( const char *filename, int checksum )
{
fileHandle_t file;
//Attempt to load the file
gi.FS_FOpenFile( va( "maps/%s.nav", filename ), &file, FS_WRITE );
if ( file == NULL_FILE )
return false;
//Write out the header id
uint32_t id = NAV_HEADER_ID;
gi.FS_Write( &id, sizeof (id), file );
//Write out the checksum
gi.FS_Write( &checksum, sizeof( checksum ), file );
int numNodes = m_nodes.size();
//Write out the number of nodes to follow
gi.FS_Write( &numNodes, sizeof(numNodes), file );
//Write out all the nodes
node_v::iterator ni;
STL_ITERATE( ni, m_nodes )
{
(*ni)->Save( numNodes, file );
}
//write out failed edges
gi.FS_Write( &failedEdges, sizeof( failedEdges ), file );
gi.FS_FCloseFile( file );
return true;
}
/*
-------------------------
AddRawPoint
-------------------------
*/
int CNavigator::AddRawPoint( vec3_t point, int flags, int radius )
{
CNode *node = CNode::Create( point, flags, radius, m_nodes.size() );
if ( node == NULL )
{
Com_Error( ERR_DROP, "Error adding node!\n" );
return -1;
}
//TODO: Validate the position
//TODO: Correct stuck waypoints
STL_INSERT( m_nodes, node );
return node->GetID();
}
/*
-------------------------
GetEdgeCost
-------------------------
*/
int CNavigator::GetEdgeCost( CNode *first, CNode *second )
{
trace_t trace;
vec3_t start, end;
vec3_t mins, maxs;
//Setup the player size
VectorSet( mins, -8, -8, -8 );
VectorSet( maxs, 8, 8, 8 );
//Setup the points
first->GetPosition( start );
second->GetPosition( end );
gi.trace( &trace, start, mins, maxs, end, ENTITYNUM_NONE, MASK_SOLID, G2_NOCOLLIDE, 0 );
if ( trace.fraction < 1.0f || trace.allsolid || trace.startsolid )
return Q3_INFINITE; // return -1;
//Connection successful, return the cost
return Distance( start, end );
}
void CNavigator::SetEdgeCost( int ID1, int ID2, int cost )
{
if( (ID1 == -1) || (ID2 == -1) )
{//not valid nodes, must have come from the ClearAllFailedEdges initization-type calls
return;
}
CNode *node1 = m_nodes[ID1];
CNode *node2 = m_nodes[ID2];
if ( cost == -1 )
{//they want us to calc it
//FIXME: can we just remember this instead of recalcing every time?
vec3_t pos1, pos2;
node1->GetPosition( pos1 );
node2->GetPosition( pos2 );
cost = Distance( pos1, pos2 );
}
//set it
node1->AddEdge( ID2, cost );
node2->AddEdge( ID1, cost );
}
/*
-------------------------
AddNodeEdges
-------------------------
*/
void CNavigator::AddNodeEdges( CNode *node, int addDist, edge_l &edgeList, bool *checkedNodes )
{
//Add all edge
for ( int i = 0; i < node->GetNumEdges(); i++ )
{
//Make sure we don't add an old edge twice
if ( checkedNodes[ node->GetEdge( i ) ] == true )
continue;
//Get the node
CNode *nextNode = m_nodes[ node->GetEdge( i ) ];
//This node has now been checked
checkedNodes[ nextNode->GetID() ] = true;
//Add it to the list
STL_INSERT( edgeList, CEdge( nextNode->GetID(), node->GetID(), addDist + ( node->GetEdgeCost( i ) ) ) );
}
}
/*
-------------------------
CalculatePath
-------------------------
*/
void CNavigator::CalculatePath( CNode *node )
{
int curRank = 0;
int i;
CPriorityQueue *pathList = new CPriorityQueue();
unsigned char *checked;
//Init the completion table
checked = new unsigned char[ m_nodes.size() ];
memset( checked, 0, m_nodes.size() );
//Mark this node as checked
checked[ node->GetID() ] = true;
node->AddRank( node->GetID(), curRank++ );
//Add all initial nodes
for ( i = 0; i < node->GetNumEdges(); i++ )
{
CNode *nextNode = m_nodes[ node->GetEdge(i) ];
assert(nextNode);
checked[ nextNode->GetID() ] = true;
pathList->Push( new CEdge( nextNode->GetID(), nextNode->GetID(), node->GetEdgeCost(i) ) );
}
CEdge *test;
//Now flood fill all the others
while ( !pathList->Empty() )
{
test = pathList->Pop();
CNode *testNode = m_nodes[ (*test).m_first ];
assert( testNode );
node->AddRank( testNode->GetID(), curRank++ );
//Add in all the new edges
for ( i = 0; i < testNode->GetNumEdges(); i++ )
{
CNode *addNode = m_nodes[ testNode->GetEdge(i) ];
assert( addNode );
if ( checked[ addNode->GetID() ] )
continue;
int newDist = (*test).m_cost + testNode->GetEdgeCost(i);
pathList->Push( new CEdge( addNode->GetID(), (*test).m_second, newDist ) );
checked[ addNode->GetID() ] = true;
}
delete test;
}
node->RemoveFlag( NF_RECALC );
delete pathList;
delete [] checked;
}
/*
-------------------------
CalculatePaths
-------------------------
*/
extern void CP_FindCombatPointWaypoints( void );
void CNavigator::CalculatePaths( bool recalc )
{
#ifndef FINAL_BUILD
int startTime = gi.Milliseconds();
#endif
#if _HARD_CONNECT
#else
#endif
int i;
for ( i = 0; i < (int)m_nodes.size(); i++ )
{
//Allocate the needed memory
m_nodes[i]->InitRanks( m_nodes.size() );
}
for ( i = 0; i < (int)m_nodes.size(); i++ )
{
CalculatePath( m_nodes[i] );
}
#ifndef FINAL_BUILD
if ( pathsCalculated )
{
gi.Printf( S_COLOR_CYAN"%s recalced paths in %d ms\n", (NPC!=NULL?NPC->targetname:"NULL"), gi.Milliseconds()-startTime );
}
#endif
if(!recalc) //Mike says doesn't need to happen on recalc
{
CP_FindCombatPointWaypoints();
}
pathsCalculated = qtrue;
}
/*
-------------------------
ShowNodes
-------------------------
*/
void CNavigator::ShowNodes( void )
{
node_v::iterator ni;
vec3_t position;
qboolean showRadius;
float dist,
radius;
STL_ITERATE( ni, m_nodes )
{
(*ni)->GetPosition( position );
showRadius = qfalse;
if( NAVDEBUG_showRadius )
{
dist = DistanceSquared( g_entities[0].currentOrigin, position );
radius = (*ni)->GetRadius();
// if player within node radius or 256, draw radius (sometimes the radius is really small, so we check for 256 to catch everything)
if( (dist <= radius*radius) || dist <= 65536 )
{
showRadius = qtrue;
}
}
else
{
dist = DistanceSquared( g_entities[0].currentOrigin, position );
}
if ( dist < 1048576 )
{
if ( gi.inPVS( g_entities[0].currentOrigin, position ) )
{
(*ni)->Draw(showRadius);
}
}
}
}
/*
-------------------------
ShowEdges
-------------------------
*/
typedef std::map < int, bool > drawMap_m;
void CNavigator::ShowEdges( void )
{
node_v::iterator ni;
vec3_t start, end;
drawMap_m *drawMap;
drawMap = new drawMap_m[ m_nodes.size() ];
STL_ITERATE( ni, m_nodes )
{
(*ni)->GetPosition( start );
if ( DistanceSquared( g_entities[0].currentOrigin, start ) >= 1048576 )
{
continue;
}
if ( !gi.inPVSIgnorePortals( g_entities[0].currentOrigin, start ) )
{
continue;
}
//Attempt to draw each connection
for ( int i = 0; i < (*ni)->GetNumEdges(); i++ )
{
int id = (*ni)->GetEdge( i );
if ( id == -1 )
continue;
//Already drawn?
