/* =========================================================================== Copyright (C) 2006-2009 Robert Beckebans This file is part of XreaL source code. XreaL source code is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. XreaL source code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with XreaL source code; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA =========================================================================== */ // tr_glsl.c #include "tr_local.h" void GLSL_BindNullProgram(void); // FIXME: Do something that isn't this messy static const char *fallbackGenericShader_vp = "attribute vec4 attr_Position;\r\nattribute vec4 attr_TexCoord0;\r\nattribut" "e vec4 attr_TexCoord1;\r\nattribute vec3 attr_Normal;\r\nattribute vec4 att" "r_Color;\r\n\r\n#if defined(USE_VERTEX_ANIMATION)\r\nattribute vec4 attr_Po" "sition2;\r\nattribute vec3 attr_Normal2;\r\n#endif\r\n\r\nuniform mat4 u_" "DiffuseTexMatrix;\r\nuniform vec3 u_ViewOrigin;\r\n\r\n#if defined(USE_TC" "GEN)\r\nuniform int u_TCGen0;\r\nuniform vec3 u_TCGen0Vector0;\r\nunif" "orm vec3 u_TCGen0Vector1;\r\n#endif\r\n\r\n#if defined(USE_FOG)\r\nunifor" "m vec4 u_FogDistance;\r\nuniform vec4 u_FogDepth;\r\nuniform float u_F" "ogEyeT;\r\nuniform vec4 u_FogColorMask;\r\n#endif\r\n\r\n#if defined(USE_" "DEFORM_VERTEXES)\r\nuniform int u_DeformGen;\r\nuniform float u_DeformP" "arams[5];\r\n#endif\r\n\r\nuniform float u_Time;\r\n\r\nuniform mat4 u_M" "odelViewProjectionMatrix;\r\nuniform vec4 u_BaseColor;\r\nuniform vec4 " "u_VertColor;\r\n\r\n#if defined(USE_RGBAGEN)\r\nuniform int u_ColorGen;" "\r\nuniform int u_AlphaGen;\r\nuniform vec3 u_AmbientLight;\r\nuniform" " vec3 u_DirectedLight;\r\nuniform vec4 u_LightOrigin;\r\nuniform float " " u_PortalRange;\r\n#endif\r\n\r\n#if defined(USE_VERTEX_ANIMATION)\r\nunifo" "rm float u_VertexLerp;\r\n#endif\r\n\r\nvarying vec2 var_DiffuseTex;\r\n" "#if defined(USE_LIGHTMAP)\r\nvarying vec2 var_LightTex;\r\n#endif\r\nvary" "ing vec4 var_Color;\r\n\r\nvec2 DoTexMatrix(vec2 st, vec3 position, mat4 " "texMatrix)\r\n{\r\n\tfloat amplitude = texMatrix[3][0];\r\n\tfloat phase = " "texMatrix[3][1];\r\n\tvec2 st2 = (texMatrix * vec4(st, 1.0, 0.0)).st;\r\n\r" "\n\tvec3 offsetPos = position.xyz / 1024.0;\r\n\toffsetPos.x += offsetPos.z" ";\r\n\r\n\tvec2 texOffset = sin((offsetPos.xy + vec2(phase)) * 2.0 * M_PI);" "\r\n\t\r\n\treturn st2 + texOffset * amplitude;\r\n}\r\n\r\n#if defined(USE" "_DEFORM_VERTEXES)\r\nfloat triangle(float x)\r\n{\r\n\treturn max(1.0 - abs" "(x), 0);\r\n}\r\n\r\nfloat sawtooth(float x)\r\n{\r\n\treturn x - floor(x);" "\r\n}\r\n\r\nvec4 DeformPosition(const vec4 pos, const vec3 normal, const v" "ec2 st)\r\n{\r\n\tfloat base = u_DeformParams[0];\r\n\tfloat amplitude" " = u_DeformParams[1];\r\n\tfloat phase = u_DeformParams[2];\r\n\tfloat " "frequency = u_DeformParams[3];\r\n\tfloat spread = u_DeformParams[4];\r" "\n\t\r\n\tif (u_DeformGen == DGEN_BULGE)\r\n\t{\r\n\t\tphase *= M_PI * 0.25" " * st.x;\r\n\t}\r\n\telse // if (u_DeformGen <= DGEN_WAVE_INVERSE_SAWTOOTH)" "\r\n\t{\r\n\t\tphase += (pos.x + pos.y + pos.z) * spread;\r\n\t}\r\n\r\n\tf" "loat value = phase + (u_Time * frequency);\r\n\tfloat func;\r\n\r\n\tif (u_" "DeformGen == DGEN_WAVE_SIN)\r\n\t{\r\n\t\tfunc = sin(value * 2.0 * M_PI);\r" "\n\t}\r\n\telse if (u_DeformGen == DGEN_WAVE_SQUARE)\r\n\t{\r\n\t\tfunc = s" "ign(sin(value * 2.0 * M_PI));\r\n\t}\r\n\telse if (u_DeformGen == DGEN_WAVE" "_TRIANGLE)\r\n\t{\r\n\t\tfunc = triangle(value);\r\n\t}\r\n\telse if (u_Def" "ormGen == DGEN_WAVE_SAWTOOTH)\r\n\t{\r\n\t\tfunc = sawtooth(value);\r\n\t}" "\r\n\telse if (u_DeformGen == DGEN_WAVE_INVERSE_SAWTOOTH)\r\n\t{\r\n\t\tfun" "c = (1.0 - sawtooth(value));\r\n\t}\r\n\telse if (u_DeformGen == DGEN_BULGE" ")\r\n\t{\r\n\t\tfunc = sin(value);\r\n\t}\r\n\t\r\n\tvec4 deformed = pos;\r" "\n\tdeformed.xyz += normal * (base + func * amplitude);\r\n\r\n\treturn def" "ormed;\r\n}\r\n#endif\r\n\r\n#if defined(USE_TCGEN)\r\nvec2 GenTexCoords(in" "t TCGen, vec4 position, vec3 normal, vec3 TCGenVector0, vec3 TCGenVector1)" "\r\n{\r\n\tvec2 tex = attr_TexCoord0.st;\r\n\r\n\tif (TCGen == TCGEN_LIGHTM" "AP)\r\n\t{\r\n\t\ttex = attr_TexCoord1.st;\r\n\t}\r\n\telse if (TCGen == TC" "GEN_ENVIRONMENT_MAPPED)\r\n\t{\r\n\t\tvec3 viewer = normalize(u_ViewOrigin " "- position.xyz);\r\n\t\tvec3 reflected = normal * 2.0 * dot(normal, viewer)" " - viewer;\r\n\r\n\t\ttex = reflected.yz * vec2(0.5, -0.5) + 0.5;\r\n\t}\r" "\n\telse if (TCGen == TCGEN_VECTOR)\r\n\t{\r\n\t\ttex = vec2(dot(position.x" "yz, TCGenVector0), dot(position.xyz, TCGenVector1));\r\n\t}\r\n\t\r\n\tretu" "rn tex;\r\n}\r\n#endif\r\n\r\nvoid main()\r\n{\r\n#if defined(USE_VERTEX_AN" "IMATION)\r\n\tvec4 position = mix(attr_Position, attr_Position2, u_VertexLe" "rp);\r\n\tvec3 normal = normalize(mix(attr_Normal, attr_Normal2, u_VertexLe" "rp));\r\n#else\r\n\tvec4 position = attr_Position;\r\n\tvec3 normal = attr_" "Normal;\r\n#endif\r\n\r\n#if defined(USE_DEFORM_VERTEXES)\r\n\tposition = D" "eformPosition(position, normal, attr_TexCoord0.st);\r\n#endif\r\n\r\n\tgl_P" "osition = u_ModelViewProjectionMatrix * position;\r\n\r\n#if defined(USE_TC" "GEN)\r\n\tvec2 tex = GenTexCoords(u_TCGen0, position, normal, u_TCGen0Vecto" "r0, u_TCGen0Vector1);\r\n#else\r\n\tvec2 tex = attr_TexCoord0.st;\r\n#endif" "\r\n\tvar_DiffuseTex = DoTexMatrix(tex, position.xyz, u_DiffuseTexMatrix);" "\r\n\r\n#if defined(USE_LIGHTMAP)\r\n\tvar_LightTex = attr_TexCoord1.st;\r" "\n#endif\r\n\r\n\tvar_Color = u_VertColor * attr_Color + u_BaseColor;\r\n\r" "\n#if defined(USE_RGBAGEN)\r\n\tif (u_ColorGen == CGEN_LIGHTING_DIFFUSE)\r" "\n\t{\r\n\t\tfloat incoming = max(dot(normal, u_LightOrigin.xyz), 0.0);\r\n" "\r\n\t\tvar_Color.rgb = min(u_DirectedLight * incoming + u_AmbientLight, 1." "0);\r\n\t}\r\n\t\r\n\tvec3 toView = u_ViewOrigin - position.xyz;\r\n\r\n\ti" "f (u_AlphaGen == AGEN_LIGHTING_SPECULAR)\r\n\t{\r\n\t\tvec3 lightDir = norm" "alize(vec3(-960.0, -1980.0, 96.0) - position.xyz);\r\n\t\tvec3 viewer = nor" "malize(toView);\r\n\t\tvec3 halfangle = normalize(lightDir + viewer);\r\n\t" "\t\r\n\t\tvar_Color.a = pow(max(dot(normal, halfangle), 0.0), 8.0);\r\n\t}" "\r\n\telse if (u_AlphaGen == AGEN_PORTAL)\r\n\t{\r\n\t\tfloat alpha = lengt" "h(toView) / u_PortalRange;\r\n\r\n\t\tvar_Color.a = min(alpha, 1.0);\r\n\t}" "\r\n\telse if (u_AlphaGen == AGEN_FRESNEL)\r\n\t{\r\n\t\tvec3 viewer = norm" "alize(toView);\r\n\t\t\r\n\t\tvar_Color.a = 0.10 + 0.90 * pow(1.0 - dot(nor" "mal, viewer), 5);\r\n\t}\r\n#endif\r\n\r\n#if defined (USE_FOG)\r\n\tfloat " "s = dot(position, u_FogDistance);\r\n\tfloat t = dot(position, u_FogDepth);" "\r\n\t\r\n\tif (t >= 1.0)\r\n\t{\r\n\t\ts *= t / (t - min(u_FogEyeT, 0.0));" "\r\n\t}\r\n\telse\r\n\t{\r\n\t\ts *= max(t + sign(u_FogEyeT), 0.0);\r\n\t}" "\r\n\t\r\n\ts = 1.0 - sqrt(clamp(s * 8.0, 0.0, 1.0));\r\n\t\r\n\tvar_Color " "*= u_FogColorMask * s + (vec4(1.0) - u_FogColorMask);\r\n#endif\r\n}\r\n"; static const char *fallbackGenericShader_fp = "uniform sampler2D u_DiffuseMap;\r\n\r\n#if defined(USE_LIGHTMAP)\r\nuniform" " sampler2D u_LightMap;\r\n#endif\r\n\r\nuniform int u_Texture1Env;\r" "\n\r\nvarying