mirror of
https://github.com/DrBeef/ioq3quest.git
synced 2024-11-23 12:32:09 +00:00
839 lines
24 KiB
C
839 lines
24 KiB
C
/* Copyright (C) 2002-2006 Jean-Marc Valin
|
|
File: ltp.c
|
|
Long-Term Prediction functions
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions
|
|
are met:
|
|
|
|
- Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
|
|
- Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
- Neither the name of the Xiph.org Foundation nor the names of its
|
|
contributors may be used to endorse or promote products derived from
|
|
this software without specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
|
|
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "config.h"
|
|
#endif
|
|
|
|
#include <math.h>
|
|
#include "ltp.h"
|
|
#include "stack_alloc.h"
|
|
#include "filters.h"
|
|
#include <speex/speex_bits.h>
|
|
#include "math_approx.h"
|
|
#include "os_support.h"
|
|
|
|
#ifndef NULL
|
|
#define NULL 0
|
|
#endif
|
|
|
|
|
|
#ifdef _USE_SSE
|
|
#include "ltp_sse.h"
|
|
#elif defined (ARM4_ASM) || defined(ARM5E_ASM)
|
|
#include "ltp_arm4.h"
|
|
#elif defined (BFIN_ASM)
|
|
#include "ltp_bfin.h"
|
|
#endif
|
|
|
|
#ifndef OVERRIDE_INNER_PROD
|
|
spx_word32_t inner_prod(const spx_word16_t *x, const spx_word16_t *y, int len)
|
|
{
|
|
spx_word32_t sum=0;
|
|
len >>= 2;
|
|
while(len--)
|
|
{
|
|
spx_word32_t part=0;
|
|
part = MAC16_16(part,*x++,*y++);
|
|
part = MAC16_16(part,*x++,*y++);
|
|
part = MAC16_16(part,*x++,*y++);
|
|
part = MAC16_16(part,*x++,*y++);
|
|
/* HINT: If you had a 40-bit accumulator, you could shift only at the end */
|
|
sum = ADD32(sum,SHR32(part,6));
|
|
}
|
|
return sum;
|
|
}
|
|
#endif
|
|
|
|
#ifndef OVERRIDE_PITCH_XCORR
|
|
#if 0 /* HINT: Enable this for machines with enough registers (i.e. not x86) */
|
|
void pitch_xcorr(const spx_word16_t *_x, const spx_word16_t *_y, spx_word32_t *corr, int len, int nb_pitch, char *stack)
|
|
{
|
|
int i,j;
|
|
for (i=0;i<nb_pitch;i+=4)
|
|
{
|
|
/* Compute correlation*/
|
|
/*corr[nb_pitch-1-i]=inner_prod(x, _y+i, len);*/
|
|
spx_word32_t sum1=0;
|
|
spx_word32_t sum2=0;
|
|
spx_word32_t sum3=0;
|
|
spx_word32_t sum4=0;
|
|
const spx_word16_t *y = _y+i;
|
|
const spx_word16_t *x = _x;
|
|
spx_word16_t y0, y1, y2, y3;
|
|
/*y0=y[0];y1=y[1];y2=y[2];y3=y[3];*/
|
|
y0=*y++;
|
|
y1=*y++;
|
|
y2=*y++;
|
|
y3=*y++;
|
|
for (j=0;j<len;j+=4)
|
|
{
|
|
spx_word32_t part1;
|
|
spx_word32_t part2;
|
|
spx_word32_t part3;
|
|
spx_word32_t part4;
|
|
part1 = MULT16_16(*x,y0);
|
|
part2 = MULT16_16(*x,y1);
|
|
part3 = MULT16_16(*x,y2);
|
|
part4 = MULT16_16(*x,y3);
|
|
x++;
|
|
y0=*y++;
|
|
part1 = MAC16_16(part1,*x,y1);
|
|
part2 = MAC16_16(part2,*x,y2);
|
|
part3 = MAC16_16(part3,*x,y3);
|
|
part4 = MAC16_16(part4,*x,y0);
|
|
x++;
|
|
y1=*y++;
|
|
part1 = MAC16_16(part1,*x,y2);
|
|
part2 = MAC16_16(part2,*x,y3);
|
|
part3 = MAC16_16(part3,*x,y0);