if ( drawMap[(*ni)->GetID()].find( id ) != drawMap[(*ni)->GetID()].end() )
continue;
unsigned char flags = (*ni)->GetEdgeFlags( i );
CNode *node = m_nodes[id];
node->GetPosition( end );
//Set this as drawn
drawMap[id][(*ni)->GetID()] = true;
if ( DistanceSquared( g_entities[0].currentOrigin, end ) >= 1048576 )
{
continue;
}
if ( !gi.inPVSIgnorePortals( g_entities[0].currentOrigin, end ) )
continue;
if ( EdgeFailed( id, (*ni)->GetID() ) != -1 )//flags & EFLAG_FAILED )
CG_DrawEdge( start, end, EDGE_FAILED );
else if ( flags & EFLAG_BLOCKED )
CG_DrawEdge( start, end, EDGE_BLOCKED );
else
CG_DrawEdge( start, end, EDGE_NORMAL );
}
}
delete [] drawMap;
}
int CNavigator::GetNodeRadius( int nodeID )
{
if ( m_nodes.size() == 0 )
return 0;
return m_nodes[nodeID]->GetRadius();
}
void CNavigator::CheckBlockedEdges( void )
{
CNode *start, *end;
vec3_t p1, p2;
int flags, first, second;
trace_t trace;
qboolean failed;
int edgeNum;
node_v::iterator ni;
//Go through all edges and test the ones that were blocked
STL_ITERATE( ni, m_nodes )
{
//Attempt to draw each connection
for ( edgeNum = 0; edgeNum < (*ni)->GetNumEdges(); edgeNum++ )
{
flags = (*ni)->GetEdgeFlags( edgeNum );
if ( (flags&EFLAG_BLOCKED) )
{
first = (*ni)->GetID();
second = (*ni)->GetEdge( edgeNum );
start = m_nodes[first];
end = m_nodes[second];
failed = qfalse;
start->GetPosition( p1 );
end->GetPosition( p2 );
//FIXME: can't we just store the trace.entityNum from the HardConnect trace? So we don't have to do another trace here...
gi.trace( &trace, p1, wpMins, wpMaxs, p2, ENTITYNUM_NONE, MASK_SOLID|CONTENTS_MONSTERCLIP|CONTENTS_BOTCLIP, G2_NOCOLLIDE, 0 );
if ( trace.entityNum < ENTITYNUM_WORLD && (trace.fraction < 1.0f || trace.startsolid == qtrue || trace.allsolid == qtrue) )
{//could be assumed, since failed before
if ( G_EntIsDoor( trace.entityNum ) )
{//door
if ( !G_EntIsUnlockedDoor( trace.entityNum ) )
{//locked door
failed = qtrue;
}
}
else
{
if ( G_EntIsBreakable( trace.entityNum ) )
{//do same for breakable brushes/models/glass?
failed = qtrue;
}
else if ( G_EntIsRemovableUsable( trace.entityNum ) )
{
failed = qtrue;
}
else if ( trace.allsolid || trace.startsolid )
{//FIXME: the entitynum would be none here, so how do we know if this is stuck inside an ent or the world?
}
else
{//FIXME: what about func_plats and scripted movers?
}
}
}
if ( failed )
{
//could add the EFLAG_FAILED to the two edges, but we stopped doing that since it was pointless
AddFailedEdge( ENTITYNUM_NONE, first, second );
}
}
}
}
}
#if _HARD_CONNECT
/*
-------------------------
HardConnect
-------------------------
*/
void CNavigator::HardConnect( int first, int second )
{
CNode *start, *end;
start = m_nodes[first];
end = m_nodes[second];
vec3_t p1, p2;
start->GetPosition( p1 );
end->GetPosition( p2 );
trace_t trace;
int flags = EFLAG_NONE;
gi.trace( &trace, p1, wpMins, wpMaxs, p2, ENTITYNUM_NONE, MASK_SOLID|CONTENTS_BOTCLIP|CONTENTS_MONSTERCLIP, G2_NOCOLLIDE, 0 );
int cost = Distance( p1, p2 );
if ( trace.fraction != 1.0f || trace.startsolid == qtrue || trace.allsolid == qtrue )
{
flags |= EFLAG_BLOCKED;
}
start->AddEdge( second, cost, flags );
end->AddEdge( first, cost, flags );
}
#endif
/*
-------------------------
TestNodePath
-------------------------
*/
int CNavigator::TestNodePath( gentity_t *ent, int okToHitEntNum, vec3_t position, qboolean includeEnts )
{
int clipmask = ent->clipmask;
if ( !includeEnts )
{
clipmask &= ~CONTENTS_BODY;
}
//Check the path
if ( NAV_ClearPathToPoint( ent, ent->mins, ent->maxs, position, clipmask, okToHitEntNum ) == false )
return false;
return true;
}
/*
-------------------------
TestNodeLOS
-------------------------
*/
int CNavigator::TestNodeLOS( gentity_t *ent, vec3_t position )
{
return NPC_ClearLOS( ent, position );
}
/*
-------------------------
TestBestFirst
-------------------------
*/
int CNavigator::TestBestFirst( gentity_t *ent, int lastID, int flags )
{
//Must be a valid one to begin with
if ( lastID == NODE_NONE )
return NODE_NONE;
if ( lastID >= (int)m_nodes.size() )
return NODE_NONE;
//Get the info
vec3_t nodePos;
CNode *node = m_nodes[ lastID ];
CNode *testNode;
int numEdges = node->GetNumEdges();
float dist;
node->GetPosition( nodePos );
//Setup our last node as our root, and search for a closer one according to its edges
int bestNode = ( TestNodePath( ent, ENTITYNUM_NONE, nodePos, qtrue ) ) ? lastID : NODE_NONE;
float bestDist = ( bestNode == NODE_NONE ) ? Q3_INFINITE : DistanceSquared( ent->currentOrigin, nodePos );
//Test all these edges first
for ( int i = 0; i < numEdges; i++ )
{
//Get this node and its distance
testNode = m_nodes[ node->GetEdge(i) ];
if ( NodeFailed( ent, testNode->GetID() ) )