vec2 var_DiffuseTex;\r\n\r\n#if defined(USE_LIGHTMAP)\r" "\nvarying vec2 var_LightTex;\r\n#endif\r\n\r\nvarying vec4 var_Co" "lor;\r\n\r\n\r\nvoid main()\r\n{\r\n\tvec4 color = texture2D(u_DiffuseMap," " var_DiffuseTex);\r\n#if defined(USE_LIGHTMAP)\r\n\tvec4 color2 = texture2D" "(u_LightMap, var_LightTex);\r\n #if defined(RGBE_LIGHTMAP)\r\n\tcolor2.rgb" " *= exp2(color2.a * 255.0 - 128.0);\r\n\tcolor2.a = 1.0;\r\n #endif\r\n\r" "\n\tif (u_Texture1Env == TEXENV_MODULATE)\r\n\t{\r\n\t\tcolor *= color2;\r" "\n\t}\r\n\telse if (u_Texture1Env == TEXENV_ADD)\r\n\t{\r\n\t\tcolor += col" "or2;\r\n\t}\r\n\telse if (u_Texture1Env == TEXENV_REPLACE)\r\n\t{\r\n\t\tco" "lor = color2;\r\n\t}\r\n#endif\r\n\r\n\tgl_FragColor = color * var_Color;\r" "\n}\r\n"; static const char *fallbackTextureColorShader_vp = "#version 120\r\n\r\nattribute vec4 attr_Position;\r\nattribute vec4 attr_Te" "xCoord0;\r\n\r\nuniform mat4 u_ModelViewProjectionMatrix;\r\n\r\nvarying " "vec2 var_Tex1;\r\n\r\n\r\nvoid main()\r\n{\r\n\tgl_Position = u_ModelView" "ProjectionMatrix * attr_Position;\r\n\tvar_Tex1 = attr_TexCoord0.st;\r\n}\r" "\n"; static const char *fallbackTextureColorShader_fp = "#version 120\r\n\r\nuniform sampler2D u_DiffuseMap;\r\nuniform vec4 u_" "Color;\r\n\r\nvarying vec2 var_Tex1;\r\n\r\n\r\nvoid main()\r\n{\r" "\n\tgl_FragColor = texture2D(u_DiffuseMap, var_Tex1) * u_Color;\r\n}\r\n"; static const char *fallbackFogPassShader_vp = "attribute vec4 attr_Position;\r\nattribute vec3 attr_Normal;\r\nattribute" " vec4 attr_TexCoord0;\r\n\r\n//#if defined(USE_VERTEX_ANIMATION)\r\nattrib" "ute vec4 attr_Position2;\r\nattribute vec3 attr_Normal2;\r\n//#endif\r\n" "\r\nuniform vec4 u_FogDistance;\r\nuniform vec4 u_FogDepth;\r\nunifor" "m float u_FogEyeT;\r\n\r\n//#if defined(USE_DEFORM_VERTEXES)\r\nuniform i" "nt u_DeformGen;\r\nuniform float u_DeformParams[5];\r\n//#endif\r\n\r" "\nuniform float u_Time;\r\nuniform mat4 u_ModelViewProjectionMatrix;\r" "\n\r\n//#if defined(USE_VERTEX_ANIMATION)\r\nuniform float u_VertexLerp;" "\r\n//#endif\r\n\r\nvarying float var_Scale;\r\n\r\n\r\nfloat triangle(fl" "oat x)\r\n{\r\n\treturn max(1.0 - abs(x), 0);\r\n}\r\n\r\nfloat sawtooth(fl" "oat x)\r\n{\r\n\treturn x - floor(x);\r\n}\r\n\r\nvec4 DeformPosition(const" " vec4 pos, const vec3 normal, const vec2 st)\r\n{\r\n\tif (u_DeformGen == 0" ")\r\n\t{\r\n\t\treturn pos;\r\n\t}\r\n\r\n\tfloat base = u_DeformParam" "s[0];\r\n\tfloat amplitude = u_DeformParams[1];\r\n\tfloat phase = u_De" "formParams[2];\r\n\tfloat frequency = u_DeformParams[3];\r\n\tfloat spread " "= u_DeformParams[4];\r\n\t\t\r\n\tif (u_DeformGen <= DGEN_WAVE_INVERSE_S" "AWTOOTH)\r\n\t{\r\n\t\tphase += (pos.x + pos.y + pos.z) * spread;\r\n\t}\r" "\n\telse if (u_DeformGen == DGEN_BULGE)\r\n\t{\r\n\t\tphase *= M_PI * 0.25 " "* st.x;\r\n\t}\r\n\r\n\tfloat value = phase + (u_Time * frequency);\r\n\tfl" "oat func;\r\n\r\n\tif (u_DeformGen == DGEN_WAVE_SIN)\r\n\t{\r\n\t\tfunc = s" "in(value * 2.0 * M_PI);\r\n\t}\r\n\telse if (u_DeformGen == DGEN_WAVE_SQUAR" "E)\r\n\t{\r\n\t\tfunc = sign(sin(value * 2.0 * M_PI));\r\n\t}\r\n\telse if " "(u_DeformGen == DGEN_WAVE_TRIANGLE)\r\n\t{\r\n\t\tfunc = triangle(value);\r" "\n\t}\r\n\telse if (u_DeformGen == DGEN_WAVE_SAWTOOTH)\r\n\t{\r\n\t\tfunc =" " sawtooth(value);\r\n\t}\r\n\telse if (u_DeformGen == DGEN_WAVE_INVERSE_SAW" "TOOTH)\r\n\t{\r\n\t\tfunc = (1.0 - sawtooth(value));\r\n\t}\r\n\telse if (u" "_DeformGen == DGEN_BULGE)\r\n\t{\r\n\t\tfunc = sin(value);\r\n\t}\r\n\r\n\t" "vec4 deformed = pos;\r\n\tdeformed.xyz += normal * (base + func * amplitude" ");\r\n\r\n\treturn deformed;\r\n\r\n}\r\n\r\nvoid main()\r\n{\r\n\tvec4 pos" "ition = mix(attr_Position, attr_Position2, u_VertexLerp);\r\n\tvec3 normal " "= normalize(mix(attr_Normal, attr_Normal2, u_VertexLerp));\r\n\r\n\tpositio" "n = DeformPosition(position, normal, attr_TexCoord0.st);\r\n\r\n\tgl_Positi" "on = u_ModelViewProjectionMatrix * position;\r\n\r\n\tfloat s = dot(positio" "n, u_FogDistance);\r\n\tfloat t = dot(position, u_FogDepth);\r\n\r\n\tif (t" " >= 1.0)\r\n\t{\r\n\t\ts *= t / (t - min(u_FogEyeT, 0.0));\r\n\t}\r\n\telse" "\r\n\t{\r\n\t\ts *= max(t + sign(u_FogEyeT), 0.0);\r\n\t}\r\n\r\n\tvar_Scal" "e = s * 8.0;\r\n}\r\n"; static const char *fallbackFogPassShader_fp = "uniform vec4 u_Color;\r\n\r\nvarying float var_Scale;\r\n\r\nvoid main()\r" "\n{\r\n\tgl_FragColor = u_Color;\r\n\tgl_FragColor.a *= sqrt(clamp(var_Scal" "e, 0.0, 1.0));\r\n}\r\n"; static const char *fallbackDlightShader_vp = "attribute vec4 attr_Position;\r\nattribute vec4 attr_TexCoord0;\r\nattribut" "e vec3 attr_Normal;\r\n\r\nuniform vec4 u_DlightInfo;\r\n\r\nuniform int " " u_DeformGen;\r\nuniform float u_DeformParams[5];\r\n\r\nuniform float " "u_Time;\r\nuniform vec4 u_Color;\r\nuniform mat4 u_ModelViewProjectionM" "atrix;\r\n\r\nvarying vec2 var_Tex1;\r\nvarying vec4 var_Color;\r\n\r\n" "float triangle(float x)\r\n{\r\n\treturn max(1.0 - abs(x), 0);\r\n}\r\n\r\n" "float sawtooth(float x)\r\n{\r\n\treturn x - floor(x);\r\n}\r\n\r\nvec4 Def" "ormPosition(const vec4 pos, const vec3 normal, const vec2 st)\r\n{\r\n\tif " "(u_DeformGen == 0)\r\n\t{\r\n\t\treturn pos;\r\n\t}\r\n\r\n\tfloat base = " " u_DeformParams[0];\r\n\tfloat amplitude = u_DeformParams[1];\r\n\tfloat" " phase = u_DeformParams[2];\r\n\tfloat frequency = u_DeformParams[3];\r" "\n\tfloat spread = u_DeformParams[4];\r\n\t\t\r\n\tif (u_DeformGen <= DG" "EN_WAVE_INVERSE_SAWTOOTH)\r\n\t{\r\n\t\tphase += (pos.x + pos.y + pos.z) * " "spread;\r\n\t}\r\n\telse if (u_DeformGen == DGEN_BULGE)\r\n\t{\r\n\t\tphase" " *= M_PI * 0.25 * st.x;\r\n\t}\r\n\r\n\tfloat value = phase + (u_Time * fre" "quency);\r\n\tfloat func;\r\n\r\n\tif (u_DeformGen == DGEN_WAVE_SIN)\r\n\t{" "\r\n\t\tfunc = sin(value * 2.0 * M_PI);\r\n\t}\r\n\telse if (u_DeformGen ==" " DGEN_WAVE_SQUARE)\r\n\t{\r\n\t\tfunc = sign(sin(value * 2.0 * M_PI));\r\n" "\t}\r\n\telse if (u_DeformGen == DGEN_WAVE_TRIANGLE)\r\n\t{\r\n\t\tfunc = t" "riangle(value);\r\n\t}\r\n\telse if (u_DeformGen == DGEN_WAVE_SAWTOOTH)\r\n" "\t{\r\n\t\tfunc = sawtooth(value);\r\n\t}\r\n\telse if (u_DeformGen == DGEN" "_WAVE_INVERSE_SAWTOOTH)\r\n\t{\r\n\t\tfunc = (1.0 - sawtooth(value));\r\n\t" "}\r\n\telse if (u_DeformGen == DGEN_BULGE)\r\n\t{\r\n\t\tfunc = sin(value);" "\r\n\t}\r\n\r\n\tvec4 deformed = pos;\r\n\tdeformed.xyz += normal * (base +" " func * amplitude);\r\n\r\n\treturn deformed;\r\n\r\n}\r\n\r\nvoid main()\r" "\n{\r\n\tvec4 position = attr_Position;\r\n\tvec3 normal = attr_Normal;\r\n" "\r\n\tposition = DeformPosition(position, normal, attr_TexCoord0.st);\r\n\r" "\n\tgl_Position = u_ModelViewProjectionMatrix * position;\r\n\t\t\r\n\tvec3" " dist = u_DlightInfo.xyz - position.xyz;\t\r\n\r\n\tfloat diffz = abs(dist." "z);\r\n\tfloat radius = 1.0 / u_DlightInfo.a;\r\n\r\n\tvec2 tex = vec2(0.5)" " + dist.xy * u_DlightInfo.a;\r\n\tfloat dlightmod = max(sign(dot(dist, norm" "al)), 0.0);\r\n\tdlightmod *= clamp(2.0 * (radius - diffz) * u_DlightInfo.a" ", 0.0, 1.0);\r\n\r\n\tvar_Tex1 = tex;\r\n\tvar_Color = u_Color;\r\n\tvar_Co" "lor.rgb *= dlightmod;\r\n}\r\n"; static const char *fallbackDlightShader_fp = "uniform sampler2D