|
|
part4 = MAC16_16(part4,*x,y1);
|
|
x++;
|
|
y2=*y++;
|
|
part1 = MAC16_16(part1,*x,y3);
|
|
part2 = MAC16_16(part2,*x,y0);
|
|
part3 = MAC16_16(part3,*x,y1);
|
|
part4 = MAC16_16(part4,*x,y2);
|
|
x++;
|
|
y3=*y++;
|
|
|
|
sum1 = ADD32(sum1,SHR32(part1,6));
|
|
sum2 = ADD32(sum2,SHR32(part2,6));
|
|
sum3 = ADD32(sum3,SHR32(part3,6));
|
|
sum4 = ADD32(sum4,SHR32(part4,6));
|
|
}
|
|
corr[nb_pitch-1-i]=sum1;
|
|
corr[nb_pitch-2-i]=sum2;
|
|
corr[nb_pitch-3-i]=sum3;
|
|
corr[nb_pitch-4-i]=sum4;
|
|
}
|
|
|
|
}
|
|
#else
|
|
void pitch_xcorr(const spx_word16_t *_x, const spx_word16_t *_y, spx_word32_t *corr, int len, int nb_pitch, char *stack)
|
|
{
|
|
int i;
|
|
for (i=0;i<nb_pitch;i++)
|
|
{
|
|
/* Compute correlation*/
|
|
corr[nb_pitch-1-i]=inner_prod(_x, _y+i, len);
|
|
}
|
|
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
#ifndef OVERRIDE_COMPUTE_PITCH_ERROR
|
|
static inline spx_word32_t compute_pitch_error(spx_word16_t *C, spx_word16_t *g, spx_word16_t pitch_control)
|
|
{
|
|
spx_word32_t sum = 0;
|
|
sum = ADD32(sum,MULT16_16(MULT16_16_16(g[0],pitch_control),C[0]));
|
|
sum = ADD32(sum,MULT16_16(MULT16_16_16(g[1],pitch_control),C[1]));
|
|
sum = ADD32(sum,MULT16_16(MULT16_16_16(g[2],pitch_control),C[2]));
|
|
sum = SUB32(sum,MULT16_16(MULT16_16_16(g[0],g[1]),C[3]));
|
|
sum = SUB32(sum,MULT16_16(MULT16_16_16(g[2],g[1]),C[4]));
|
|
sum = SUB32(sum,MULT16_16(MULT16_16_16(g[2],g[0]),C[5]));
|
|
sum = SUB32(sum,MULT16_16(MULT16_16_16(g[0],g[0]),C[6]));
|
|
sum = SUB32(sum,MULT16_16(MULT16_16_16(g[1],g[1]),C[7]));
|
|
sum = SUB32(sum,MULT16_16(MULT16_16_16(g[2],g[2]),C[8]));
|
|
return sum;
|
|
}
|
|
#endif
|
|
|
|
#ifndef OVERRIDE_OPEN_LOOP_NBEST_PITCH
|
|
void open_loop_nbest_pitch(spx_word16_t *sw, int start, int end, int len, int *pitch, spx_word16_t *gain, int N, char *stack)
|
|
{
|
|
int i,j,k;
|
|
VARDECL(spx_word32_t *best_score);
|
|
VARDECL(spx_word32_t *best_ener);
|
|
spx_word32_t e0;
|
|
VARDECL(spx_word32_t *corr);
|
|
#ifdef FIXED_POINT
|
|
/* In fixed-point, we need only one (temporary) array of 32-bit values and two (corr16, ener16)
|
|
arrays for (normalized) 16-bit values */
|
|
VARDECL(spx_word16_t *corr16);
|
|
VARDECL(spx_word16_t *ener16);
|
|
spx_word32_t *energy;
|
|
int cshift=0, eshift=0;
|
|
int scaledown = 0;
|
|
ALLOC(corr16, end-start+1, spx_word16_t);
|
|
ALLOC(ener16, end-start+1, spx_word16_t);
|
|
ALLOC(corr, end-start+1, spx_word32_t);
|
|
energy = corr;
|
|
#else
|
|
/* In floating-point, we need to float arrays and no normalized copies */
|
|
VARDECL(spx_word32_t *energy);
|
|
spx_word16_t *corr16;
|
|
spx_word16_t *ener16;
|
|
ALLOC(energy, end-start+2, spx_word32_t);
|
|
ALLOC(corr, end-start+1, spx_word32_t);
|
|
corr16 = corr;
|
|
ener16 = energy;
|
|
#endif
|
|
|
|
ALLOC(best_score, N, spx_word32_t);
|
|
ALLOC(best_ener, N, spx_word32_t);
|
|