{
continue;
}
testNode->GetPosition( nodePos );
dist = DistanceSquared( ent->currentOrigin, nodePos );
//Test against current best
if ( dist < bestDist )
{
//See if this node is valid
if ( CheckedNode(testNode->GetID(),ent->s.number) == CHECKED_PASSED || TestNodePath( ent, ENTITYNUM_NONE, nodePos, qtrue ) )
{
bestDist = dist;
bestNode = testNode->GetID();
SetCheckedNode(testNode->GetID(),ent->s.number,CHECKED_PASSED);
}
else
{
SetCheckedNode(testNode->GetID(),ent->s.number,CHECKED_FAILED);
}
}
}
return bestNode;
}
/*
-------------------------
CollectNearestNodes
-------------------------
*/
#define NODE_COLLECT_MAX 16 //Maximum # of nodes collected at any time
#define NODE_COLLECT_RADIUS 512 //Default radius to search for nodes in
#define NODE_COLLECT_RADIUS_SQR ( NODE_COLLECT_RADIUS * NODE_COLLECT_RADIUS )
int CNavigator::CollectNearestNodes( vec3_t origin, int radius, int maxCollect, nodeChain_l &nodeChain )
{
node_v::iterator ni;
float dist;
vec3_t position;
int collected = 0;
bool added = false;
//Get a distance rating for each node in the system
STL_ITERATE( ni, m_nodes )
{
//If we've got our quota, then stop looking
//Get the distance to the node
(*ni)->GetPosition( position );
dist = DistanceSquared( position, origin );
//Must be within our radius range
if ( dist > (float) ( radius * radius ) )
continue;
nodeList_t nChain;
nodeChain_l::iterator nci;
//Always add the first node
if ( nodeChain.size() == 0 )
{
nChain.nodeID = (*ni)->GetID();
nChain.distance = dist;
nodeChain.insert( nodeChain.begin(), nChain );
continue;
}
added = false;
//Compare it to what we already have
STL_ITERATE( nci, nodeChain )
{
//If we're less, than this entry, then insert before it
if ( dist < (*nci).distance )
{
nChain.nodeID = (*ni)->GetID();
nChain.distance = dist;
nodeChain.insert( nci, nChain );
collected = nodeChain.size();
added = true;
//If we've hit our collection limit, throw off the oldest one
if ( (int)nodeChain.size() > maxCollect )
{
nodeChain.pop_back();
}
break;
}
}
//Otherwise, always pad out the collection if possible so we don't miss anything
if ( ( added == false ) && ( (int)nodeChain.size() < maxCollect ) )
{
nChain.nodeID = (*ni)->GetID();
nChain.distance = dist;
nodeChain.insert( nodeChain.end(), nChain );
}
}
return collected;
}
int CNavigator::GetBestPathBetweenEnts( gentity_t *ent, gentity_t *goal, int flags )
{
//Must have nodes
if ( m_nodes.size() == 0 )
return NODE_NONE;
#define MAX_Z_DELTA 18
nodeChain_l nodeChain;
nodeChain_l::iterator nci;
nodeChain_l nodeChain2;
nodeChain_l::iterator nci2;
//Collect all nodes within a certain radius
CollectNearestNodes( ent->currentOrigin, NODE_COLLECT_RADIUS, NODE_COLLECT_MAX, nodeChain );
CollectNearestNodes( goal->currentOrigin, NODE_COLLECT_RADIUS, NODE_COLLECT_MAX, nodeChain2 );
vec3_t position;
vec3_t position2;
int radius;
int cost, pathCost, bestCost = Q3_INFINITE;
CNode *node, *node2;
int nodeNum, nodeNum2;
int nextNode = NODE_NONE, bestNode = NODE_NONE;
int nodeFlags = 0;
// bool recalc = false;
ent->waypoint = NODE_NONE;
goal->waypoint = NODE_NONE;
//Look through all nodes
STL_ITERATE( nci, nodeChain )
{
node = m_nodes[(*nci).nodeID];
nodeNum = (*nci).nodeID;
node->GetPosition( position );
if ( CheckedNode(nodeNum,ent->s.number) == CHECKED_FAILED )
{//already checked this node against ent and it failed
continue;
}
if ( CheckedNode(nodeNum,ent->s.number) == CHECKED_PASSED )
{//already checked this node against ent and it passed
}
else
{//haven't checked this node against ent yet
if ( NodeFailed( ent, nodeNum ) )
{
SetCheckedNode( nodeNum, ent->s.number, CHECKED_FAILED );
continue;
}
//okay, since we only have to do this once, let's check to see if this node is even usable (could help us short-circuit a whole loop of the dest nodes)
radius = node->GetRadius();
//If we're not within the known clear radius of this node OR out of Z height range...
if ( (signed)(*nci).distance >= (radius*radius) || ( fabs( position[2] - ent->currentOrigin[2] ) >= MAX_Z_DELTA ) )
{
//We're not *within* this node, so check clear path, etc.
//FIXME: any way to call G_FindClosestPointOnLineSegment and see if I can at least get to the waypoint's path
if ( flags & NF_CLEAR_PATH )//|| flags & NF_CLEAR_LOS )
{//need a clear path or LOS
if ( !gi.inPVS( ent->currentOrigin, position ) )
{//not even potentially clear
SetCheckedNode( nodeNum, ent->s.number, CHECKED_FAILED );
continue;
}
}
//Do we need a clear path?
if ( flags & NF_CLEAR_PATH )
{
if ( TestNodePath( ent, goal->s.number, position, qtrue ) == false )
{
SetCheckedNode( nodeNum, ent->s.number, CHECKED_FAILED );
continue;
}
}
}//otherwise, inside the node so it must be clear (?)