u_DiffuseMap;\r\n\r\nvarying vec2 var_Tex1;\r\nvaryi" "ng vec4 var_Color;\r\n\r\n\r\nvoid main()\r\n{\r\n\tvec4 color = textu" "re2D(u_DiffuseMap, var_Tex1);\r\n\r\n\tgl_FragColor = color * var_Color;\r" "\n}\r\n"; static const char *fallbackLightallShader_vp = "attribute vec4 attr_TexCoord0;\r\n#if defined(USE_LIGHTMAP)\r\nattribute ve" "c4 attr_TexCoord1;\r\n#endif\r\nattribute vec4 attr_Color;\r\n\r\nattribute" " vec4 attr_Position;\r\nattribute vec3 attr_Normal;\r\n\r\n#if defined(USE_" "VERT_TANGENT_SPACE)\r\nattribute vec3 attr_Tangent;\r\nattribute vec3 attr_" "Bitangent;\r\n#endif\r\n\r\n#if defined(USE_VERTEX_ANIMATION)\r\nattribute " "vec4 attr_Position2;\r\nattribute vec3 attr_Normal2;\r\n #if defined(USE_V" "ERT_TANGENT_SPACE)\r\nattribute vec3 attr_Tangent2;\r\nattribute vec3 attr_" "Bitangent2;\r\n #endif\r\n#endif\r\n\r\n#if defined(USE_LIGHT) && !defined" "(USE_LIGHT_VECTOR)\r\nattribute vec3 attr_LightDirection;\r\n#endif\r\n\r\n" "#if defined(TCGEN_ENVIRONMENT) || defined(USE_NORMALMAP) || defined(USE_LIG" "HT) && !defined(USE_FAST_LIGHT)\r\nuniform vec3 u_ViewOrigin;\r\n#endif\r" "\n\r\nuniform mat4 u_DiffuseTexMatrix;\r\nuniform mat4 u_ModelViewProje" "ctionMatrix;\r\nuniform vec4 u_BaseColor;\r\nuniform vec4 u_VertColor;" "\r\n\r\n#if defined(USE_MODELMATRIX)\r\nuniform mat4 u_ModelMatrix;\r\n#e" "ndif\r\n\r\n#if defined(USE_VERTEX_ANIMATION)\r\nuniform float u_VertexLer" "p;\r\n#endif\r\n\r\n#if defined(USE_LIGHT_VECTOR)\r\nuniform vec4 u_Light" "Origin;\r\n #if defined(USE_FAST_LIGHT)\r\nuniform vec3 u_DirectedLight;" "\r\nuniform vec3 u_AmbientLight;\r\nuniform float u_LightRadius;\r\n #e" "ndif\r\n#endif\r\n\r\nvarying vec2 var_DiffuseTex;\r\n\r\n#if defined(USE" "_LIGHTMAP)\r\nvarying vec2 var_LightTex;\r\n#endif\r\n\r\n#if defined(USE" "_NORMALMAP) || defined(USE_LIGHT) && !defined(USE_FAST_LIGHT)\r\nvarying ve" "c3 var_SampleToView;\r\n#endif\r\n\r\nvarying vec4 var_Color;\r\nvaryin" "g vec3 var_Position;\r\nvarying vec3 var_Normal;\r\n\r\n#if defined(USE" "_VERT_TANGENT_SPACE)\r\nvarying vec3 var_Tangent;\r\nvarying vec3 var_B" "itangent;\r\n#endif\r\n\r\nvarying vec3 var_VertLight;\r\n\r\n#if defined" "(USE_LIGHT) && !defined(USE_DELUXEMAP)\r\nvarying vec3 var_WorldLight;\r" "\n#endif\r\n\r\nvarying vec4 var_ScreenPos;\r\n\r\nvec2 DoTexMatrix(vec2 " "st, vec3 position, mat4 texMatrix)\r\n{\r\n\tvec2 st2 = (texMatrix * vec4(s" "t, 1, 0)).st;\r\n\r\n\tvec3 offsetPos = position.xyz / 1024.0;\r\n\toffsetP" "os.x += offsetPos.z;\r\n\r\n\tvec2 texOffset = sin((offsetPos.xy + vec2(tex" "Matrix[3][1])) * 2.0 * M_PI);\r\n\t\r\n\treturn st2 + texOffset * texMatrix" "[3][0];\r\n}\r\n\r\nvoid main()\r\n{\r\n#if defined(USE_VERTEX_ANIMATION)\r" "\n\tvec4 position = mix(attr_Position, attr_Position2, u_VertexLerp);\r\n" "\tvec3 normal = normalize(mix(attr_Normal, attr_Normal2, u_VertexL" "erp));\r\n #if defined(USE_VERT_TANGENT_SPACE)\r\n\tvec3 tangent = norma" "lize(mix(attr_Tangent, attr_Tangent2, u_VertexLerp));\r\n\tvec3 bitange" "nt = normalize(mix(attr_Bitangent, attr_Bitangent2, u_VertexLerp));\r\n #e" "ndif\r\n#else\r\n\tvec4 position = attr_Position;\r\n\tvec3 normal = at" "tr_Normal;\r\n #if defined(USE_VERT_TANGENT_SPACE)\r\n\tvec3 tangent = a" "ttr_Tangent;\r\n\tvec3 bitangent = attr_Bitangent;\r\n #endif\r\n#endif\r" "\n\r\n\tgl_Position = u_ModelViewProjectionMatrix * position;\r\n\tvar_Scre" "enPos = gl_Position;\r\n\r\n#if (defined(USE_LIGHTMAP) || defined(USE_LIGHT" "_VERTEX)) && !defined(USE_DELUXEMAP)\r\n\tvec3 worldLight = attr_LightDirec" "tion;\r\n#endif\r\n\t\r\n#if defined(USE_MODELMATRIX)\r\n\tposition = u_Mo" "delMatrix * position;\r\n\tnormal = (u_ModelMatrix * vec4(normal, 0.0))." "xyz;\r\n #if defined(USE_VERT_TANGENT_SPACE)\r\n\ttangent = (u_ModelMatr" "ix * vec4(tangent, 0.0)).xyz;\r\n\tbitangent = (u_ModelMatrix * vec4(bitang" "ent, 0.0)).xyz;\r\n #endif\r\n\r\n #if defined(USE_LIGHTMAP) && !defined(" "USE_DELUXEMAP)\r\n\tworldLight = (u_ModelMatrix * vec4(worldLight, 0.0)).xy" "z;\r\n #endif\r\n#endif\r\n\r\n\tvar_Position = position.xyz;\r\n\r\n#if d" "efined(TCGEN_ENVIRONMENT) || defined(USE_NORMALMAP) || defined(USE_LIGHT) &" "& !defined(USE_FAST_LIGHT)\r\n\tvec3 SampleToView = u_ViewOrigin - position" ".xyz;\r\n#endif\r\n\r\n#if defined(USE_NORMALMAP) || defined(USE_LIGHT) && " "!defined(USE_FAST_LIGHT)\r\n\tvar_SampleToView = SampleToView;\r\n#endif\r" "\n\r\n#if defined(TCGEN_ENVIRONMENT)\r\n\tvec3 viewer = normalize(SampleToV" "iew);\r\n\tvec3 reflected = normal * 2.0 * dot(normal, viewer) - viewer;\r" "\n\r\n\tvec2 tex = reflected.yz * vec2(0.5, -0.5) + 0.5;\r\n#else\r\n\tvec2" " tex = attr_TexCoord0.st;\r\n#endif\r\n\r\n\tvar_DiffuseTex = DoTexMatrix(t" "ex, position.xyz, u_DiffuseTexMatrix);\r\n\r\n#if defined(USE_LIGHTMAP)\r\n" "\tvar_LightTex = attr_TexCoord1.st;\r\n#endif\r\n \r\n\tvar_Normal = norma" "l;\r\n#if defined(USE_VERT_TANGENT_SPACE)\r\n\tvar_Tangent = tangent;\r\n\t" "var_Bitangent = bitangent;\r\n#endif\r\n\r\n#if defined(USE_LIGHT) && !defi" "ned(USE_DELUXEMAP)\r\n #if defined(USE_LIGHT_VECTOR)\r\n\tvec3 worldLight " "= u_LightOrigin.xyz - (position.xyz * u_LightOrigin.w);\r\n #endif\r\n\r\n" "\tworldLight += normal * 0.0001;\r\n\tvar_WorldLight = worldLight;\r\n#endi" "f\r\n\t\r\n#if defined(USE_LIGHT_VERTEX)\r\n var_VertLight = attr_Color." "rgb;\r\n #if !defined(USE_FAST_LIGHT)\r\n\tvar_VertLight /= max(dot(normal" ", normalize(worldLight)), 0.004);\r\n #endif\r\n\tvar_Color.rgb = u_BaseCo" "lor.rgb;\r\n\tvar_Color.a = u_VertColor.a * attr_Color.a + u_BaseColor.a;\r" "\n#else\r\n\tvar_Color = u_VertColor * attr_Color + u_BaseColor;\r\n#endif" "\r\n\r\n#if defined(USE_LIGHT_VECTOR) && defined(USE_FAST_LIGHT)\r\n #if d" "efined(USE_INVSQRLIGHT)\r\n\tfloat intensity = 1.0 / dot(worldLight, worldL" "ight);\r\n #else\r\n\tfloat intensity = clamp((1.0 - dot(worldLight, world" "Light) / (u_LightRadius * u_LightRadius)) * 1.07, 0.0, 1.0);\r\n #endif\r" "\n\tfloat NL = clamp(dot(normal, normalize(worldLight)), 0.0, 1.0);\r\n\r\n" "\tvar_VertLight = u_DirectedLight * intensity * NL + u_AmbientLight;\r\n#en" "dif\r\n}\r\n"; static const char *fallbackLightallShader_fp = "uniform sampler2D u_DiffuseMap;\r\n\r\n#if defined(USE_LIGHTMAP)\r\nuniform" " sampler2D u_LightMap;\r\n#endif\r\n\r\n#if defined(USE_NORMALMAP)\r\nunifo" "rm sampler2D u_NormalMap;\r\n#endif\r\n\r\n#if defined(USE_DELUXEMAP)\r\nun" "iform sampler2D u_DeluxeMap;\r\n#endif\r\n\r\n#if defined(USE_SPECULARMAP)" "\r\nuniform sampler2D u_SpecularMap;\r\n#endif\r\n\r\n#if defined(USE_SHADO" "WMAP)\r\nuniform sampler2D u_ShadowMap;\r\n#endif\r\n\r\nuniform vec3 " "u_ViewOrigin;\r\n\r\n#if defined(USE_LIGHT_VECTOR)\r\nuniform vec3 u_D" "irectedLight;\r\nuniform vec3 u_AmbientLight;\r\nuniform float u_L" "ightRadius;\r\n#endif\r\n\r\n#if defined(USE_LIGHT)\r\nuniform vec2 u_" "MaterialInfo;\r\n#endif\r\n\r\nvarying vec2 var_DiffuseTex;\r\n#if def" "ined(USE_LIGHTMAP)\r\nvarying vec2 var_LightTex;\r\n#endif\r\nvarying " "vec4 var_Color;\r\nvarying vec3 var_Position;\r\n\r\nvarying vec3" " var_SampleToView;\r\n\r\nvarying vec3 var_Normal;\r\n#if defined" "(USE_VERT_TANGENT_SPACE)\r\nvarying