for (i=0;i<N;i++)
|
|
{
|
|
best_score[i]=-1;
|
|
best_ener[i]=0;
|
|
pitch[i]=start;
|
|
}
|
|
|
|
#ifdef FIXED_POINT
|
|
for (i=-end;i<len;i++)
|
|
{
|
|
if (ABS16(sw[i])>16383)
|
|
{
|
|
scaledown=1;
|
|
break;
|
|
}
|
|
}
|
|
/* If the weighted input is close to saturation, then we scale it down */
|
|
if (scaledown)
|
|
{
|
|
for (i=-end;i<len;i++)
|
|
{
|
|
sw[i]=SHR16(sw[i],1);
|
|
}
|
|
}
|
|
#endif
|
|
energy[0]=inner_prod(sw-start, sw-start, len);
|
|
e0=inner_prod(sw, sw, len);
|
|
for (i=start;i<end;i++)
|
|
{
|
|
/* Update energy for next pitch*/
|
|
energy[i-start+1] = SUB32(ADD32(energy[i-start],SHR32(MULT16_16(sw[-i-1],sw[-i-1]),6)), SHR32(MULT16_16(sw[-i+len-1],sw[-i+len-1]),6));
|
|
if (energy[i-start+1] < 0)
|
|
energy[i-start+1] = 0;
|
|
}
|
|
|
|
#ifdef FIXED_POINT
|
|
eshift = normalize16(energy, ener16, 32766, end-start+1);
|
|
#endif
|
|
|
|
/* In fixed-point, this actually overrites the energy array (aliased to corr) */
|
|
pitch_xcorr(sw, sw-end, corr, len, end-start+1, stack);
|
|
|
|
#ifdef FIXED_POINT
|
|
/* Normalize to 180 so we can square it and it still fits in 16 bits */
|
|
cshift = normalize16(corr, corr16, 180, end-start+1);
|
|
/* If we scaled weighted input down, we need to scale it up again (OK, so we've just lost the LSB, who cares?) */
|
|
if (scaledown)
|
|
{
|
|
for (i=-end;i<len;i++)
|
|
{
|
|
sw[i]=SHL16(sw[i],1);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* Search for the best pitch prediction gain */
|
|
for (i=start;i<=end;i++)
|
|
{
|
|
spx_word16_t tmp = MULT16_16_16(corr16[i-start],corr16[i-start]);
|
|
/* Instead of dividing the tmp by the energy, we multiply on the other side */
|
|
if (MULT16_16(tmp,best_ener[N-1])>MULT16_16(best_score[N-1],ADD16(1,ener16[i-start])))
|
|
{
|
|
/* We can safely put it last and then check */
|
|
best_score[N-1]=tmp;
|
|
best_ener[N-1]=ener16[i-start]+1;
|
|
pitch[N-1]=i;
|
|
/* Check if it comes in front of others */
|
|
for (j=0;j<N-1;j++)
|
|
{
|
|
if (MULT16_16(tmp,best_ener[j])>MULT16_16(best_score[j],ADD16(1,ener16[i-start])))
|
|
{
|
|
for (k=N-1;k>j;k--)
|
|
{
|
|
best_score[k]=best_score[k-1];
|
|
best_ener[k]=best_ener[k-1];
|
|
pitch[k]=pitch[k-1];
|
|
}
|
|
best_score[j]=tmp;
|
|
best_ener[j]=ener16[i-start]+1;
|
|
pitch[j]=i;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Compute open-loop gain if necessary */
|
|
if (gain)
|
|
{
|
|
for (j=0;j<N;j++)
|
|
{
|
|
spx_word16_t g;
|
|
i=pitch[j];
|
|
g = DIV32(SHL32(EXTEND32(corr16[i-start]),cshift), 10+SHR32(MULT16_16(spx_sqrt(e0),spx_sqrt(SHL32(EXTEND32(ener16[i-start]),eshift))),6));
|
|
/* FIXME: g = max(g,corr/energy) */
|
|
if (g<0)
|
|
g = 0;
|
|
gain[j]=g;
|
|
}
|
|
}
|
|
|
|
|
|
}
|
|
#endif
|
|
|
|
#ifndef OVERRIDE_PITCH_GAIN_SEARCH_3TAP_VQ
|
|
static int pitch_gain_search_3tap_vq(
|
|
const signed char *gain_cdbk,
|
|
int gain_cdbk_size,
|
|