SetCheckedNode( nodeNum, ent->s.number, CHECKED_PASSED );
}
if ( d_altRoutes->integer )
{
//calc the paths for this node if they're out of date
nodeFlags = node->GetFlags();
if ( (nodeFlags&NF_RECALC) )
{
//gi.Printf( S_COLOR_CYAN"%d recalcing paths from node %d\n", level.time, nodeNum );
CalculatePath( node );
}
}
STL_ITERATE( nci2, nodeChain2 )
{
node2 = m_nodes[(*nci2).nodeID];
nodeNum2 = (*nci2).nodeID;
if ( d_altRoutes->integer )
{
//calc the paths for this node if they're out of date
nodeFlags = node2->GetFlags();
if ( (nodeFlags&NF_RECALC) )
{
//gi.Printf( S_COLOR_CYAN"%d recalcing paths from node %d\n", level.time, nodeNum2 );
CalculatePath( node2 );
}
}
node2->GetPosition( position2 );
//Okay, first get the entire path cost, including distance to first node from ents' positions
cost = floor(Distance( ent->currentOrigin, position ) + Distance( goal->currentOrigin, position2 ));
if ( d_altRoutes->integer )
{
nextNode = GetBestNodeAltRoute( (*nci).nodeID, (*nci2).nodeID, &pathCost, bestNode );
cost += pathCost;
}
else
{
cost += GetPathCost( (*nci).nodeID, (*nci2).nodeID );
}
if ( cost >= bestCost )
{
continue;
}
//okay, this is the shortest path we've found yet, check clear path, etc.
if ( CheckedNode( nodeNum2, goal->s.number ) == CHECKED_FAILED )
{//already checked this node against goal and it failed
continue;
}
if ( CheckedNode( nodeNum2, goal->s.number ) == CHECKED_PASSED )
{//already checked this node against goal and it passed
}
else
{//haven't checked this node against goal yet
if ( NodeFailed( goal, nodeNum2 ) )
{
SetCheckedNode( nodeNum2, goal->s.number, CHECKED_FAILED );
continue;
}
radius = node2->GetRadius();
//If we're not within the known clear radius of this node OR out of Z height range...
if ( (signed)(*nci2).distance >= (radius*radius) || ( fabs( position2[2] - goal->currentOrigin[2] ) >= MAX_Z_DELTA ) )
{
//We're not *within* this node, so check clear path, etc.
if ( flags & NF_CLEAR_PATH )//|| flags & NF_CLEAR_LOS )
{//need a clear path or LOS
if ( !gi.inPVS( goal->currentOrigin, position2 ) )
{//not even potentially clear
SetCheckedNode( nodeNum2, goal->s.number, CHECKED_FAILED );
continue;
}
}
//Do we need a clear path?
if ( flags & NF_CLEAR_PATH )
{
if ( TestNodePath( goal, ent->s.number, position2, qfalse ) == false )//qtrue?
{
SetCheckedNode( nodeNum2, goal->s.number, CHECKED_FAILED );
continue;
}
}
}//otherwise, inside the node so it must be clear (?)
SetCheckedNode( nodeNum2, goal->s.number, CHECKED_PASSED );
}
bestCost = cost;
bestNode = nextNode;
ent->waypoint = (*nci).nodeID;
goal->waypoint = (*nci2).nodeID;
}
}
if ( !d_altRoutes->integer )
{//bestNode would not have been set by GetBestNodeAltRoute above, so get it here
if ( ent->waypoint != NODE_NONE && goal->waypoint != NODE_NONE )
{//have 2 valid waypoints which means a valid path
bestNode = GetBestNodeAltRoute( ent->waypoint, goal->waypoint, &bestCost, NODE_NONE );
}
}
return bestNode;
}
/*
-------------------------
GetNearestWaypoint
-------------------------
*/
int CNavigator::GetNearestNode( gentity_t *ent, int lastID, int flags, int targetID )
{
int bestNode = NODE_NONE;
//Must have nodes
if ( m_nodes.size() == 0 )
return NODE_NONE;
if ( targetID == NODE_NONE )
{
//Try and find an early match using our last node
bestNode = TestBestFirst( ent, lastID, flags );
if ( bestNode != NODE_NONE )
return bestNode;
}//else can't rely on testing last, we want best to targetID
/////////////////////////////////////////////////
#define MAX_Z_DELTA 18
/////////////////////////////////////////////////
nodeChain_l nodeChain;
nodeChain_l::iterator nci;
//Collect all nodes within a certain radius
CollectNearestNodes( ent->currentOrigin, NODE_COLLECT_RADIUS, NODE_COLLECT_MAX, nodeChain );
vec3_t position;
int radius;
int dist, bestDist = Q3_INFINITE;
CNode *node;
//Look through all nodes
STL_ITERATE( nci, nodeChain )
{
node = m_nodes[(*nci).nodeID];
node->GetPosition( position );
radius = node->GetRadius();
if ( NodeFailed( ent, (*nci).nodeID ) )
{
continue;
}
//Are we within the known clear radius of this node?
if ( (signed)(*nci).distance < (radius*radius) )
{
//Do a z-difference sanity check
if ( fabs( position[2] - ent->currentOrigin[2] ) < MAX_Z_DELTA )
{
//Found one
return (*nci).nodeID;
}
}
//We're not *within* this node, so...
if ( CheckedNode((*nci).nodeID,ent->s.number) == CHECKED_FAILED )
{
continue;
}
else if ( CheckedNode((*nci).nodeID,ent->s.number) == CHECKED_FAILED )
{
continue;
}
else
{
//Do we need a clear path?
if ( flags & NF_CLEAR_PATH )
{
if ( TestNodePath( ent, ENTITYNUM_NONE, position, qfalse ) == false )//qtrue?
{
SetCheckedNode((*nci).nodeID,ent->s.number,CHECKED_FAILED);
continue;
}
}
//Do we need a clear line of sight?
/*
if ( flags & NF_CLEAR_LOS )
{
if ( TestNodeLOS( ent, position ) == false )
{
nodeChecked[(*nci).nodeID][ent->s.number] = CHECKED_FAILED;
continue;
}
}
*/
SetCheckedNode((*nci).nodeID,ent->s.number,CHECKED_PASSED);
}
if ( targetID != WAYPOINT_NONE )
{//we want to find the one with the shortest route here
dist = GetPathCost( (*nci).nodeID, targetID );
if ( dist < bestDist )
{
bestDist = dist;
bestNode = (*nci).nodeID;
}
}
else
{//first one we find is fine
bestNode = (*nci).nodeID;
break;
}
}
//Found one, we're done
return bestNode;
}
/*
-------------------------
ShowPath
-------------------------
*/
void CNavigator::ShowPath( int start, int end )
{
//Validate the start position
if ( ( start < 0 ) || ( start >= (int)m_nodes.size() ) )
return;
//Validate the end position
if ( ( end < 0 ) || ( end >= (int)m_nodes.size() ) )
return;
CNode *startNode = m_nodes[ start ];
CNode *endNode = m_nodes[ end ];
CNode *moveNode = startNode;
CNode *testNode = NULL;