vec3 var_Tangent;\r\nvarying vec3 " " var_Bitangent;\r\n#endif\r\n\r\nvarying vec3 var_VertLight;\r\n\r" "\n#if defined(USE_LIGHT) && !defined(USE_DELUXEMAP)\r\nvarying vec3 va" "r_WorldLight;\r\n#endif\r\n\r\nvarying vec4 var_ScreenPos;\r\n\r\n#define" " EPSILON 0.00000001\r\n\r\n#if defined(USE_PARALLAXMAP)\r\nfloat SampleHeig" "ht(sampler2D normalMap, vec2 t)\r\n{\r\n #if defined(SWIZZLE_NORMALMAP)\r" "\n\treturn texture2D(normalMap, t).r;\r\n #else\r\n\treturn texture2D(norm" "alMap, t).a;\r\n #endif\r\n}\r\n\r\nfloat RayIntersectDisplaceMap(vec2 dp," " vec2 ds, sampler2D normalMap)\r\n{\r\n\tconst int linearSearchSteps = 16;" "\r\n\tconst int binarySearchSteps = 6;\r\n\r\n\tfloat depthStep = 1.0 / flo" "at(linearSearchSteps);\r\n\r\n\t// current size of search window\r\n\tfloat" " size = depthStep;\r\n\r\n\t// current depth position\r\n\tfloat depth = 0." "0;\r\n\r\n\t// best match found (starts with last position 1.0)\r\n\tfloat " "bestDepth = 1.0;\r\n\r\n\t// search front to back for first point inside ob" "ject\r\n\tfor(int i = 0; i < linearSearchSteps - 1; ++i)\r\n\t{\r\n\t\tdept" "h += size;\r\n\t\t\r\n\t\tfloat t = 1.0 - SampleHeight(normalMap, dp + ds *" " depth);\r\n\t\t\r\n\t\tif(bestDepth > 0.996)\t\t// if no depth found yet\r" "\n\t\t\tif(depth >= t)\r\n\t\t\t\tbestDepth = depth;\t// store best depth\r" "\n\t}\r\n\r\n\tdepth = bestDepth;\r\n\t\r\n\t// recurse around first point " "(depth) for closest match\r\n\tfor(int i = 0; i < binarySearchSteps; ++i)\r" "\n\t{\r\n\t\tsize *= 0.5;\r\n\r\n\t\tfloat t = 1.0 - SampleHeight(normalMap" ", dp + ds * depth);\r\n\t\t\r\n\t\tif(depth >= t)\r\n\t\t{\r\n\t\t\tbestDep" "th = depth;\r\n\t\t\tdepth -= 2.0 * size;\r\n\t\t}\r\n\r\n\t\tdepth += size" ";\r\n\t}\r\n\r\n\treturn bestDepth;\r\n}\r\n#endif\r\n\r\nfloat CalcDiffuse" "(vec3 N, vec3 L, vec3 E, float NE, float NL, float fzero, float shininess)" "\r\n{\r\n #if defined(USE_OREN_NAYAR) || defined(USE_TRIACE_OREN_NAYAR)\r" "\n\tfloat gamma = dot(E, L) - NE * NL;\r\n\tfloat B = 2.22222 + 0.1 * shini" "ness;\r\n\t\t\r\n\t#if defined(USE_OREN_NAYAR)\r\n\tfloat A = 1.0 - 1.0 / (" "2.0 + 0.33 * shininess);\r\n\tgamma = clamp(gamma, 0.0, 1.0);\r\n\t#endif\r" "\n\t\r\n\t#if defined(USE_TRIACE_OREN_NAYAR)\r\n\tfloat A = 1.0 - 1.0 / (2." "0 + 0.65 * shininess);\r\n\r\n\tif (gamma >= 0.0)\r\n\t#endif\r\n\t{\r\n\t" "\tB *= max(max(NL, NE), EPSILON);\r\n\t}\r\n\r\n\treturn A + gamma / B;\r\n" " #else\r\n\treturn 1.0 - fzero;\r\n #endif\r\n}\r\n\r\n#if defined(USE_SP" "ECULARMAP)\r\nfloat CalcSpecular(float NH, float NL, float NE, float EH, fl" "oat fzero, float shininess)\r\n{\r\n #if defined(USE_BLINN) || defined(USE" "_TRIACE) || defined(USE_TORRANCE_SPARROW)\r\n\tfloat blinn = pow(NH, shinin" "ess);\r\n #endif\r\n\r\n #if defined(USE_BLINN)\r\n\treturn blinn;\r\n #" "endif\r\n\r\n #if defined(USE_COOK_TORRANCE) || defined (USE_TRIACE) || de" "fined (USE_TORRANCE_SPARROW)\r\n\tfloat fresnel = fzero + (1.0 - fzero) * p" "ow(1.0 - EH, 5);\r\n #endif\r\n\r\n #if defined(USE_COOK_TORRANCE) || def" "ined(USE_TORRANCE_SPARROW)\r\n\tfloat geo = 2.0 * NH * min(NE, NL);\r\n\tge" "o /= max(EH, geo);\r\n #endif \r\n\r\n #if defined(USE_COOK_TORRANCE)\r" "\n\tfloat m = sqrt(2.0 / max(shininess, EPSILON));\r\n\r\n\tfloat m_sq = m " "* m;\r\n\tfloat NH_sq = NH * NH;\r\n\tfloat beckmann = exp((NH_sq - 1.0) / " "max(m_sq * NH_sq, EPSILON)) / max(4.0 * m_sq * NH_sq * NH_sq, EPSILON);\r\n" "\r\n\treturn fresnel * geo * beckmann / max(NE, EPSILON);\r\n #endif\r\n\r" "\n #if defined(USE_TRIACE)\r\n\tfloat scale = 0.1248582 * shininess + 0.26" "91817;\r\n\r\n\treturn fresnel * scale * blinn / max(max(NL, NE), EPSILON);" "\r\n #endif\r\n \r\n #if defined(USE_TORRANCE_SPARROW)\r\n\tfloat scale " "= 0.125 * shininess + 1.0;\r\n\r\n\treturn fresnel * geo * scale * blinn / " "max(NE, EPSILON);\r\n #endif\r\n}\r\n#endif\r\n\r\nvoid main()\r\n{\r\n#if" " defined(USE_LIGHT) || defined(USE_NORMALMAP)\r\n\tvec3 surfNormal = normal" "ize(var_Normal);\r\n#endif\r\n\r\n#if defined(USE_DELUXEMAP)\r\n\tvec3 worl" "dLight = 2.0 * texture2D(u_DeluxeMap, var_LightTex).xyz - vec3(1.0);\r\n\t/" "/worldLight += var_WorldLight * 0.0001;\r\n#elif defined(USE_LIGHT)\r\n\tve" "c3 worldLight = var_WorldLight;\r\n#endif\r\n\r\n#if defined(USE_LIGHTMAP)" "\r\n\tvec4 lightSample = texture2D(u_LightMap, var_LightTex).rgba;\r\n #if" " defined(RGBE_LIGHTMAP)\r\n\tlightSample.rgb *= exp2(lightSample.a * 255.0 " "- 128.0);\r\n #endif\r\n\tvec3 directedLight = lightSample.rgb;\r\n#elif d" "efined(USE_LIGHT_VECTOR)\r\n #if defined(USE_FAST_LIGHT)\r\n\tvec3 directe" "dLight = var_VertLight;\r\n #else\r\n #if defined(USE_INVSQRLIGHT)\r\n" "\tfloat intensity = 1.0 / dot(worldLight, worldLight);\r\n #else\r\n\tfl" "oat intensity = clamp((1.0 - dot(worldLight, worldLight) / (u_LightRadius *" " u_LightRadius)) * 1.07, 0.0, 1.0);\r\n #endif\r\n\r\n\tvec3 directedLig" "ht = u_DirectedLight * intensity;\r\n\tvec3 ambientLight = u_AmbientLight;" "\r\n #endif\r\n\r\n #if defined(USE_SHADOWMAP)\r\n\tvec2 shadowTex = var_" "ScreenPos.xy / var_ScreenPos.w * 0.5 + 0.5;\r\n\tdirectedLight *= texture2D" "(u_ShadowMap, shadowTex).r;\r\n #endif\r\n#elif defined(USE_LIGHT_VERTEX)" "\r\n\tvec3 directedLight = var_VertLight;\r\n#endif\r\n\t\r\n#if defined(TC" "GEN_ENVIRONMENT) || defined(USE_NORMALMAP) || (defined(USE_LIGHT) && !defin" "ed(USE_FAST_LIGHT))\r\n\tvec3 SampleToView = normalize(var_SampleToView);\r" "\n#endif\r\n\tvec2 tex = var_DiffuseTex;\r\n\r\n\tfloat ambientDiff = 1.0;" "\r\n\r\n#if defined(USE_NORMALMAP)\r\n #if defined(USE_VERT_TANGENT_SPACE)" "\r\n vec3 tangent = var_Tangent;\r\n\tvec3 bitangent = var_Bitangent;" "\r\n #else\r\n\tvec3 q0 = dFdx(var_Position);\r\n\tvec3 q1 = dFdy(var_Po" "sition);\r\n\tvec2 st0 = dFdx(tex);\r\n\tvec2 st1 = dFdy(tex);\r\n\tfloat d" "ir = sign(st1.t * st0.s - st0.t * st1.s);\r\n\r\n\tvec3 tangent = normali" "ze( q0 * st1.t - q1 * st0.t) * dir;\r\n\tvec3 bitangent = -normalize( q0 * " "st1.s - q1 * st0.s) * dir;\r\n #endif\r\n\r\n\tmat3 tangentToWorld = mat3(" "tangent, bitangent, var_Normal);\r\n\r\n #if defined(USE_PARALLAXMAP)\r\n" "\tvec3 offsetDir = normalize(SampleToView * tangentToWorld);\r\n #if 0\r" "\n float height = SampleHeight(u_NormalMap, tex);\r\n\tfloat pdist = 0.0" "5 * height - (0.05 / 2.0);\r\n #else\r\n\toffsetDir.xy *= -0.05 / offset" "Dir.z;\r\n\tfloat pdist = RayIntersectDisplaceMap(tex, offsetDir.xy, u_Norm" "alMap);\r\n #endif\t\r\n\ttex += offsetDir.xy * pdist;\r\n #endif\r\n " "#if defined(SWIZZLE_NORMALMAP)\r\n\tvec3 normal = 2.0 * texture2D(u_NormalM" "ap, tex).agb - 1.0;\r\n #else\r\n\tvec3 normal = 2.0 * texture2D(u_NormalM" "ap, tex).rgb - 1.0;\r\n #endif\r\n\tnormal.z = sqrt(clamp(1.0 - dot(normal" ".xy, normal.xy), 0.0, 1.0));\r\n\tvec3 worldNormal = tangentToWorld * norma" "l;\r\n #if defined(r_normalAmbient)\r\n\tambientDiff = 0.781341 * normal.z" " + 0.218659;\r\n #endif\r\n#elif defined(USE_LIGHT)\r\n\tvec3 worldNormal " "= surfNormal;\r\n#endif\r\n\r\n#if (defined(USE_LIGHT) && !defined(USE_FAST" "_LIGHT)) || (defined(TCGEN_ENVIRONMENT) && defined(USE_NORMALMAP))\r\n\twor" "ldNormal = normalize(worldNormal);\r\n#endif\r\n\r\n#if