spx_word16_t *C16,
|
|
spx_word16_t max_gain
|
|
)
|
|
{
|
|
const signed char *ptr=gain_cdbk;
|
|
int best_cdbk=0;
|
|
spx_word32_t best_sum=-VERY_LARGE32;
|
|
spx_word32_t sum=0;
|
|
spx_word16_t g[3];
|
|
spx_word16_t pitch_control=64;
|
|
spx_word16_t gain_sum;
|
|
int i;
|
|
|
|
for (i=0;i<gain_cdbk_size;i++) {
|
|
|
|
ptr = gain_cdbk+4*i;
|
|
g[0]=ADD16((spx_word16_t)ptr[0],32);
|
|
g[1]=ADD16((spx_word16_t)ptr[1],32);
|
|
g[2]=ADD16((spx_word16_t)ptr[2],32);
|
|
gain_sum = (spx_word16_t)ptr[3];
|
|
|
|
sum = compute_pitch_error(C16, g, pitch_control);
|
|
|
|
if (sum>best_sum && gain_sum<=max_gain) {
|
|
best_sum=sum;
|
|
best_cdbk=i;
|
|
}
|
|
}
|
|
|
|
return best_cdbk;
|
|
}
|
|
#endif
|
|
|
|
/** Finds the best quantized 3-tap pitch predictor by analysis by synthesis */
|
|
static spx_word32_t pitch_gain_search_3tap(
|
|
const spx_word16_t target[], /* Target vector */
|
|
const spx_coef_t ak[], /* LPCs for this subframe */
|
|
const spx_coef_t awk1[], /* Weighted LPCs #1 for this subframe */
|
|
const spx_coef_t awk2[], /* Weighted LPCs #2 for this subframe */
|
|
spx_sig_t exc[], /* Excitation */
|
|
const signed char *gain_cdbk,
|
|
int gain_cdbk_size,
|
|
int pitch, /* Pitch value */
|
|
int p, /* Number of LPC coeffs */
|
|
int nsf, /* Number of samples in subframe */
|
|
SpeexBits *bits,
|
|
char *stack,
|
|
const spx_word16_t *exc2,
|
|
const spx_word16_t *r,
|
|
spx_word16_t *new_target,
|
|
int *cdbk_index,
|
|
int plc_tuning,
|
|
spx_word32_t cumul_gain,
|
|
int scaledown
|
|
)
|
|
{
|
|
int i,j;
|
|
VARDECL(spx_word16_t *tmp1);
|
|
VARDECL(spx_word16_t *e);
|
|
spx_word16_t *x[3];
|
|
spx_word32_t corr[3];
|
|
spx_word32_t A[3][3];
|
|
spx_word16_t gain[3];
|
|
spx_word32_t err;
|
|
spx_word16_t max_gain=128;
|
|
int best_cdbk=0;
|
|
|
|
ALLOC(tmp1, 3*nsf, spx_word16_t);
|
|
ALLOC(e, nsf, spx_word16_t);
|
|
|
|
if (cumul_gain > 262144)
|
|
max_gain = 31;
|
|
|
|
x[0]=tmp1;
|
|
x[1]=tmp1+nsf;
|
|
x[2]=tmp1+2*nsf;
|
|
|
|
for (j=0;j<nsf;j++)
|
|
new_target[j] = target[j];
|
|
|
|
{
|
|
VARDECL(spx_mem_t *mm);
|
|
int pp=pitch-1;
|
|
ALLOC(mm, p, spx_mem_t);
|
|
for (j=0;j<nsf;j++)
|
|
{
|
|
if (j-pp<0)
|
|
e[j]=exc2[j-pp];
|
|
else if (j-pp-pitch<0)
|
|
e[j]=exc2[j-pp-pitch];
|
|
else
|
|
e[j]=0;
|
|
}
|
|
#ifdef FIXED_POINT
|
|
/* Scale target and excitation down if needed (avoiding overflow) */
|
|
if (scaledown)
|
|
{
|
|
for (j=0;j<nsf;j++)
|
|
e[j] = SHR16(e[j],1);
|
|
for (j=0;j<nsf;j++)
|
|
new_target[j] = SHR16(new_target[j],1);
|
|
}
|
|
#endif
|
|
for (j=0;j<p;j++)
|
|
mm[j] = 0;
|
|
iir_mem16(e, ak, e, nsf, p, mm, stack);
|
|
for (j=0;j<p;j++)
|
|
mm[j] = 0;
|
|
filter_mem16(e, awk1, awk2, e, nsf, p, mm, stack);
|
|
for (j=0;j<nsf;j++)
|
|
x[2][j] = e[j];
|
|
}
|
|
for (i=1;i>=0;i--)
|
|
{
|
|
spx_word16_t e0=exc2[-pitch-1+i];
|
|
#ifdef FIXED_POINT
|
|
/* Scale excitation down if needed (avoiding overflow) */