int bestNode;
vec3_t startPos, endPos;
int runAway = 0;
//Draw out our path
while ( moveNode != endNode )
{
bestNode = GetBestNode( moveNode->GetID(), end );
//Some nodes may be fragmented
if ( bestNode == -1 )
{
Com_Printf("No connection possible between node %d and %d\n", start, end );
return;
}
//This is our next node on the path
testNode = m_nodes[ bestNode ];
//Get their origins
moveNode->GetPosition( startPos );
testNode->GetPosition( endPos );
//Draw the edge
CG_DrawEdge( startPos, endPos, EDGE_PATH );
//Take a new best node
moveNode = testNode;
if ( runAway++ > 64 )
{
Com_Printf("Potential Run-away path!\n");
return;
}
}
}
static std::map CheckedNodes;
void CNavigator::ClearCheckedNodes( void )
{
CheckedNodes.clear();
}
byte CNavigator::CheckedNode(int wayPoint,int ent)
{
assert(wayPoint>=0&&wayPoint=0&&ent::iterator f=CheckedNodes.find(wayPoint*MAX_GENTITIES+ent);
if (f!=CheckedNodes.end())
{
return (*f).second;
}
return CHECKED_NO;
}
void CNavigator::SetCheckedNode(int wayPoint,int ent,byte value)
{
assert(wayPoint>=0&&wayPoint=0&&entfailedWaypointCheckTime && ent->failedWaypointCheckTime < level.time )
{
int failed = 0;
//do this only once every 1 second
for ( j = 0; j < MAX_FAILED_NODES; j++ )
{
if ( ent->failedWaypoints[j] != 0 )
{
failed++;
//-1 because 0 is a valid node but also the default, so we add one when we add one
m_nodes[ent->failedWaypoints[j]-1]->GetPosition( nodePos );
if ( !NAV_ClearPathToPoint( ent, ent->mins, ent->maxs, nodePos, (CONTENTS_SOLID|CONTENTS_MONSTERCLIP|CONTENTS_BOTCLIP), ENTITYNUM_NONE ) )
{//no path clear of architecture, so clear this since we can't check against entities
ent->failedWaypoints[j] = 0;
failed--;
}
//have clear architectural path, now check against ents only
else if ( NAV_ClearPathToPoint( ent, ent->mins, ent->maxs, nodePos, CONTENTS_BODY, ENTITYNUM_NONE ) )
{//clear of ents, too, so all clear, clear this one out
ent->failedWaypoints[j] = 0;
failed--;
}
}
}
if ( !failed )
{
ent->failedWaypointCheckTime = 0;
}
else
{
ent->failedWaypointCheckTime = level.time + CHECK_FAILED_EDGE_INTERVAL + Q_irand( 0, 1000 );
}
}
}
void CNavigator::AddFailedNode( gentity_t *ent, int nodeID )
{
int j;
for ( j = 0; j < MAX_FAILED_NODES; j++ )
{
if ( ent->failedWaypoints[j] == 0 )
{
ent->failedWaypoints[j] = nodeID+1;//+1 because 0 is the default value and that's a valid node, so we take the +1 out when we check the node above
if ( !ent->failedWaypointCheckTime )
{
ent->failedWaypointCheckTime = level.time + CHECK_FAILED_EDGE_INTITIAL;
}
return;
}
if ( ent->failedWaypoints[j] == nodeID+1 )
{//already have this one marked as failed
return;
}
}
if ( j == MAX_FAILED_NODES )//check not needed, but...
{//ran out of failed nodes, get rid of first one, shift rest up
for ( j = 0; j < MAX_FAILED_NODES-1; j++ )
{
ent->failedWaypoints[j] = ent->failedWaypoints[j+1];
}
}
ent->failedWaypoints[MAX_FAILED_NODES-1] = nodeID+1;
if ( !ent->failedWaypointCheckTime )
{
ent->failedWaypointCheckTime = level.time + CHECK_FAILED_EDGE_INTITIAL;
}
}
qboolean CNavigator::NodeFailed( gentity_t *ent, int nodeID )
{
for ( int j = 0; j < MAX_FAILED_NODES; j++ )
{
if ( (ent->failedWaypoints[j]-1) == nodeID )
{
return qtrue;
}
}
return qfalse;
}
qboolean CNavigator::NodesAreNeighbors( int startID, int endID )
{//See if these 2 are neighbors
if ( startID == endID )
{
return qfalse;
}
CNode *start = m_nodes[startID];
int nextID = -1;
//NOTE: we only check start because we assume all connections are 2-way
for ( int i = 0; i < start->GetNumEdges(); i++ )
{
nextID = start->GetEdge(i);
if ( nextID == endID )
{
return qtrue;
}
}
//not neighbors
return qfalse;
}
void CNavigator::ClearFailedEdge( failedEdge_t *failedEdge )
{
if ( !failedEdge )
{
return;
}
//clear the edge failed flags
/*
CNode *node = m_nodes[failedEdge->startID];
int edgeNum = node->GetEdgeNumToNode( failedEdge->endID );
int flags;
if ( edgeNum != -1 )
{
flags = node->GetEdgeFlags( edgeNum )&~EFLAG_FAILED;
node->SetEdgeFlags( edgeNum, flags );
}
node = m_nodes[failedEdge->endID];
edgeNum = node->GetEdgeNumToNode( failedEdge->startID );
if ( edgeNum != -1 )
{
flags = node->GetEdgeFlags( edgeNum )&~EFLAG_FAILED;
node->SetEdgeFlags( edgeNum, flags );
}
*/
//clear failedEdge info
SetEdgeCost( failedEdge->startID, failedEdge->endID, -1 );
failedEdge->startID = failedEdge->endID = WAYPOINT_NONE;
failedEdge->entID = ENTITYNUM_NONE;
failedEdge->checkTime = 0;
}
void CNavigator::ClearAllFailedEdges( void )
{
memset( &failedEdges, WAYPOINT_NONE, sizeof( failedEdges ) );
for ( int j = 0; j < MAX_FAILED_EDGES; j++ )
{
ClearFailedEdge( &failedEdges[j] );
}
}
int CNavigator::EdgeFailed( int startID, int endID )
{
//OPTIMIZED WAY (bjg 01/02)
//find in lookup map
std::pair findValue;
findValue = m_edgeLookupMap.equal_range(startID);
while ( findValue.first != findValue.second )
{
if( failedEdges[findValue.first->second].endID == endID)
{
return findValue.first->second;
}
++findValue.first;
}
findValue = m_edgeLookupMap.equal_range(endID);
while ( findValue.first != findValue.second )
{
if( failedEdges[findValue.first->second].endID == startID)
{
return findValue.first->second;
}
++findValue.first;
}
return -1;
//Old way (linear search)
/*
for ( int j = 0; j < MAX_FAILED_EDGES; j++ )
{
if ( failedEdges[j].startID == startID )
{
if ( failedEdges[j].endID == endID )
{
return j;
}
}
else if ( failedEdges[j].startID == endID )
{
if ( failedEdges[j].endID == startID )
{
return j;
}
}
}
return -1;
*/
}
void CNavigator::AddFailedEdge( int entID, int startID, int endID )
{
int j;//, nextID;
//Must have nodes
if ( m_nodes.size() == 0 )
return;
if ( d_patched->integer )
{//use patch-style navigation
if ( startID == endID )
{//not an edge!