defined(TCGEN_ENVIR" "ONMENT) && defined(USE_NORMALMAP)\r\n\tvec3 reflected = worldNormal * 2.0 *" " dot(worldNormal, SampleToView) - SampleToView;\r\n\r\n\ttex = reflected.yz" " * vec2(0.5, -0.5) + 0.5;\r\n#endif\r\n\r\n\tvec4 diffuse = texture2D(u_Dif" "fuseMap, tex);\r\n\r\n#if defined(USE_LIGHT) && defined(USE_FAST_LIGHT)\r\n" "\tdiffuse.rgb *= directedLight;\r\n#elif defined(USE_LIGHT)\r\n\tworldLight" " = normalize(worldLight);\r\n\r\n #if defined(USE_LIGHTMAP)\r\n\tdirectedL" "ight /= max(dot(surfNormal, worldLight), 0.004);\r\n #endif\r\n\r\n #if d" "efined(USE_LIGHTMAP) || defined(USE_LIGHT_VERTEX)\r\n\t#if defined(r_normal" "Ambient)\r\n\tvec3 ambientLight = directedLight * r_normalAmbient;\r\n\tdir" "ectedLight -= ambientLight;\r\n #else\r\n\tvec3 ambientLight = vec3(0);" "\r\n #endif\r\n #endif\r\n\r\n\tfloat NL = clamp(dot(worldNormal, worl" "dLight), 0.0, 1.0);\r\n\tfloat surfNL = clamp(dot(surfNormal, worldLight" "), 0.0, 1.0);\r\n\tNL = min(NL, surfNL * 2.0);\r\n\tfloat NE = clamp(dot(" "worldNormal, SampleToView), 0.0, 1.0);\r\n\t\r\n\tfloat fzero = u_Material" "Info.x;\r\n\tfloat shininess = u_MaterialInfo.y;\r\n #if defined(USE_SPECU" "LARMAP)\r\n\tvec4 specular = texture2D(u_SpecularMap, tex);\r\n\t//specular" ".rgb = clamp(specular.rgb - diffuse.rgb, 0.0, 1.0);\r\n\tshininess *= specu" "lar.a;\r\n #endif\r\n\tfloat directedDiff = NL * CalcDiffuse(worldNormal, " "worldLight, SampleToView, NE, NL, fzero, shininess);\r\n\tdiffuse.rgb *= di" "rectedLight * directedDiff + ambientDiff * ambientLight;\r\n \r\n #if def" "ined(USE_SPECULARMAP)\r\n\tvec3 halfAngle = normalize(worldLight + SampleTo" "View);\r\n\r\n\tfloat EH = clamp(dot(SampleToView, halfAngle), 0.0, 1.0);\r" "\n\tfloat NH = clamp(dot(worldNormal, halfAngle), 0.0, 1.0);\r\n\r\n\tfloa" "t directedSpec = NL * CalcSpecular(NH, NL, NE, EH, fzero, shininess);\r\n " "\r\n #if defined(r_normalAmbient)\r\n\tvec3 ambientHalf = normalize(surf" "Normal + SampleToView);\r\n\tfloat ambientSpec = max(dot(ambientHalf, world" "Normal) + 0.5, 0.0);\r\n\tambientSpec *= ambientSpec * 0.44;\r\n\tambientSp" "ec = pow(ambientSpec, shininess) * fzero;\r\n\tspecular.rgb *= directedSpec" " * directedLight + ambientSpec * ambientLight;\r\n #else\r\n\tspecular.r" "gb *= directedSpec * directedLight;\r\n #endif\r\n #endif\r\n#endif\r\n" "\r\n\tgl_FragColor = diffuse;\r\n\r\n#if defined(USE_SPECULARMAP) && define" "d(USE_LIGHT) && !defined(USE_FAST_LIGHT)\r\n\tgl_FragColor.rgb += specular." "rgb;\r\n#endif\r\n\r\n\tgl_FragColor *= var_Color;\r\n}\r\n"; static const char *fallbackShadowfillShader_vp = "attribute vec4 attr_Position;\r\nattribute vec3 attr_Normal;\r\nattribute" " vec4 attr_TexCoord0;\r\n\r\n//#if defined(USE_VERTEX_ANIMATION)\r\nattrib" "ute vec4 attr_Position2;\r\nattribute vec3 attr_Normal2;\r\n//#endif\r\n" "\r\n//#if defined(USE_DEFORM_VERTEXES)\r\nuniform int u_DeformGen;\r\nu" "niform float u_DeformParams[5];\r\n//#endif\r\n\r\nuniform float u_Tim" "e;\r\nuniform mat4 u_ModelViewProjectionMatrix;\r\n\r\nuniform mat4 u_" "ModelMatrix;\r\n\r\n//#if defined(USE_VERTEX_ANIMATION)\r\nuniform float " "u_VertexLerp;\r\n//#endif\r\n\r\nvarying vec3 var_Position;\r\n\r\nfloat" " triangle(float x)\r\n{\r\n\treturn max(1.0 - abs(x), 0);\r\n}\r\n\r\nfloat" " sawtooth(float x)\r\n{\r\n\treturn x - floor(x);\r\n}\r\n\r\nvec4 DeformPo" "sition(const vec4 pos, const vec3 normal, const vec2 st)\r\n{\r\n\tif (u_De" "formGen == 0)\r\n\t{\r\n\t\treturn pos;\r\n\t}\r\n\r\n\tfloat base = u" "_DeformParams[0];\r\n\tfloat amplitude = u_DeformParams[1];\r\n\tfloat phas" "e = u_DeformParams[2];\r\n\tfloat frequency = u_DeformParams[3];\r\n\tf" "loat spread = u_DeformParams[4];\r\n\t\t\r\n\tif (u_DeformGen <= DGEN_WA" "VE_INVERSE_SAWTOOTH)\r\n\t{\r\n\t\tphase += (pos.x + pos.y + pos.z) * sprea" "d;\r\n\t}\r\n\telse if (u_DeformGen == DGEN_BULGE)\r\n\t{\r\n\t\tphase *= M" "_PI * 0.25 * st.x;\r\n\t}\r\n\r\n\tfloat value = phase + (u_Time * frequenc" "y);\r\n\tfloat func;\r\n\r\n\tif (u_DeformGen == DGEN_WAVE_SIN)\r\n\t{\r\n" "\t\tfunc = sin(value * 2.0 * M_PI);\r\n\t}\r\n\telse if (u_DeformGen == DGE" "N_WAVE_SQUARE)\r\n\t{\r\n\t\tfunc = sign(sin(value * 2.0 * M_PI));\r\n\t}\r" "\n\telse if (u_DeformGen == DGEN_WAVE_TRIANGLE)\r\n\t{\r\n\t\tfunc = triang" "le(value);\r\n\t}\r\n\telse if (u_DeformGen == DGEN_WAVE_SAWTOOTH)\r\n\t{\r" "\n\t\tfunc = sawtooth(value);\r\n\t}\r\n\telse if (u_DeformGen == DGEN_WAVE" "_INVERSE_SAWTOOTH)\r\n\t{\r\n\t\tfunc = (1.0 - sawtooth(value));\r\n\t}\r\n" "\telse if (u_DeformGen == DGEN_BULGE)\r\n\t{\r\n\t\tfunc = sin(value);\r\n" "\t}\r\n\r\n\tvec4 deformed = pos;\r\n\tdeformed.xyz += normal * (base + fun" "c * amplitude);\r\n\r\n\treturn deformed;\r\n\r\n}\r\n\r\n\r\nvoid main()\r" "\n{\r\n\tvec4 position = mix(attr_Position, attr_Position2, u_VertexLerp);" "\r\n\tvec3 normal = normalize(mix(attr_Normal, attr_Normal2, u_VertexLerp))" ";\r\n\r\n\tposition = DeformPosition(position, normal, attr_TexCoord0.st);" "\r\n\r\n\tgl_Position = u_ModelViewProjectionMatrix * position;\r\n\t\r\n\t" "var_Position = (u_ModelMatrix * position).xyz;\r\n}\r\n"; static const char *fallbackShadowfillShader_fp = "uniform vec4 u_LightOrigin;\r\nuniform float u_LightRadius;\r\n\r\nvarying" " vec3 var_Position;\r\n\r\nvoid main()\r\n{\r\n#if defined(USE_DEPTH)\r\n" "\tfloat depth = length(u_LightOrigin.xyz - var_Position) / u_LightRadius;\r" "\n #if 0\r\n\t// 32 bit precision\r\n\tconst vec4 bitSh = vec4( 256 * 256 *" " 256, 256 * 256, 256, 1);\r\n\tconst vec4 bitMsk = vec4" "( 0, 1.0 / 256.0, 1.0 / 256.0, 1.0 / 256.0);\r\n\t\r\n\tvec4 c" "omp;\r\n\tcomp = depth * bitSh;\r\n\tcomp.xyz = fract(comp.xyz);\r\n\tcomp " "-= comp.xxyz * bitMsk;\r\n\tgl_FragColor = comp;\r\n #endif\r\n\r\n #if 1\r" "\n\t// 24 bit precision\r\n\tconst vec3 bitSh = vec3( 256 * 256, 25" "6, 1);\r\n\tconst vec3 bitMsk = vec3( 0, 1.0 / 256.0, 1.0 " "/ 256.0);\r\n\t\r\n\tvec3 comp;\r\n\tcomp = depth * bitSh;\r\n\tcomp.xy = f" "ract(comp.xy);\r\n\tcomp -= comp.xxy * bitMsk;\r\n\tgl_FragColor = vec4(com" "p, 1.0);\r\n #endif\r\n\r\n #if 0\r\n\t// 8 bit precision\r\n\tgl_FragColor" " = vec4(depth, depth, depth, 1);\r\n #endif\r\n#else\r\n\tgl_FragColor = ve" "c4(0, 0, 0, 1);\r\n#endif\r\n}\r\n"; static const char *fallbackPshadowShader_vp = "attribute vec4 attr_Position;\r\nattribute vec3 attr_Normal;\r\n\r\nuniform" " mat4 u_ModelViewProjectionMatrix;\r\nvarying vec3 var_Position;\r\nvar" "ying vec3 var_Normal;\r\n\r\n\r\nvoid main()\r\n{\r\n\tvec4 position = a" "ttr_Position;\r\n\r\n\tgl_Position = u_ModelViewProjectionMatrix * position" ";\r\n\r\n\tvar_Position = position.xyz;\r\n\tvar_Normal = attr_Normal;" "\r\n}\r\n"; static const char *fallbackPshadowShader_fp = "uniform sampler2D u_ShadowMap;\r\n\r\nuniform vec3 u_LightForward;\r\n" "uniform vec3 u_LightUp;\r\nuniform vec3 u_LightRight;\r\nuniform " "vec4 u_LightOrigin;\r\nuniform float u_LightRadius;\r\nvarying vec" "3 var_Position;\r\nvarying vec3 var_Normal;\r\n\r\nfloat sampleDi" "stMap(sampler2D texMap, vec2 uv, float scale)\r\n{\r\n\tvec3 distv = textur" "e2D(texMap, uv).xyz;\r\n\treturn dot(distv, vec3(1.0 / (256.0 * 256.0), 1.0" " / 256.0, 1.0)) * scale;\r\n}\r\n\r\nvoid main()\r\n{\r\n\tvec3 lightToPos " "= var_Position - u_LightOrigin.xyz;\r\n\tvec2 st = vec2(-dot(u_LightRight, " "lightToPos), dot(u_LightUp, lightToPos));\r\n\t\r\n\tfloat fade = length(st" ");\r\n\t\r\n#if defined(USE_DISCARD)\r\n\tif (fade >= 1.0)\r\n\t{\r\n\t\tdi" "scard;\r\n\t}\r\n#endif\r\n\r\n\tfade = clamp(8.0 - fade * 8.0, 0.0, 1.0);" "\r\n\t\r\n\tst = st * 0.5 + vec2(0.5);\r\n\r\n#if defined(USE_SOLID_PSHADOW" "S)\r\n\tfloat intensity = max(sign(u_LightRadius - length(lightToPos)), 0.0" ");\r\n#else\r\n\tfloat intensity = clamp((1.0 - dot(lightToPos, lightToPos)" " / (u_LightRadius * u_LightRadius)) * 2.0, 0.0, 1.0);\r\n#endif\r\n\t\r\n\t" "float lightDist = length(lightToPos);\r\n\tfloat dist;\r\n\r\n#if defined(U" "SE_DISCARD)\r\n\tif (dot(u_LightForward, lightToPos) <= 0.0)\r\n\t{\r\n\t\t" "discard;\r\n\t}\r\n\r\n\tif (dot(var_Normal, lightToPos) > 0.0)\r\n\t{\r\n" "\t\tdiscard;\r\n\t}\r\n#else\r\n\tintensity *= max(sign(dot(u_LightForward," " lightToPos)), 0.0);\r\n\tintensity *= max(sign(-dot(var_Normal, lightToPos" ")), 0.0);\r\n#endif\r\n\r\n\tintensity *= fade;\r\n#if defined(USE_PCF)\r\n" "\tfloat part;\r\n\t\r\n\tdist = sampleDistMap(u_ShadowMap, st + vec2(-1.0/5" "12.0, -1.0/512.0), u_LightRadius);\r\n\tpart = max(sign(lightDist - dist)," " 0.0);\r\n\r\n\tdist = sampleDistMap(u_ShadowMap, st + vec2( 1.0/512.0, -1." "0/512.0), u_LightRadius);\r\n\tpart += max(sign(lightDist - dist), 0.0);\r" "\n\r\n\tdist = sampleDistMap(u_ShadowMap, st + vec2(-1.0/512.0, 1.0/512.0)" ", u_LightRadius);\r\n\tpart += max(sign(lightDist - dist), 0.0);\r\n\r\n\td" "ist = sampleDistMap(u_ShadowMap, st + vec2( 1.0/512.0, 1.0/512.0), u_Light" "Radius);\r\n\tpart += max(sign(lightDist - dist), 0.0);\r\n\r\n #if define" "d(USE_DISCARD)\r\n\tif (part <= 0.0)\r\n\t{\r\n\t\tdiscard;\r\n\t}\r\n #en" "dif\r\n\r\n\tintensity *= part * 0.25;\r\n#else\r\n\tdist = sampleDistMap(u" "_ShadowMap, st, u_LightRadius);\r\n\r\n #if defined(USE_DISCARD)\r\n\tif (" "lightDist - dist <= 0.0)\r\n\t{\r\n\t\tdiscard;\r\n\t}\r\n #endif\r\n\t\t" "\t\r\n\tintensity *= max(sign(lightDist - dist), 0.0);\r\n#endif\r\n\t\t\r" "\n\tgl_FragColor.rgb = vec3(0);\r\n\tgl_FragColor.a = clamp(intensity, 0.0," " 0.75);\r\n}\r\n"; static const char *fallbackDown4xShader_vp = "attribute vec4 attr_Position;\r\nattribute vec4 attr_TexCoord0;\r\n\r\nunif" "orm mat4 u_ModelViewProjectionMatrix;\r\n\r\nvarying vec2 var_TexCoords" ";\r\n\r\n\r\nvoid main()\r\n{\r\n\tgl_Position = u_ModelViewProjectionMatri" "x * attr_Position;\r\n\tvar_TexCoords = attr_TexCoord0.st;\r\n}\r\n"; static const char *fallbackDown4xShader_fp = "uniform sampler2D u_TextureMap;\r\n\r\nuniform vec2 u_InvTexRes;\r\nva" "rying vec2 var_TexCoords;\r\n\r\nvoid main()\r\n{\r\n\tvec4 color;\r\n" "\tvec2 tc;\r\n\t\r\n\ttc = var_TexCoords + u_InvTexRes * vec2(-1.5, -1.5); " " color = texture2D(u_TextureMap, tc);\r\n\ttc = var_TexCoords + u_InvTexRe" "s * vec2(-0.5, -1.5); color += texture2D(u_TextureMap, tc);\r\n\ttc = var_" "TexCoords + u_InvTexRes * vec2( 0.5, -1.5); color += texture2D(u_TextureMa" "p, tc);\r\n\ttc = var_TexCoords + u_InvTexRes * vec2( 1.5, -1.5); color +=" " texture2D(u_TextureMap, tc);\r\n\r\n\ttc = var_TexCoords + u_InvTexRes * v" "ec2(-1.5, -0.5); color += texture2D(u_TextureMap, tc);\r\n\ttc = var_TexCoo" "rds + u_InvTexRes * vec2(-0.5, -0.5); color += texture2D(u_TextureMap, tc);" "\r\n\ttc = var_TexCoords + u_InvTexRes * vec2( 0.5, -0.5); color += texture" "2D(u_TextureMap, tc);\r\n\ttc = var_TexCoords + u_InvTexRes * vec2( 1.5, -0" ".5); color += texture2D(u_TextureMap, tc);\r\n\r\n\ttc = var_TexCoords + u_" "InvTexRes * vec2(-1.5, 0.5); color += texture2D(u_TextureMap, tc);\r\n\ttc" " = var_TexCoords + u_InvTexRes * vec2(-0.5, 0.5); color += texture2D(u_Tex" "tureMap, tc);\r\n\ttc = var_TexCoords + u_InvTexRes * vec2( 0.5, 0.5); col" "or += texture2D(u_TextureMap, tc);\r\n\ttc = var_TexCoords + u_InvTexRes * " "vec2( 1.5, 0.5); color += texture2D(u_TextureMap, tc);\r\n\r\n\ttc = var_T" "exCoords + u_InvTexRes * vec2(-1.5, 1.5); color += texture2D(u_TextureMap" ", tc);\r\n\ttc = var_TexCoords + u_InvTexRes * vec2(-0.5, 1.5); color += " "texture2D(u_TextureMap, tc);\r\n\ttc = var_TexCoords + u_InvTexRes * vec2( " "0.5, 1.5); color += texture2D(u_TextureMap, tc);\r\n\ttc = var_TexCoords " "+ u_InvTexRes * vec2( 1.5, 1.5); color += texture2D(u_TextureMap, tc);\r" "\n\t\r\n\tcolor *= 0.0625;\r\n\t\r\n\tgl_FragColor = color;\r\n}\r\n"; static const char *fallbackBokehShader_vp = "attribute vec4 attr_Position;\r\nattribute vec4 attr_TexCoord0;\r\n\r\nunif" "orm mat4 u_ModelViewProjectionMatrix;\r\n\r\nvarying vec2 var_TexCoords" ";\r\n\r\n\r\nvoid main()\r\n{\r\n\tgl_Position = u_ModelViewProjectionMatri" "x * attr_Position;\r\n\tvar_TexCoords = attr_TexCoord0.st;\r\n}\r\n"; static const char *fallbackBokehShader_fp = "uniform sampler2D u_TextureMap;\r\n\r\nuniform vec4 u_Color;\r\n\r\nun" "iform vec2 u_InvTexRes;\r\nvarying vec2 var_TexCoords;\r\n\r\nvoi" "d main()\r\n{\r\n\tvec4 color;\r\n\tvec2 tc;\r\n\r\n#if 0\r\n\tfloat c[7] =" " float[7](1.0, 0.9659258263, 0.8660254038, 0.7071067812, 0.5, 0.2588190451," " 0.0);\r\n\r\n\ttc = var_TexCoords + u_InvTexRes * vec2( c[0], c[6]); co" "lor = texture2D(u_TextureMap, tc);\r\n\ttc = var_TexCoords + u_InvTexRes *" " vec2( c[1], c[5]); color += texture2D(u_TextureMap, tc);\r\n\ttc = var_" "TexCoords + u_InvTexRes * vec2( c[2], c[4]); color += texture2D(u_Textur" "eMap, tc);\r\n\ttc = var_TexCoords + u_InvTexRes * vec2( c[3], c[3]); co" "lor += texture2D(u_TextureMap, tc);\r\n\ttc = var_TexCoords + u_InvTexRes *" " vec2( c[4], c[2]); color += texture2D(u_TextureMap, tc);\r\n\ttc = var_" "TexCoords + u_InvTexRes * vec2( c[5], c[1]); color += texture2D(u_Textur" "eMap, tc);\r\n\ttc = var_TexCoords + u_InvTexRes * vec2( c[6], c[0]); co" "lor += texture2D(u_TextureMap, tc);\r\n\r\n\ttc = var_TexCoords + u_InvTexR" "es * vec2( c[1], -c[5]); color += texture2D(u_TextureMap, tc);\r\n\ttc = " "var_TexCoords + u_InvTexRes * vec2( c[2], -c[4]); color += texture2D(u_Te" "xtureMap, tc);\r\n\ttc = var_TexCoords + u_InvTexRes * vec2( c[3], -c[3]);" " color += texture2D(u_TextureMap, tc);\r\n\ttc = var_TexCoords + u_InvTexR" "es * vec2( c[4], -c[2]); color += texture2D(u_TextureMap, tc);\r\n\ttc = " "var_TexCoords + u_InvTexRes * vec2( c[5], -c[1]); color += texture2D(u_Te" "xtureMap, tc);\r\n\ttc = var_TexCoords + u_InvTexRes * vec2( c[6], -c[0]);" " color += texture2D(u_TextureMap, tc);\r\n\r\n\ttc = var_TexCoords + u_Inv" "TexRes * vec2( -c[0], c[6]); color += texture2D(u_TextureMap, tc);\r\n\tt" "c = var_TexCoords + u_InvTexRes * vec2( -c[1], c[5]); color += texture2D(" "u_TextureMap, tc);\r\n\ttc = var_TexCoords + u_InvTexRes * vec2( -c[2], c[" "4]); color += texture2D(u_TextureMap, tc);\r\n\ttc = var_TexCoords + u_Inv" "TexRes * vec2( -c[3], c[3]); color += texture2D(u_TextureMap, tc);\r\n\tt" "c = var_TexCoords + u_InvTexRes * vec2( -c[4], c[2]); color += texture2D(" "u_TextureMap, tc);\r\n\ttc = var_TexCoords + u_InvTexRes * vec2( -c[5], c[" "1]); color += texture2D(u_TextureMap, tc);\r\n\r\n\ttc = var_TexCoords + u" "_InvTexRes * vec2( -c[1], -c[5]); color += texture2D(u_TextureMap, tc);\r" "\n\ttc = var_TexCoords + u_InvTexRes * vec2( -c[2], -c[4]); color += textu" "re2D(u_TextureMap, tc);\r\n\ttc = var_TexCoords + u_InvTexRes * vec2( -c[3]" ", -c[3]); color += texture2D(u_TextureMap, tc);\r\n\ttc = var_TexCoords + " "u_InvTexRes * vec2( -c[4], -c[2]); color += texture2D(u_TextureMap, tc);\r" "\n\ttc = var_TexCoords + u_InvTexRes * vec2( -c[5], -c[1]); color += textu" "re2D(u_TextureMap, tc);\r\n\t\r\n\tgl_FragColor = color * 0.04166667 * u_Co" "lor;\r\n#endif\r\n\r\n\tfloat c[5] = float[5](1.0, 0.9238795325, 0.70710678" "12, 0.3826834324, 0.0);\r\n\r\n\ttc = var_TexCoords + u_InvTexRes * vec2( " "c[0], c[4]); color = texture2D(u_TextureMap, tc);\r\n\ttc = var_TexCoord" "s + u_InvTexRes * vec2( c[1], c[3]); color += texture2D(u_TextureMap, tc" ");\r\n\ttc = var_TexCoords + u_InvTexRes * vec2( c[2], c[2]); color += t" "exture2D(u_TextureMap, tc);\r\n\ttc = var_TexCoords + u_InvTexRes * vec2( " "c[3], c[1]); color += texture2D(u_TextureMap, tc);\r\n\ttc = var_TexCoord" "s + u_InvTexRes * vec2( c[4], c[0]); color += texture2D(u_TextureMap, tc" ");\r\n\r\n\ttc = var_TexCoords + u_InvTexRes * vec2( c[1], -c[3]); color " "+= texture2D(u_TextureMap, tc);\r\n\ttc = var_TexCoords + u_InvTexRes * vec" "2( c[2], -c[2]); color += texture2D(u_TextureMap, tc);\r\n\ttc = var_TexC" "oords + u_InvTexRes * vec2( c[3], -c[1]); color += texture2D(u_TextureMap" ", tc);\r\n\ttc = var_TexCoords + u_InvTexRes * vec2( c[4], -c[0]); color " "+= texture2D(u_TextureMap, tc);\r\n\r\n\ttc = var_TexCoords + u_InvTexRes *" " vec2( -c[0], c[4]); color += texture2D(u_TextureMap, tc);\r\n\ttc = var_" "TexCoords + u_InvTexRes * vec2( -c[1], c[3]); color += texture2D(u_Textur" "eMap, tc);\r\n\ttc = var_TexCoords + u_InvTexRes * vec2( -c[2], c[2]); co" "lor += texture2D(u_TextureMap, tc);\r\n\ttc = var_TexCoords + u_InvTexRes *" " vec2( -c[3], c[1]); color += texture2D(u_TextureMap, tc);\r\n\r\n\ttc = " "var_TexCoords + u_InvTexRes * vec2( -c[1], -c[3]); color += texture2D(u_Te" "xtureMap, tc);\r\n\ttc = var_TexCoords + u_InvTexRes * vec2( -c[2], -c[2]);" " color += texture2D(u_TextureMap, tc);\r\n\ttc = var_TexCoords + u_InvTexR" "es * vec2( -c[3], -c[1]); color += texture2D(u_TextureMap, tc);\r\n\t\r\n" "\tgl_FragColor = color * 0.0625 * u_Color;\r\n}\r\n"; static const char *fallbackToneMapShader_vp = "attribute vec4 attr_Position;\r\nattribute vec4 attr_TexCoord0;\r\n\r\nunif" "orm mat4 u_ModelViewProjectionMatrix;\r\n\r\nvarying vec2 var_TexCoords" ";\r\n\r\n\r\nvoid main()\r\n{\r\n\tgl_Position = u_ModelViewProjectionMatri" "x * attr_Position;\r\n\tvar_TexCoords = attr_TexCoord0.st;\r\n}\r\n"; static const char *fallbackToneMapShader_fp = "uniform sampler2D u_TextureMap;\r\nuniform sampler2D u_LevelsMap;\r\n\r\nun" "iform vec4 u_Color;\r\n\r\nuniform vec2 u_AutoExposureMinMax;\r\n" "uniform vec3 u_ToneMinAvgMaxLinear;\r\n\r\nvarying vec2 var_TexCo" "ords;\r\n\r\nconst vec3 LUMINANCE_VECTOR = vec3(0.2125, 0.7154, 0.0721);" " //vec3(0.299, 0.587, 0.114);\r\n\r\nvec3 FilmicTonemap(vec3 x)\r\n{\r\n\tc" "onst float SS = 0.22; // Shoulder Strength\r\n\tconst float LS = 0.30; //" " Linear Strength\r\n\tconst float LA = 0.10; // Linear Angle\r\n\tconst fl" "oat TS = 0.20; // Toe Strength\r\n\tconst float TAN = 0.01; // Toe Angle N" "umerator\r\n\tconst float TAD = 0.30; // Toe Angle Denominator\r\n\t\r\n\tv" "ec3 SSxx = SS * x * x;\r\n\tvec3 LSx = LS * x;\r\n\tvec3 LALSx = LSx * LA;" "\r\n\t\r\n\treturn ((SSxx + LALSx + TS * TAN) / (SSxx + LSx + TS * TAD)) - " "TAN / TAD;\r\n\r\n\t//return ((x*(SS*x+LA*LS)+TS*TAN)/(x*(SS*x+LS)+TS*TAD))" " - TAN/TAD;\r\n\r\n}\r\n\r\nvoid main()\r\n{\r\n\tvec4 color = texture2D(u_" "TextureMap, var_TexCoords) * u_Color;\r\n\tvec3 minAvgMax = texture2D(u_Lev" "elsMap, var_TexCoords).rgb;\r\n\tvec3 logMinAvgMaxLum = clamp(minAvgMax * 2" "0.0 - 10.0, -u_AutoExposureMinMax.y, -u_AutoExposureMinMax.x);\r\n\t\t\r\n" "\tfloat avgLum = exp2(logMinAvgMaxLum.y);\r\n\t//float maxLum = exp2(logMin" "AvgMaxLum.z);\r\n\r\n\tcolor.rgb *= u_ToneMinAvgMaxLinear.y / avgLum;\r\n\t" "color.rgb = max(vec3(0.0), color.rgb - vec3(u_ToneMinAvgMaxLinear.x));\r\n" "\r\n\tvec3 fWhite = 1.0 / FilmicTonemap(vec3(u_ToneMinAvgMaxLinear.z - u_To" "neMinAvgMaxLinear.x));\r\n\tcolor.rgb = FilmicTonemap(color.rgb) * fWhite;" "\r\n\t\r\n\tgl_FragColor = clamp(color, 0.0, 1.0);\r\n}\r\n"; static const char *fallbackCalcLevels4xShader_vp = "attribute vec4 attr_Position;\r\nattribute vec4 attr_TexCoord0;\r\n\r\nunif" "orm mat4 u_ModelViewProjectionMatrix;\r\n\r\nvarying vec2 var_TexCoords" ";\r\n\r\n\r\nvoid main()\r\n{\r\n\tgl_Position = u_ModelViewProjectionMatri" "x * attr_Position;\r\n\tvar_TexCoords = attr_TexCoord0.st;\r\n}\r\n"; static const char *fallbackCalcLevels4xShader_fp = "uniform sampler2D u_TextureMap;\r\n\r\nuniform vec4 u_Color;\r\n\r\nun" "iform vec2 u_InvTexRes;\r\nvarying vec2 var_TexCoords;\r\n\r\ncon" "st vec3 LUMINANCE_VECTOR = vec3(0.2125, 0.7154, 0.0721); //vec3(0.299, 0" ".587, 0.114);\r\n\r\nvec3 GetValues(vec2 offset, vec3 current)\r\n{\r\n\tve" "c3 minAvgMax;\r\n\tvec2 tc = var_TexCoords + u_InvTexRes * offset; minAvgMa" "x = texture2D(u_TextureMap, tc).rgb;\r\n\r\n#ifdef FIRST_PASS\r\n\tfloat lu" "mi = max(dot(LUMINANCE_VECTOR, minAvgMax), 0.000001);\r\n\tfloat loglumi = " "clamp(log2(lumi), -10.0, 10.0);\r\n\tminAvgMax = vec3(loglumi * 0.05 + 0.5)" ";\r\n#endif\r\n\r\n\treturn vec3(min(current.x, minAvgMax.x), current.y + m" "inAvgMax.y, max(current.z, minAvgMax.z));\r\n}\r\n\r\nvoid main()\r\n{\r\n" "\tvec3 current = vec3(1.0, 0.0, 0.0);\r\n\r\n#ifdef FIRST_PASS\r\n\tcurrent" " = GetValues(vec2( 0.0, 0.0), current);\r\n#else\r\n\tcurrent = GetValues(" "vec2(-1.5, -1.5), current);\r\n\tcurrent = GetValues(vec2(-0.5, -1.5), curr" "ent);\r\n\tcurrent = GetValues(vec2( 0.5, -1.5), current);\r\n\tcurrent = G" "etValues(vec2( 1.5, -1.5), current);\r\n\t\r\n\tcurrent = GetValues(vec2(-1" ".5, -0.5), current);\r\n\tcurrent = GetValues(vec2(-0.5, -0.5), current);\r" "\n\tcurrent = GetValues(vec2( 0.5, -0.5), current);\r\n\tcurrent = GetValue" "s(vec2( 1.5, -0.5), current);\r\n\t\r\n\tcurrent = GetValues(vec2(-1.5, 0." "5), current);\r\n\tcurrent = GetValues(vec2(-0.5, 0.5), current);\r\n\tcur" "rent = GetValues(vec2( 0.5, 0.5), current);\r\n\tcurrent = GetValues(vec2(" " 1.5, 0.5), current);\r\n\r\n\tcurrent = GetValues(vec2(-1.5, 1.5), curre" "nt);\r\n\tcurrent = GetValues(vec2(-0.5, 1.5), current);\r\n\tcurrent = Ge" "tValues(vec2( 0.5, 1.5), current);\r\n\tcurrent = GetValues(vec2( 1.5, 1." "5), current);\r\n\r\n\tcurrent.y *= 0.0625;\r\n#endif\r\n\r\n\tgl_FragColor" " = vec4(current, 1.0f);\r\n}\r\n"; static const char *fallbackShadowmaskShader_vp = "attribute vec4 attr_Position;\r\nattribute vec4 attr_TexCoord0;\r\n\r\nunif" "orm vec3 u_ViewForward;\r\nuniform vec3 u_ViewLeft;\r\nuniform vec3 u" "_ViewUp;\r\nuniform vec4 u_ViewInfo; // zfar / znear\r\n\r\nvarying vec2 " " var_ScreenTex;\r\nvarying vec3 var_ViewDir;\r\n\r\nvoid main()\r\n{\r\n" "\tgl_Position = attr_Position;\r\n\t//vec2 screenCoords = gl_Position.xy / " "gl_Position.w;\r\n\t//var_ScreenTex = screenCoords * 0.5 + 0.5;\r\n\tvar_Sc" "reenTex = attr_TexCoord0.xy;\r\n\tvec2 screenCoords = attr_TexCoord0.xy * 2" ".0 - 1.0;\r\n\tvar_ViewDir = u_ViewForward + u_ViewLeft * -screenCoords.x +" " u_ViewUp * screenCoords.y;\r\n}\r\n"; static const char *fallbackShadowmaskShader_fp = "uniform sampler2D u_ScreenDepthMap;\r\n\r\nuniform sampler2D u_ShadowMap;\r" "\n#if defined(USE_SHADOW_CASCADE)\r\nuniform sampler2D u_ShadowMap2;\r\nuni" "form sampler2D u_ShadowMap3;\r\n#endif\r\n\r\nuniform mat4 u_ShadowMvp" ";\r\n#if defined(USE_SHADOW_CASCADE)\r\nuniform mat4 u_ShadowMvp2;\r\n" "uniform mat4 u_ShadowMvp3;\r\n#endif\r\n\r\nuniform vec3 u_ViewOrigi" "n;\r\nuniform vec4 u_ViewInfo; // zfar / znear, zfar\r\n\r\nvarying vec2 " " var_ScreenTex;\r\nvarying vec3 var_ViewDir;\r\n\r\n// Input: It uses te" "xture coords as the random number seed.