|
|
if (scaledown)
|
|
e0 = SHR16(e0,1);
|
|
#endif
|
|
x[i][0]=MULT16_16_Q14(r[0], e0);
|
|
for (j=0;j<nsf-1;j++)
|
|
x[i][j+1]=ADD32(x[i+1][j],MULT16_16_P14(r[j+1], e0));
|
|
}
|
|
|
|
for (i=0;i<3;i++)
|
|
corr[i]=inner_prod(x[i],new_target,nsf);
|
|
for (i=0;i<3;i++)
|
|
for (j=0;j<=i;j++)
|
|
A[i][j]=A[j][i]=inner_prod(x[i],x[j],nsf);
|
|
|
|
{
|
|
spx_word32_t C[9];
|
|
#ifdef FIXED_POINT
|
|
spx_word16_t C16[9];
|
|
#else
|
|
spx_word16_t *C16=C;
|
|
#endif
|
|
C[0]=corr[2];
|
|
C[1]=corr[1];
|
|
C[2]=corr[0];
|
|
C[3]=A[1][2];
|
|
C[4]=A[0][1];
|
|
C[5]=A[0][2];
|
|
C[6]=A[2][2];
|
|
C[7]=A[1][1];
|
|
C[8]=A[0][0];
|
|
|
|
/*plc_tuning *= 2;*/
|
|
if (plc_tuning<2)
|
|
plc_tuning=2;
|
|
if (plc_tuning>30)
|
|
plc_tuning=30;
|
|
#ifdef FIXED_POINT
|
|
C[0] = SHL32(C[0],1);
|
|
C[1] = SHL32(C[1],1);
|
|
C[2] = SHL32(C[2],1);
|
|
C[3] = SHL32(C[3],1);
|
|
C[4] = SHL32(C[4],1);
|
|
C[5] = SHL32(C[5],1);
|
|
C[6] = MAC16_32_Q15(C[6],MULT16_16_16(plc_tuning,655),C[6]);
|
|
C[7] = MAC16_32_Q15(C[7],MULT16_16_16(plc_tuning,655),C[7]);
|
|
C[8] = MAC16_32_Q15(C[8],MULT16_16_16(plc_tuning,655),C[8]);
|
|
normalize16(C, C16, 32767, 9);
|
|
#else
|
|
C[6]*=.5*(1+.02*plc_tuning);
|
|
C[7]*=.5*(1+.02*plc_tuning);
|
|
C[8]*=.5*(1+.02*plc_tuning);
|
|
#endif
|
|
|
|
best_cdbk = pitch_gain_search_3tap_vq(gain_cdbk, gain_cdbk_size, C16, max_gain);
|
|
|
|
#ifdef FIXED_POINT
|
|
gain[0] = ADD16(32,(spx_word16_t)gain_cdbk[best_cdbk*4]);
|
|
gain[1] = ADD16(32,(spx_word16_t)gain_cdbk[best_cdbk*4+1]);
|
|
gain[2] = ADD16(32,(spx_word16_t)gain_cdbk[best_cdbk*4+2]);
|
|
/*printf ("%d %d %d %d\n",gain[0],gain[1],gain[2], best_cdbk);*/
|
|
#else
|
|
gain[0] = 0.015625*gain_cdbk[best_cdbk*4] + .5;
|
|
gain[1] = 0.015625*gain_cdbk[best_cdbk*4+1]+ .5;
|
|
gain[2] = 0.015625*gain_cdbk[best_cdbk*4+2]+ .5;
|
|
#endif
|
|
*cdbk_index=best_cdbk;
|
|
}
|
|
|
|
SPEEX_MEMSET(exc, 0, nsf);
|
|
for (i=0;i<3;i++)
|
|
{
|
|
int j;
|
|
int tmp1, tmp3;
|
|
int pp=pitch+1-i;
|
|
tmp1=nsf;
|
|
if (tmp1>pp)
|
|
tmp1=pp;
|
|
for (j=0;j<tmp1;j++)
|
|
exc[j]=MAC16_16(exc[j],SHL16(gain[2-i],7),exc2[j-pp]);
|
|
tmp3=nsf;
|
|
if (tmp3>pp+pitch)
|
|
tmp3=pp+pitch;
|
|
for (j=tmp1;j<tmp3;j++)
|
|
exc[j]=MAC16_16(exc[j],SHL16(gain[2-i],7),exc2[j-pp-pitch]);
|
|
}
|
|
for (i=0;i<nsf;i++)
|
|
{
|
|
spx_word32_t tmp = ADD32(ADD32(MULT16_16(gain[0],x[2][i]),MULT16_16(gain[1],x[1][i])),
|
|
MULT16_16(gain[2],x[0][i]));
|
|
new_target[i] = SUB16(new_target[i], EXTRACT16(PSHR32(tmp,6)));
|
|
}
|
|
err = inner_prod(new_target, new_target, nsf);
|
|
|
|
return err;
|
|
}
|
|
|
|
/** Finds the best quantized 3-tap pitch predictor by analysis by synthesis */
|
|
int pitch_search_3tap(
|
|
spx_word16_t target[], /* Target vector */
|
|
spx_word16_t *sw,
|
|
spx_coef_t ak[], /* LPCs for this subframe */
|
|
spx_coef_t awk1[], /* Weighted LPCs #1 for this subframe */