return;
}
}
//Validate the ent number
if ( ( entID < 0 ) || ( entID > ENTITYNUM_NONE ) )
{
#ifndef FINAL_BUILD
gi.Printf( S_COLOR_RED"NAV ERROR: envalid ent %d\n", entID );
assert(0&&"invalid entID");
#endif
return;
}
//Validate the start position
if ( ( startID < 0 ) || ( startID >= (int)m_nodes.size() ) )
{
#ifndef FINAL_BUILD
gi.Printf( S_COLOR_RED"NAV ERROR: tried to fail invalid waypoint %d\n", startID );
assert(0&&"invalid failed edge");
#endif
return;
}
//Validate the end position
if ( ( endID < 0 ) || ( endID >= (int)m_nodes.size() ) )
{
#ifndef FINAL_BUILD
gi.Printf( S_COLOR_RED"NAV ERROR: tried to fail invalid waypoint %d\n", endID );
assert(0&&"invalid failed edge");
#endif
return;
}
//First see if we already have this one
if ( (j = EdgeFailed( startID, endID )) != -1 )
{
//just remember this guy instead
failedEdges[j].entID = entID;
return;
}
//Okay, new one, find an empty slot
for ( j = 0; j < MAX_FAILED_EDGES; j++ )
{
if ( failedEdges[j].startID == WAYPOINT_NONE )
{
failedEdges[j].startID = startID;
failedEdges[j].endID = endID;
//Check one second from now to see if it's clear
failedEdges[j].checkTime = level.time + CHECK_FAILED_EDGE_INTERVAL + Q_irand( 0, 1000 );
m_edgeLookupMap.insert(std::pair(startID, j));
/*
//DISABLED this for now, makes people stand around too long when
// collision avoidance just wasn't at it's best but path is clear
CNode *start = m_nodes[startID];
CNode *end = m_nodes[endID];
for ( int i = 0; i < start->GetNumEdges(); i++ )
{
nextID = start->GetEdge(i);
if ( EdgeFailed( startID, nextID ) != -1 )
{
//This edge blocked, check next
continue;
}
if ( nextID == endID || end->GetRank( nextID ) >= 0 )
{//neighbor of or route to end
//There's an alternate route, so don't check this one for 10 seconds
failedEdges[j].checkTime = level.time + CHECK_FAILED_EDGE_INTITIAL;
break;
}
}
*/
//Remember who needed it
failedEdges[j].entID = entID;
//set the edge failed flags
/*
CNode *node = m_nodes[startID];
int edgeNum = node->GetEdgeNumToNode( endID );
int flags;
if ( edgeNum != -1 )
{
flags = node->GetEdgeFlags( edgeNum )|EFLAG_FAILED;
node->SetEdgeFlags( edgeNum, flags );
}
node = m_nodes[endID];
edgeNum = node->GetEdgeNumToNode( startID );
if ( edgeNum != -1 )
{
flags = node->GetEdgeFlags( edgeNum )|EFLAG_FAILED;
node->SetEdgeFlags( edgeNum, flags );
}
*/
//stuff the index to this one in our lookup map
//now recalc all the paths!
if ( pathsCalculated )
{
//reconnect the nodes and mark every node's flag NF_RECALC
//gi.Printf( S_COLOR_CYAN"%d marking all nodes for recalc\n", level.time );
SetEdgeCost( startID, endID, Q3_INFINITE );
FlagAllNodes( NF_RECALC );
}
return;
}
}
#ifndef FINAL_BUILD
gi.Printf( S_COLOR_RED"NAV ERROR: too many blocked waypoint connections (%d)!!!\n", j );
#endif
}
qboolean CNavigator::CheckFailedEdge( failedEdge_t *failedEdge )
{
if ( !failedEdge )
{
return qfalse;
}
//Every 1 second, see if our failed edges are clear
if ( failedEdge->checkTime < level.time )
{
if ( failedEdge->startID != WAYPOINT_NONE )
{
vec3_t start, end, mins, maxs;
int ignore, clipmask;
gentity_t *ent = (failedEdge->entIDentID]:NULL;
int hitEntNum;
if ( !ent || !ent->inuse || !ent->client || ent->health <= 0 )
{
VectorSet( mins, DEFAULT_MINS_0, DEFAULT_MINS_1, DEFAULT_MINS_2+STEPSIZE );
VectorSet( maxs, DEFAULT_MAXS_0, DEFAULT_MAXS_1, DEFAULT_MAXS_2 );
ignore = ENTITYNUM_NONE;
clipmask = MASK_NPCSOLID;
}
else
{
VectorCopy( ent->mins, mins );
mins[2] += STEPSIZE;
VectorCopy( ent->maxs, maxs );
ignore = failedEdge->entID;
clipmask = ent->clipmask;
}
if ( maxs[2] < mins[2] )
{//don't invert bounding box
maxs[2] = mins[2];
}
m_nodes[failedEdge->startID]->GetPosition( start );
m_nodes[failedEdge->endID]->GetPosition( end );
//See if it's NAV_ClearPath...
#if 0
hitEntNum = NAVNEW_ClearPathBetweenPoints( start, end, mins, maxs, ignore, clipmask|CONTENTS_MONSTERCLIP|CONTENTS_BOTCLIP );//NOTE: should we really always include monsterclip (physically blocks NPCs) and botclip (do not enter)?
#else
trace_t trace;
//Test if they're even conceivably close to one another
if ( !gi.inPVSIgnorePortals( start, end ) )
{
return qfalse;
}
gi.trace( &trace, start, mins, maxs, end, ignore, clipmask|CONTENTS_MONSTERCLIP|CONTENTS_BOTCLIP, G2_NOCOLLIDE, 0 );//NOTE: should we really always include monsterclip (physically blocks NPCs) and botclip (do not enter)?
if( trace.startsolid == qtrue || trace.allsolid == qtrue )
{
return qfalse;
}
hitEntNum = trace.entityNum;
#endif
//if we did hit something, see if it's just an auto-door and allow it
if ( hitEntNum != ENTITYNUM_NONE && G_EntIsUnlockedDoor( hitEntNum ) )
{
hitEntNum = ENTITYNUM_NONE;
}
else if ( hitEntNum == failedEdge->entID )
{//don't hit the person who initially marked the edge failed
hitEntNum = ENTITYNUM_NONE;
}
if ( hitEntNum == ENTITYNUM_NONE )
{
//If so, clear it
ClearFailedEdge( failedEdge );
return qtrue;
}
else
{
//Check again in one second
failedEdge->checkTime = level.time + CHECK_FAILED_EDGE_INTERVAL + Q_irand( 0, 1000 );
}
}
}
return qfalse;
}
void CNavigator::CheckAllFailedEdges( void )
{
failedEdge_t *failedEdge;
qboolean clearedAny = qfalse;
//Must have nodes
if ( m_nodes.size() == 0 )
return;
for ( int j = 0; j < MAX_FAILED_EDGES; j++ )
{
failedEdge = &failedEdges[j];
clearedAny = CheckFailedEdge( failedEdge )?qtrue:clearedAny;
}
if ( clearedAny )
{//need to recalc the paths
if ( pathsCalculated )
{
//reconnect the nodes and mark every node's flag NF_RECALC
//gi.Printf( S_COLOR_CYAN"%d marking all nodes for recalc\n", level.time );
FlagAllNodes( NF_RECALC );
}
}
}
qboolean CNavigator::RouteBlocked( int startID, int testEdgeID, int endID, int rejectRank )
{
int nextID, edgeID, lastID, bestNextID = NODE_NONE;
int bestRank = rejectRank;
int testRank;
qboolean allEdgesFailed;
CNode *end;
CNode *next;
if ( EdgeFailed( startID, testEdgeID ) != -1 )
{
return qtrue;
}
if ( testEdgeID == endID )
{//Neighbors, checked out, all clear
return qfalse;
}
//Okay, first edge is clear, now check rest of route!
