uniform sampler2D u_DiffuseMap; #if defined(USE_LIGHTMAP) uniform sampler2D u_LightMap; #endif #if defined(USE_NORMALMAP) uniform sampler2D u_NormalMap; #endif #if defined(USE_DELUXEMAP) uniform sampler2D u_DeluxeMap; #endif #if defined(USE_SPECULARMAP) uniform sampler2D u_SpecularMap; #endif #if defined(USE_SHADOWMAP) uniform sampler2D u_ShadowMap; #endif uniform vec3 u_ViewOrigin; #if defined(USE_TCGEN) uniform int u_TCGen0; #endif #if defined(USE_LIGHT_VECTOR) uniform vec3 u_DirectedLight; uniform vec3 u_AmbientLight; uniform float u_LightRadius; #endif #if defined(USE_LIGHT) uniform vec2 u_MaterialInfo; #endif varying vec2 var_DiffuseTex; #if defined(USE_LIGHTMAP) varying vec2 var_LightTex; #endif varying vec4 var_Color; #if defined(USE_NORMALMAP) && !defined(USE_VERT_TANGENT_SPACE) varying vec3 var_Position; #endif varying vec3 var_SampleToView; #if !defined(USE_FAST_LIGHT) varying vec3 var_Normal; #endif #if defined(USE_VERT_TANGENT_SPACE) varying vec3 var_Tangent; varying vec3 var_Bitangent; #endif varying vec3 var_VertLight; #if defined(USE_LIGHT) && !defined(USE_DELUXEMAP) varying vec3 var_WorldLight; #endif #define EPSILON 0.00000001 #if defined(USE_PARALLAXMAP) float SampleHeight(sampler2D normalMap, vec2 t) { #if defined(SWIZZLE_NORMALMAP) return texture2D(normalMap, t).r; #else return texture2D(normalMap, t).a; #endif } float RayIntersectDisplaceMap(vec2 dp, vec2 ds, sampler2D normalMap) { const int linearSearchSteps = 16; const int binarySearchSteps = 6; float depthStep = 1.0 / float(linearSearchSteps); // current size of search window float size = depthStep; // current depth position float depth = 0.0; // best match found (starts with last position 1.0) float bestDepth = 1.0; // search front to back for first point inside object for(int i = 0; i < linearSearchSteps - 1; ++i) { depth += size; float t = 1.0 - SampleHeight(normalMap, dp + ds * depth); if(bestDepth > 0.996) // if no depth found yet if(depth >= t) bestDepth = depth; // store best depth } depth = bestDepth; // recurse around first point (depth) for closest match for(int i = 0; i < binarySearchSteps; ++i) { size *= 0.5; float t = 1.0 - SampleHeight(normalMap, dp + ds * depth); if(depth >= t) { bestDepth = depth; depth -= 2.0 * size; } depth += size; } return bestDepth; } #endif float CalcDiffuse(vec3 N, vec3 L, vec3 E, float NE, float NL, float fzero, float shininess) { #if defined(USE_OREN_NAYAR) || defined(USE_TRIACE_OREN_NAYAR) float gamma = dot(E, L) - NE * NL; float B = 2.22222 + 0.1 * shininess; #if defined(USE_OREN_NAYAR) float A = 1.0 - 1.0 / (2.0 + 0.33 * shininess); gamma = clamp(gamma, 0.0, 1.0); #endif #if defined(USE_TRIACE_OREN_NAYAR) float A = 1.0 - 1.0 / (2.0 + 0.65 * shininess); if (gamma >= 0.0) #endif { B *= max(max(NL, NE), EPSILON); } return (A + gamma / B) * (1.0 - fzero); #else return 1.0 - fzero; #endif } #if defined(USE_SPECULARMAP) float CalcSpecular(float NH, float NL, float NE, float EH, float fzero, float shininess) { #if defined(USE_BLINN) || defined(USE_TRIACE) || defined(USE_TORRANCE_SPARROW) float blinn = pow(NH, shininess); #endif #if defined(USE_BLINN) return blinn; #endif #if defined(USE_COOK_TORRANCE) || defined (USE_TRIACE) || defined (USE_TORRANCE_SPARROW) float