|
|
spx_coef_t awk2[], /* Weighted LPCs #2 for this subframe */
|
|
spx_sig_t exc[], /* Excitation */
|
|
const void *par,
|
|
int start, /* Smallest pitch value allowed */
|
|
int end, /* Largest pitch value allowed */
|
|
spx_word16_t pitch_coef, /* Voicing (pitch) coefficient */
|
|
int p, /* Number of LPC coeffs */
|
|
int nsf, /* Number of samples in subframe */
|
|
SpeexBits *bits,
|
|
char *stack,
|
|
spx_word16_t *exc2,
|
|
spx_word16_t *r,
|
|
int complexity,
|
|
int cdbk_offset,
|
|
int plc_tuning,
|
|
spx_word32_t *cumul_gain
|
|
)
|
|
{
|
|
int i;
|
|
int cdbk_index, pitch=0, best_gain_index=0;
|
|
VARDECL(spx_sig_t *best_exc);
|
|
VARDECL(spx_word16_t *new_target);
|
|
VARDECL(spx_word16_t *best_target);
|
|
int best_pitch=0;
|
|
spx_word32_t err, best_err=-1;
|
|
int N;
|
|
const ltp_params *params;
|
|
const signed char *gain_cdbk;
|
|
int gain_cdbk_size;
|
|
int scaledown=0;
|
|
|
|
VARDECL(int *nbest);
|
|
|
|
params = (const ltp_params*) par;
|
|
gain_cdbk_size = 1<<params->gain_bits;
|
|
gain_cdbk = params->gain_cdbk + 4*gain_cdbk_size*cdbk_offset;
|
|
|
|
N=complexity;
|
|
if (N>10)
|
|
N=10;
|
|
if (N<1)
|
|
N=1;
|
|
|
|
ALLOC(nbest, N, int);
|
|
params = (const ltp_params*) par;
|
|
|
|
if (end<start)
|
|
{
|
|
speex_bits_pack(bits, 0, params->pitch_bits);
|
|
speex_bits_pack(bits, 0, params->gain_bits);
|
|
SPEEX_MEMSET(exc, 0, nsf);
|
|
return start;
|
|
}
|
|
|
|
#ifdef FIXED_POINT
|
|
/* Check if we need to scale everything down in the pitch search to avoid overflows */
|
|
for (i=0;i<nsf;i++)
|
|
{
|
|
if (ABS16(target[i])>16383)
|
|
{
|
|
scaledown=1;
|
|
break;
|
|
}
|
|
}
|
|
for (i=-end;i<nsf;i++)
|
|
{
|
|
if (ABS16(exc2[i])>16383)
|
|
{
|
|
scaledown=1;
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
if (N>end-start+1)
|
|
N=end-start+1;
|
|
if (end != start)
|
|
open_loop_nbest_pitch(sw, start, end, nsf, nbest, NULL, N, stack);
|
|
else
|
|
nbest[0] = start;
|
|
|
|
ALLOC(best_exc, nsf, spx_sig_t);
|
|
ALLOC(new_target, nsf, spx_word16_t);
|
|
ALLOC(best_target, nsf, spx_word16_t);
|
|
|
|
for (i=0;i<N;i++)
|
|
{
|
|
pitch=nbest[i];
|
|
SPEEX_MEMSET(exc, 0, nsf);
|
|
err=pitch_gain_search_3tap(target, ak, awk1, awk2, exc, gain_cdbk, gain_cdbk_size, pitch, p, nsf,
|
|
bits, stack, exc2, r, new_target, &cdbk_index, plc_tuning, *cumul_gain, scaledown);
|
|
if (err<best_err || best_err<0)
|
|
{
|
|
SPEEX_COPY(best_exc, exc, nsf);
|
|
SPEEX_COPY(best_target, new_target, nsf);
|
|
best_err=err;
|
|
best_pitch=pitch;
|
|
best_gain_index=cdbk_index;
|
|
}
|
|
}
|
|
/*printf ("pitch: %d %d\n", best_pitch, best_gain_index);*/
|
|
speex_bits_pack(bits, best_pitch-start, params->pitch_bits);
|
|
speex_bits_pack(bits, best_gain_index, params->gain_bits);
|
|
#ifdef FIXED_POINT
|
|
*cumul_gain = MULT16_32_Q13(SHL16(params->gain_cdbk[4*best_gain_index+3],8), MAX32(1024,*cumul_gain));