end = m_nodes[ endID ];
nextID = testEdgeID;
lastID = startID;
while( 1 )
{
next = m_nodes[ nextID ];
allEdgesFailed = qtrue;
for ( int i = 0; i < next->GetNumEdges(); i++ )
{
edgeID = next->GetEdge(i);
if ( edgeID == lastID )
{//Don't backtrack
continue;
}
if ( edgeID == startID )
{//Don't loop around
continue;
}
if ( EdgeFailed( nextID, edgeID ) != -1 )
{
//This edge blocked, check next
continue;
}
if ( edgeID == endID )
{//We got there all clear!
return qfalse;
}
//Still going...
testRank = end->GetRank( edgeID );
if ( testRank < 0 )
{//No route this way
continue;
}
//Is the rank good enough?
if ( testRank < bestRank )
{
bestNextID = edgeID;
bestRank = testRank;
allEdgesFailed = qfalse;
}
}
if ( allEdgesFailed )
{
//This route has no clear way of getting to end
return qtrue;
}
else
{
lastID = nextID;
nextID = bestNextID;
}
}
}
/*
-------------------------
GetBestNodeAltRoute
-------------------------
*/
int CNavigator::GetBestNodeAltRoute( int startID, int endID, int *pathCost, int rejectID )
{
//Must have nodes
if ( m_nodes.size() == 0 )
return WAYPOINT_NONE;
//Validate the start position
if ( ( startID < 0 ) || ( startID >= (int)m_nodes.size() ) )
return WAYPOINT_NONE;
//Validate the end position
if ( ( endID < 0 ) || ( endID >= (int)m_nodes.size() ) )
return WAYPOINT_NONE;
//Is it the same node?
if ( startID == endID )
{
if ( !d_altRoutes->integer || EdgeFailed( startID, endID ) == -1 )
{
return startID;
}
else
{
return WAYPOINT_NONE;
}
}
CNode *start = m_nodes[ startID ];
int bestNode = -1;
int bestRank = Q3_INFINITE;
int testRank, rejectRank = Q3_INFINITE;
int bestCost = Q3_INFINITE;
*pathCost = 0;
//Find the minimum rank of the edge(s) we want to reject as paths
if ( rejectID != WAYPOINT_NONE )
{
for ( int i = 0; i < start->GetNumEdges(); i++ )
{
if ( start->GetEdge(i) == rejectID )
{
rejectRank = GetPathCost( startID, endID );//end->GetRank( start->GetEdge(i) );
break;
}
}
}
for ( int i = 0; i < start->GetNumEdges(); i++ )
{
int edgeID = start->GetEdge(i);
testRank = GetPathCost( edgeID, endID );//end->GetRank( edgeID );
//Make sure it's not worse than our reject rank
if ( testRank >= rejectRank )
continue;
//Found one
if ( edgeID == endID )
{
if ( !d_altRoutes->integer || !RouteBlocked( startID, edgeID, endID, rejectRank ) )
{
*pathCost += start->GetEdgeCost( i );
return edgeID;
}
else
{//this is blocked, can't consider it
continue;
}
}
//No possible connection
if ( testRank == NODE_NONE )
{
*pathCost = Q3_INFINITE;
return NODE_NONE;
}
//Found a better one
if ( testRank < bestRank )
{
//FIXME: make sure all the edges down from startID through edgeID to endID
// does NOT include a failedEdge...
if ( !d_altRoutes->integer || !RouteBlocked( startID, edgeID, endID, rejectRank ) )
{
bestNode = edgeID;
bestRank = testRank;
bestCost = start->GetEdgeCost(i)+testRank;
}
}
}
*pathCost = bestCost;
return bestNode;
}
/*
-------------------------
GetBestNodeAltRoute
overloaded so you don't have to pass a pathCost int pointer in
-------------------------
*/
int CNavigator::GetBestNodeAltRoute( int startID, int endID, int rejectID )
{
int junk;
return GetBestNodeAltRoute( startID, endID, &junk, rejectID );
}
/*
-------------------------
GetBestNode
-------------------------
*/
int CNavigator::GetBestNode( int startID, int endID, int rejectID )
{
//Validate the start position
if ( ( startID < 0 ) || ( startID >= (int)m_nodes.size() ) )
return WAYPOINT_NONE;
//Validate the end position
if ( ( endID < 0 ) || ( endID >= (int)m_nodes.size() ) )
return WAYPOINT_NONE;
if ( startID == endID )
return startID;
CNode *start = m_nodes[ startID ];
CNode *end = m_nodes[ endID ];
int bestNode = -1;
int bestRank = Q3_INFINITE;
int testRank, rejectRank = 0;
if ( rejectID != WAYPOINT_NONE )
{
for ( int i = 0; i < start->GetNumEdges(); i++ )
{
if ( start->GetEdge(i) == rejectID )
{
rejectRank = end->GetRank( start->GetEdge(i) );
break;
}
}
}
for ( int i = 0; i < start->GetNumEdges(); i++ )
{
int edgeID = start->GetEdge(i);
//Found one
if ( edgeID == endID )
return edgeID;
testRank = end->GetRank( edgeID );
//Found one
if ( testRank <= rejectRank )
continue;
//No possible connection
if ( testRank == NODE_NONE )
return NODE_NONE;
//Found a better one
if ( testRank < bestRank )
{
bestNode = edgeID;
bestRank = testRank;
}
}
return bestNode;
}
/*
-------------------------
GetNodePosition
-------------------------
*/
int CNavigator::GetNodePosition( int nodeID, vec3_t out )
{
//Validate the number
if ( ( nodeID < 0 ) || ( nodeID >= (int)m_nodes.size() ) )
return false;
CNode *node = m_nodes[ nodeID ];
node->GetPosition( out );
return true;
}
/*
-------------------------
GetNodeNumEdges
-------------------------
*/
int CNavigator::GetNodeNumEdges( int nodeID )
{
if ( ( nodeID < 0 ) || ( nodeID >= (int)m_nodes.size() ) )
return -1;
CNode *node = m_nodes[ nodeID ];
assert( node );
return node->GetNumEdges();
}
/*
-------------------------
GetNodeEdge
-------------------------
*/
int CNavigator::GetNodeEdge( int nodeID, int edge )
{
if ( ( nodeID < 0 ) || ( nodeID >= (int)m_nodes.size() ) )
return -1;
CNode *node = m_nodes[ nodeID ];
assert( node );
return node->GetEdge( edge );
}
/*
-------------------------
Connected
-------------------------
*/
bool CNavigator::Connected( int startID, int endID )
{
//Validate the start position
if ( ( startID < 0 ) || ( startID >= (int)m_nodes.size() ) )
return false;
//Validate the end position
if ( ( endID < 0 ) || ( endID >= (int)m_nodes.size() ) )
return false;
if ( startID == endID )
return true;
CNode *start = m_nodes[ startID ];
CNode *end = m_nodes[ endID ];
for ( int i = 0; i < start->GetNumEdges(); i++ )
{
int edgeID = start->GetEdge(i);
//Found one
if ( edgeID == endID )
return true;
if ( ( end->GetRank( edgeID ) ) != NODE_NONE )
return true;
}
return false;
}
/*
-------------------------
GetPathCost
-------------------------
*/
unsigned int CNavigator::GetPathCost( int startID, int endID )
{
//Validate the start position
if ( ( startID < 0 ) || ( startID >= (int)m_nodes.size() ) )
return Q3_INFINITE; // return 0;
//Validate the end position
if ( ( endID < 0 ) || ( endID >= (int)m_nodes.size() ) )
return Q3_INFINITE; // return 0;
CNode *startNode = m_nodes[ startID ];
if ( !startNode->GetNumEdges() )
{//WTF? Solitary waypoint! Bad designer!