fresnel = fzero + (1.0 - fzero) * pow(1.0 - EH, 5); #endif #if defined(USE_COOK_TORRANCE) || defined(USE_TORRANCE_SPARROW) float geo = 2.0 * NH * min(NE, NL); geo /= max(EH, geo); #endif #if defined(USE_COOK_TORRANCE) float m_sq = 2.0 / max(shininess, EPSILON); float NH_sq = NH * NH; float m_NH_sq = m_sq * NH_sq; float beckmann = exp((NH_sq - 1.0) / max(m_NH_sq, EPSILON)) / max(4.0 * m_NH_sq * NH_sq, EPSILON); return fresnel * geo * beckmann / max(NE, EPSILON); #endif #if defined(USE_TRIACE) float scale = 0.1248582 * shininess + 0.2691817; return fresnel * scale * blinn / max(max(NL, NE), EPSILON); #endif #if defined(USE_TORRANCE_SPARROW) float scale = 0.125 * shininess + 1.0; return fresnel * geo * scale * blinn / max(NE, EPSILON); #endif } #endif void main() { #if !defined(USE_FAST_LIGHT) && (defined(USE_LIGHT) || defined(USE_NORMALMAP)) vec3 surfNormal = normalize(var_Normal); #endif #if defined(USE_DELUXEMAP) vec3 worldLight = 2.0 * texture2D(u_DeluxeMap, var_LightTex).xyz - vec3(1.0); //worldLight += var_WorldLight * 0.0001; #elif defined(USE_LIGHT) vec3 worldLight = var_WorldLight; #endif #if defined(USE_LIGHTMAP) vec4 lightSample = texture2D(u_LightMap, var_LightTex).rgba; #if defined(RGBE_LIGHTMAP) lightSample.rgb *= exp2(lightSample.a * 255.0 - 128.0); #endif vec3 directedLight = lightSample.rgb; #elif defined(USE_LIGHT_VECTOR) && !defined(USE_FAST_LIGHT) #if defined(USE_INVSQRLIGHT) float intensity = 1.0 / dot(worldLight, worldLight); #else float intensity = clamp((1.0 - dot(worldLight, worldLight) / (u_LightRadius * u_LightRadius)) * 1.07, 0.0, 1.0); #endif vec3 directedLight = u_DirectedLight * intensity; vec3 ambientLight = u_AmbientLight; #if defined(USE_SHADOWMAP) vec2 shadowTex = gl_FragCoord.xy * r_FBufScale; directedLight *= texture2D(u_ShadowMap, shadowTex).r; #endif #elif defined(USE_LIGHT_VERTEX) && !defined(USE_FAST_LIGHT) vec3 directedLight = var_VertLight; #endif #if defined(USE_TCGEN) || defined(USE_NORMALMAP) || (defined(USE_LIGHT) && !defined(USE_FAST_LIGHT)) vec3 SampleToView = normalize(var_SampleToView); #endif vec2 tex = var_DiffuseTex; float ambientDiff = 1.0; #if defined(USE_NORMALMAP) #if defined(USE_VERT_TANGENT_SPACE) vec3 tangent = var_Tangent; vec3 bitangent = var_Bitangent; #else vec3 q0 = dFdx(var_Position); vec3 q1 = dFdy(var_Position); vec2 st0 = dFdx(tex); vec2 st1 = dFdy(tex); float dir = sign(st1.t * st0.s - st0.t * st1.s); vec3 tangent = normalize( q0 * st1.t - q1 * st0.t) * dir; vec3 bitangent = -normalize( q0 * st1.s - q1 * st0.s) * dir; #endif mat3 tangentToWorld = mat3(tangent, bitangent, var_Normal); #if defined(USE_PARALLAXMAP) vec3 offsetDir = normalize(SampleToView * tangentToWorld); #if 0 float height = SampleHeight(u_NormalMap, tex); float pdist = 0.05 * height - (0.05 / 2.0); #else offsetDir.xy *= -0.05 / offsetDir.z; float pdist = RayIntersectDisplaceMap(tex, offsetDir.xy, u_NormalMap); #endif tex += offsetDir.xy * pdist; #endif #if defined(SWIZZLE_NORMALMAP) vec3 normal = 2.0 * texture2D(u_NormalMap, tex).agb - 1.0; #else vec3 normal = 2.0 * texture2D(u_NormalMap, tex).rgb - 1.0; #endif normal.z = sqrt(clamp(1.0 - dot(normal.xy, normal.xy), 0.0, 1.0)); vec3 worldNormal = tangentToWorld * normal; #if defined(r_normalAmbient) ambientDiff = 0.781341 * normal.z + 0.218659; #endif #elif defined(USE_LIGHT) && !defined(USE_FAST_LIGHT) vec3 worldNormal = surfNormal; #endif #if (defined(USE_LIGHT) && !defined(USE_FAST_LIGHT)) || (defined(USE_TCGEN) && defined(USE_NORMALMAP)) worldNormal = normalize(worldNormal); #endif #if defined(USE_TCGEN) && defined(USE_NORMALMAP) if (u_TCGen0 == TCGEN_ENVIRONMENT_MAPPED) { tex = -reflect(normalize(SampleToView), worldNormal).yz * vec2(0.5, -0.5) + 0.5; } #endif vec4 diffuse = texture2D(u_DiffuseMap, tex); #if defined(USE_LIGHT) && defined(USE_FAST_LIGHT) #if defined(USE_LIGHTMAP) diffuse.rgb *= directedLight; #endif #elif defined(USE_LIGHT) worldLight = normalize(worldLight); float surfNL = clamp(dot(surfNormal, worldLight), 0.0, 1.0); #if defined(USE_LIGHTMAP) || defined(USE_LIGHT_VERTEX) #if defined(USE_STANDARD_DELUXEMAP) // Standard deluxe mapping treats the light sample as fully directed // and doesn't compensate for light angle attenuation. vec3 ambientLight = vec3(0.0); #else // Separate the light sample into directed and ambient parts. // // ambientMax - if the cosine of the angle between the surface // normal and the light is below this value, the light // is fully ambient. // directedMax - if the cosine of the angle between the surface // normal and the light is above this value, the light // is fully directed. const float ambientMax = 0.25; const float directedMax = 0.5; float directedScale = clamp((surfNL - ambientMax) / (directedMax - ambientMax), 0.0, 1.0); // Scale the directed portion to compensate for the baked-in // light angle attenuation. directedScale /= max(surfNL, ambientMax); #if defined(r_normalAmbient) directedScale *= 1.0 - r_normalAmbient; #endif // Recover any unused light as ambient vec3 ambientLight = directedLight; directedLight *= directedScale; ambientLight -= directedLight * surfNL; #endif #endif float NL = clamp(dot(worldNormal, worldLight), 0.0, 1.0); float NE = clamp(dot(worldNormal, SampleToView), 0.0, 1.0); float fzero = u_MaterialInfo.x; float shininess = u_MaterialInfo.y; #if defined(USE_SPECULARMAP) vec4 specular = texture2D(u_SpecularMap, tex); //specular.rgb = clamp(specular.rgb - diffuse.rgb, 0.0, 1.0); shininess *= specular.a; #endif float directedDiff = NL * CalcDiffuse(worldNormal, worldLight, SampleToView, NE, NL, fzero, shininess); diffuse.rgb *= directedLight * directedDiff + ambientDiff * ambientLight; #if defined(USE_SPECULARMAP) vec3 halfAngle = normalize(worldLight + SampleToView); float EH = clamp(dot(SampleToView, halfAngle), 0.0, 1.0); float NH = clamp(dot(worldNormal, halfAngle), 0.0, 1.0); float directedSpec = NL * CalcSpecular(NH, NL, NE, EH, fzero, shininess); #if defined(r_normalAmbient) vec3 ambientHalf = normalize(surfNormal + SampleToView); float ambientSpec = max(dot(ambientHalf, worldNormal) + 0.5, 0.0); ambientSpec *= ambientSpec * 0.44; ambientSpec = pow(ambientSpec, shininess) * fzero; specular.rgb *= directedSpec * directedLight + ambientSpec * ambientLight; #else specular.rgb *= directedSpec * directedLight; #endif #endif #endif gl_FragColor = diffuse; #if defined(USE_SPECULARMAP) && defined(USE_LIGHT) && !defined(USE_FAST_LIGHT) gl_FragColor.rgb += specular.rgb; #endif gl_FragColor *= var_Color; }