|
|
#else
|
|
*cumul_gain = 0.03125*MAX32(1024,*cumul_gain)*params->gain_cdbk[4*best_gain_index+3];
|
|
#endif
|
|
/*printf ("%f\n", cumul_gain);*/
|
|
/*printf ("encode pitch: %d %d\n", best_pitch, best_gain_index);*/
|
|
SPEEX_COPY(exc, best_exc, nsf);
|
|
SPEEX_COPY(target, best_target, nsf);
|
|
#ifdef FIXED_POINT
|
|
/* Scale target back up if needed */
|
|
if (scaledown)
|
|
{
|
|
for (i=0;i<nsf;i++)
|
|
target[i]=SHL16(target[i],1);
|
|
}
|
|
#endif
|
|
return pitch;
|
|
}
|
|
|
|
void pitch_unquant_3tap(
|
|
spx_word16_t exc[], /* Input excitation */
|
|
spx_word32_t exc_out[], /* Output excitation */
|
|
int start, /* Smallest pitch value allowed */
|
|
int end, /* Largest pitch value allowed */
|
|
spx_word16_t pitch_coef, /* Voicing (pitch) coefficient */
|
|
const void *par,
|
|
int nsf, /* Number of samples in subframe */
|
|
int *pitch_val,
|
|
spx_word16_t *gain_val,
|
|
SpeexBits *bits,
|
|
char *stack,
|
|
int count_lost,
|
|
int subframe_offset,
|
|
spx_word16_t last_pitch_gain,
|
|
int cdbk_offset
|
|
)
|
|
{
|
|
int i;
|
|
int pitch;
|
|
int gain_index;
|
|
spx_word16_t gain[3];
|
|
const signed char *gain_cdbk;
|
|
int gain_cdbk_size;
|
|
const ltp_params *params;
|
|
|
|
params = (const ltp_params*) par;
|
|
gain_cdbk_size = 1<<params->gain_bits;
|
|
gain_cdbk = params->gain_cdbk + 4*gain_cdbk_size*cdbk_offset;
|
|
|
|
pitch = speex_bits_unpack_unsigned(bits, params->pitch_bits);
|
|
pitch += start;
|
|
gain_index = speex_bits_unpack_unsigned(bits, params->gain_bits);
|
|
/*printf ("decode pitch: %d %d\n", pitch, gain_index);*/
|
|
#ifdef FIXED_POINT
|
|
gain[0] = ADD16(32,(spx_word16_t)gain_cdbk[gain_index*4]);
|
|
gain[1] = ADD16(32,(spx_word16_t)gain_cdbk[gain_index*4+1]);
|
|
gain[2] = ADD16(32,(spx_word16_t)gain_cdbk[gain_index*4+2]);
|
|
#else
|
|
gain[0] = 0.015625*gain_cdbk[gain_index*4]+.5;
|
|
gain[1] = 0.015625*gain_cdbk[gain_index*4+1]+.5;
|
|
gain[2] = 0.015625*gain_cdbk[gain_index*4+2]+.5;
|
|
#endif
|
|
|
|
if (count_lost && pitch > subframe_offset)
|
|
{
|
|
spx_word16_t gain_sum;
|
|
if (1) {
|
|
#ifdef FIXED_POINT
|
|
spx_word16_t tmp = count_lost < 4 ? last_pitch_gain : SHR16(last_pitch_gain,1);
|
|
if (tmp>62)
|
|
tmp=62;
|
|
#else
|
|
spx_word16_t tmp = count_lost < 4 ? last_pitch_gain : 0.5 * last_pitch_gain;
|
|
if (tmp>.95)
|
|
tmp=.95;
|
|
#endif
|
|
gain_sum = gain_3tap_to_1tap(gain);
|
|
|
|
if (gain_sum > tmp)
|
|
{
|
|
spx_word16_t fact = DIV32_16(SHL32(EXTEND32(tmp),14),gain_sum);
|
|
for (i=0;i<3;i++)
|
|
gain[i]=MULT16_16_Q14(fact,gain[i]);
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
*pitch_val = pitch;
|
|
gain_val[0]=gain[0];
|
|
gain_val[1]=gain[1];
|
|
gain_val[2]=gain[2];
|
|
gain[0] = SHL16(gain[0],7);
|
|
gain[1] = SHL16(gain[1],7);
|
|
gain[2] = SHL16(gain[2],7);
|
|
SPEEX_MEMSET(exc_out, 0, nsf);
|
|
for (i=0;i<3;i++)
|
|
{
|
|
int j;
|