return Q3_INFINITE; // return 0;
}
CNode *endNode = m_nodes[ endID ];
CNode *moveNode = startNode;
int bestNode;
int pathCost = 0;
int bestCost;
int bestRank;
int testRank;
//Draw out our path
while ( moveNode != endNode )
{
bestRank = WORLD_SIZE;
bestNode = -1;
bestCost = 0;
for ( int i = 0; i < moveNode->GetNumEdges(); i++ )
{
int edgeID = moveNode->GetEdge(i);
//Done
if ( edgeID == endID )
{
return pathCost + moveNode->GetEdgeCost( i );
}
testRank = endNode->GetRank( edgeID );
//No possible connection
if ( testRank == NODE_NONE )
{
return Q3_INFINITE; // return 0;
}
//Found a better one
if ( testRank < bestRank )
{
bestNode = edgeID;
bestRank = testRank;
bestCost = moveNode->GetEdgeCost( i );
}
}
pathCost += bestCost;
//Take a new best node
moveNode = m_nodes[ bestNode ];
}
return pathCost;
}
/*
-------------------------
GetEdgeCost
-------------------------
*/
unsigned int CNavigator::GetEdgeCost( int startID, int endID )
{
//Validate the start position
if ( ( startID < 0 ) || ( startID >= (int)m_nodes.size() ) )
return Q3_INFINITE; // return 0;
//Validate the end position
if ( ( endID < 0 ) || ( endID >= (int)m_nodes.size() ) )
return Q3_INFINITE; // return 0;
CNode *start = m_nodes[startID];
CNode *end = m_nodes[endID];
return GetEdgeCost( start, end );
}
/*
-------------------------
GetProjectedNode
-------------------------
*/
int CNavigator::GetProjectedNode( vec3_t origin, int nodeID )
{
//Validate the start position
if ( ( nodeID < 0 ) || ( nodeID >= (int)m_nodes.size() ) )
return NODE_NONE;
CNode *node = m_nodes[nodeID];
CNode *tempNode;
float bestDot = 0.0f;
int bestNode = NODE_NONE;
vec3_t targetDir, basePos, tempDir, tempPos;
float dot;
//Setup our target direction
node->GetPosition( basePos );
VectorSubtract( origin, basePos, targetDir );
VectorNormalize( targetDir );
//Go through all the edges
for ( int i = 0; i < node->GetNumEdges(); i++ )
{
tempNode = m_nodes[node->GetEdge(i)];
tempNode->GetPosition( tempPos );
VectorSubtract( tempPos, basePos, tempDir );
VectorNormalize( tempDir ); //FIXME: Retain the length here if you want it
dot = DotProduct( targetDir, tempDir );
if ( dot < 0.0f )
continue;
if ( dot > bestDot )
{
bestDot = dot;
bestNode = tempNode->GetID();
}
}
return bestNode;
}
// This is the PriorityQueue stuff for lists of connections
// better than linear (1/21/02 BJG)
//////////////////////////////////////////////////////////////////
// Helper pop_mHeap algorithm class
//////////////////////////////////////////////////////////////////
class NodeTotalGreater
{
public:
bool operator()( CEdge * first, CEdge * second ) const {
return( first->m_cost > second->m_cost );
}
};
//////////////////////////////////////////////////////////////////
// Destructor - Deallocate any remaining pointers in the queue
//////////////////////////////////////////////////////////////////
CPriorityQueue::~CPriorityQueue()
{
while (!Empty())
{
delete Pop();
}
}
//////////////////////////////////////////////////////////////////
// Standard Iterative Search
//////////////////////////////////////////////////////////////////
CEdge* CPriorityQueue::Find(int npNum)
{
for(std::vector::iterator HeapIter=mHeap.begin(); HeapIter!=mHeap.end(); HeapIter++)
{
if ((*HeapIter)->m_first == npNum)
{
return *HeapIter;
}
}
return 0;
}
//////////////////////////////////////////////////////////////////
// Remove Node And Resort
//////////////////////////////////////////////////////////////////
CEdge* CPriorityQueue::Pop()
{
CEdge *edge = mHeap.front();
//pop_mHeap will move the node at the front to the position N
//and then sort the mHeap to make positions 1 through N-1 correct
//(STL makes no assumptions about your data and doesn't want to change
//the size of the container.)
std::pop_heap(mHeap.begin(), mHeap.end(), NodeTotalGreater() );
//pop_back() will actually remove the last element from the mHeap
//now the mHeap is sorted for positions 1 through N
mHeap.pop_back();
return( edge );
}
//////////////////////////////////////////////////////////////////
// Add New Node And Resort
//////////////////////////////////////////////////////////////////
void CPriorityQueue::Push(CEdge* theEdge )
{
//Pushes the node onto the back of the mHeap
mHeap.push_back( theEdge );
//Sorts the new element into the mHeap
std::push_heap( mHeap.begin(), mHeap.end(), NodeTotalGreater() );
}
//////////////////////////////////////////////////////////////////
// Find The Node In Question And Resort mHeap Around It
//////////////////////////////////////////////////////////////////
void CPriorityQueue::Update( CEdge* edge )
{
for(std::vector::iterator i=mHeap.begin(); i!=mHeap.end(); i++)
{
if( (*i)->m_first == edge->m_first )
{ //Found node - resort from this position in the mHeap
//(its total value was changed before this function was called)
std::push_heap( mHeap.begin(), i+1, NodeTotalGreater() );
return;
}
}
}
//////////////////////////////////////////////////////////////////
// Just a wrapper for stl empty function.
//////////////////////////////////////////////////////////////////
bool CPriorityQueue::Empty()
{
return( mHeap.empty() );
};