|
int tmp1, tmp3;
|
|
int pp=pitch+1-i;
|
|
tmp1=nsf;
|
|
if (tmp1>pp)
|
|
tmp1=pp;
|
|
for (j=0;j<tmp1;j++)
|
|
exc_out[j]=MAC16_16(exc_out[j],gain[2-i],exc[j-pp]);
|
|
tmp3=nsf;
|
|
if (tmp3>pp+pitch)
|
|
tmp3=pp+pitch;
|
|
for (j=tmp1;j<tmp3;j++)
|
|
exc_out[j]=MAC16_16(exc_out[j],gain[2-i],exc[j-pp-pitch]);
|
|
}
|
|
/*for (i=0;i<nsf;i++)
|
|
exc[i]=PSHR32(exc32[i],13);*/
|
|
}
|
|
|
|
|
|
/** Forced pitch delay and gain */
|
|
int forced_pitch_quant(
|
|
spx_word16_t target[], /* Target vector */
|
|
spx_word16_t *sw,
|
|
spx_coef_t ak[], /* LPCs for this subframe */
|
|
spx_coef_t awk1[], /* Weighted LPCs #1 for this subframe */
|
|
spx_coef_t awk2[], /* Weighted LPCs #2 for this subframe */
|
|
spx_sig_t exc[], /* Excitation */
|
|
const void *par,
|
|
int start, /* Smallest pitch value allowed */
|
|
int end, /* Largest pitch value allowed */
|
|
spx_word16_t pitch_coef, /* Voicing (pitch) coefficient */
|
|
int p, /* Number of LPC coeffs */
|
|
int nsf, /* Number of samples in subframe */
|
|
SpeexBits *bits,
|
|
char *stack,
|
|
spx_word16_t *exc2,
|
|
spx_word16_t *r,
|
|
int complexity,
|
|
int cdbk_offset,
|
|
int plc_tuning,
|
|
spx_word32_t *cumul_gain
|
|
)
|
|
{
|
|
int i;
|
|
VARDECL(spx_word16_t *res);
|
|
ALLOC(res, nsf, spx_word16_t);
|
|
#ifdef FIXED_POINT
|
|
if (pitch_coef>63)
|
|
pitch_coef=63;
|
|
#else
|
|
if (pitch_coef>.99)
|
|
pitch_coef=.99;
|
|
#endif
|
|
for (i=0;i<nsf&&i<start;i++)
|
|
{
|
|
exc[i]=MULT16_16(SHL16(pitch_coef, 7),exc2[i-start]);
|
|
}
|
|
for (;i<nsf;i++)
|
|
{
|
|
exc[i]=MULT16_32_Q15(SHL16(pitch_coef, 9),exc[i-start]);
|
|
}
|
|
for (i=0;i<nsf;i++)
|
|
res[i] = EXTRACT16(PSHR32(exc[i], SIG_SHIFT-1));
|
|
syn_percep_zero16(res, ak, awk1, awk2, res, nsf, p, stack);
|
|
for (i=0;i<nsf;i++)
|
|
target[i]=EXTRACT16(SATURATE(SUB32(EXTEND32(target[i]),EXTEND32(res[i])),32700));
|
|
return start;
|
|
}
|
|
|
|
/** Unquantize forced pitch delay and gain */
|
|
void forced_pitch_unquant(
|
|
spx_word16_t exc[], /* Input excitation */
|
|
spx_word32_t exc_out[], /* Output excitation */
|
|
int start, /* Smallest pitch value allowed */
|
|
int end, /* Largest pitch value allowed */
|
|
spx_word16_t pitch_coef, /* Voicing (pitch) coefficient */
|
|
const void *par,
|
|
int nsf, /* Number of samples in subframe */
|
|
int *pitch_val,
|
|
spx_word16_t *gain_val,
|
|
SpeexBits *bits,
|
|
char *stack,
|
|
int count_lost,
|
|
int subframe_offset,
|
|
spx_word16_t last_pitch_gain,
|
|
int cdbk_offset
|
|
)
|
|
{
|
|
int i;
|
|
#ifdef FIXED_POINT
|
|
if (pitch_coef>63)
|
|
pitch_coef=63;
|
|
#else
|
|
if (pitch_coef>.99)
|
|
pitch_coef=.99;
|
|
#endif
|
|
for (i=0;i<nsf;i++)
|
|
{
|
|
exc_out[i]=MULT16_16(exc[i-start],SHL16(pitch_coef,7));
|
|
exc[i] = EXTRACT16(PSHR32(exc_out[i],13));
|
|
}
|
|
*pitch_val = start;
|
|
gain_val[0]=gain_val[2]=0;
|
|
gain_val[1] = pitch_coef;
|
|
}
|