\r\n// Output: Random number: [0,1)," " that is between 0.0 and 0.999999... inclusive.\r\n// Author: Michael Pohor" "eski\r\n// Copyright: Copyleft 2012 :-)\r\n// Source: http://stackoverflow." "com/questions/5149544/can-i-generate-a-random-number-inside-a-pixel-shader" "\r\n\r\nfloat random( const vec2 p )\r\n{\r\n // We need irrationals for p" "seudo randomness.\r\n // Most (all?) known transcendental numbers will (ge" "nerally) work.\r\n const vec2 r = vec2(\r\n 23.1406926327792690, // e^" "pi (Gelfond's constant)\r\n 2.6651441426902251); // 2^sqrt(2) (Gelfond-" "Schneider constant)\r\n //return fract( cos( mod( 123456789., 1e-7 + 256. " "* dot(p,r) ) ) );\r\n return mod( 123456789., 1e-7 + 256. * dot(p,r) ); " "\r\n}\r\n\r\nfloat PCF(const sampler2D shadowmap, const vec2 st, const floa" "t dist)\r\n{\r\n\tfloat mult;\r\n\tfloat scale = 2.0 / r_shadowMapSize;\r\n" "\t\t\r\n#if defined(USE_SHADOW_FILTER)\r\n\tfloat r = random(var_ScreenTex." "xy);\r\n\tfloat sinr = sin(r) * scale;\r\n\tfloat cosr = cos(r) * scale;\r" "\n\tmat2 rmat = mat2(cosr, sinr, -sinr, cosr);\r\n\r\n\tmult = step(dist, " "texture2D(shadowmap, st + rmat * vec2(-0.7055767, 0.196515)).r);\r\n\tmult " "+= step(dist, texture2D(shadowmap, st + rmat * vec2(0.3524343, -0.7791386))" ".r);\r\n\tmult += step(dist, texture2D(shadowmap, st + rmat * vec2(0.239105" "6, 0.9189604)).r);\r\n #if defined(USE_SHADOW_FILTER2)\r\n\tmult += step(d" "ist, texture2D(shadowmap, st + rmat * vec2(-0.07580382, -0.09224417)).r);\r" "\n\tmult += step(dist, texture2D(shadowmap, st + rmat * vec2(0.5784913, -0." "002528916)).r);\r\n\tmult += step(dist, texture2D(shadowmap, st + rmat * ve" "c2(0.192888, 0.4064181)).r);\r\n\tmult += step(dist, texture2D(shadowmap, s" "t + rmat * vec2(-0.6335801, -0.5247476)).r);\r\n\tmult += step(dist, textur" "e2D(shadowmap, st + rmat * vec2(-0.5579782, 0.7491854)).r);\r\n\tmult += st" "ep(dist, texture2D(shadowmap, st + rmat * vec2(0.7320465, 0.6317794)).r);\r" "\n\r\n\tmult *= 0.11111;\r\n #else\r\n mult *= 0.33333;\r\n #endif\r\n" "#else\r\n\tmult = step(dist, texture2D(shadowmap, st).r);\r\n#endif\r\n\t\t" "\r\n\treturn mult;\r\n}\r\n\r\nfloat getLinearDepth(sampler2D depthMap, vec" "2 tex, float zFarDivZNear)\r\n{\r\n\t\tfloat sampleZDivW = texture2D(depthM" "ap, tex).r;\r\n\t\treturn 1.0 / mix(zFarDivZNear, 1.0, sampleZDivW);\r\n}\r" "\n\r\nvoid main()\r\n{\r\n\tfloat result;\r\n\t\r\n\tfloat depth = getLinea" "rDepth(u_ScreenDepthMap, var_ScreenTex, u_ViewInfo.x);\r\n\tfloat sampleZ =" " u_ViewInfo.y * depth;\r\n\r\n\tvec4 biasPos = vec4(u_ViewOrigin + var_View" "Dir * depth * 0.99, 1.0);\r\n\t\r\n\tvec4 shadowpos = u_ShadowMvp * biasPos" ";\r\n\t\r\n#if defined(USE_SHADOW_CASCADE)\r\n\tconst float fadeTo = 0.5;\r" "\n\tresult = fadeTo;\r\n#else\r\n\tresult = 0.0;\r\n#endif\r\n\r\n\tif (all" "(lessThanEqual(abs(shadowpos.xyz), vec3(abs(shadowpos.w)))))\r\n\t{\r\n\t\t" "shadowpos.xyz = shadowpos.xyz / shadowpos.w * 0.5 + 0.5;\r\n\t\tresult = PC" "F(u_ShadowMap, shadowpos.xy, shadowpos.z);\r\n\t}\r\n#if defined(USE_SHADOW" "_CASCADE)\r\n\telse\r\n\t{\r\n\t\tshadowpos = u_ShadowMvp2 * biasPos;\r\n\r" "\n\t\tif (all(lessThanEqual(abs(shadowpos.xyz), vec3(abs(shadowpos.w)))))\r" "\n\t\t{\r\n\t\t\tshadowpos.xyz = shadowpos.xyz / shadowpos.w * 0.5 + 0.5;\r" "\n\t\t\tresult = PCF(u_ShadowMap2, shadowpos.xy, shadowpos.z);\r\n\t\t}\r\n" "\t\telse\r\n\t\t{\r\n\t\t\tshadowpos = u_ShadowMvp3 * biasPos;\r\n\r\n\t\t" "\tif (all(lessThanEqual(abs(shadowpos.xyz), vec3(abs(shadowpos.w)))))\r\n\t" "\t\t{\r\n\t\t\t\tshadowpos.xyz = shadowpos.xyz / shadowpos.w * 0.5 + 0.5;\r" "\n\t\t\t\tresult = PCF(u_ShadowMap3, shadowpos.xy, shadowpos.z);\r\n\r\n\t" "\t\t\tfloat fade = clamp(sampleZ / r_shadowCascadeZFar * 10.0 - 9.0, 0.0, 1" ".0);\r\n\t\t\t\tresult = mix(result, fadeTo, fade);\r\n\t\t\t}\r\n\t\t}\r\n" "\t}\r\n#endif\r\n\t\t\r\n\tgl_FragColor = vec4(vec3(result), 1.0);\r\n}\r\n"; static const char *fallbackSsaoShader_vp = "attribute vec4 attr_Position;\r\nattribute vec4 attr_TexCoord0;\r\n\r\nvary" "ing vec2 var_ScreenTex;\r\n\r\nvoid main()\r\n{\r\n\tgl_Position = attr_P" "osition;\r\n\tvar_ScreenTex = attr_TexCoord0.xy;\r\n\t//vec2 screenCoords =" " gl_Position.xy / gl_Position.w;\r\n\t//var_ScreenTex = screenCoords * 0.5 " "+ 0.5;\r\n}\r\n"; static const char *fallbackSsaoShader_fp = "uniform sampler2D u_ScreenDepthMap;\r\n\r\nuniform vec4 u_ViewInfo; // zf" "ar / znear, zfar\r\n\r\nvarying vec2 var_ScreenTex;\r\n\r\nvec2 poissonDi" "sc[9] = vec2[9](\r\nvec2(-0.7055767, 0.196515), vec2(0.3524343, -0.77913" "86),\r\nvec2(0.2391056, 0.9189604), vec2(-0.07580382, -0.09224417),\r\nv" "ec2(0.5784913, -0.002528916), vec2(0.192888, 0.4064181),\r\nvec2(-0.6335801" ", -0.5247476), vec2(-0.5579782, 0.7491854),\r\nvec2(0.7320465, 0.6317794)" "\r\n);\r\n\r\n// Input: It uses texture coords as the random number seed.\r" "\n// Output: Random number: [0,1), that is between 0.0 and 0.999999... incl" "usive.\r\n// Author: Michael Pohoreski\r\n// Copyright: Copyleft 2012 :-)\r" "\n// Source: http://stackoverflow.com/questions/5149544/can-i-generate-a-ra" "ndom-number-inside-a-pixel-shader\r\n\r\nfloat random( const vec2 p )\r\n{" "\r\n // We need irrationals for pseudo randomness.\r\n // Most (all?) kno" "wn transcendental numbers will (generally) work.\r\n const vec2 r = vec2(" "\r\n 23.1406926327792690, // e^pi (Gelfond's constant)\r\n 2.665144" "1426902251); // 2^sqrt(2) (Gelfond-Schneider constant)\r\n //return fract(" " cos( mod( 123456789., 1e-7 + 256. * dot(p,r) ) ) );\r\n return mod( 12345" "6789., 1e-7 + 256. * dot(p,r) ); \r\n}\r\n\r\nmat2 randomRotation( const v" "ec2 p )\r\n{\r\n\tfloat r = random(p);\r\n\tfloat sinr = sin(r);\r\n\tfloat" " cosr = cos(r);\r\n\treturn mat2(cosr, sinr, -sinr, cosr);\r\n}\r\n\r\nfloa" "t getLinearDepth(sampler2D depthMap, const vec2 tex, const float zFarDivZNe" "ar)\r\n{\r\n\t\tfloat sampleZDivW = texture2D(depthMap, tex).r;\r\n\t\tretu" "rn 1.0 / mix(zFarDivZNear, 1.0, sampleZDivW);\r\n}\r\n\r\nfloat ambientOccl" "usion(sampler2D depthMap, const vec2 tex, const float zFarDivZNear, const f" "loat zFar)\r\n{\r\n\tfloat result = 0;\r\n\r\n\tfloat sampleZ = zFar * getL" "inearDepth(depthMap, tex, zFarDivZNear);\r\n\r\n\tvec2 expectedSlope = vec2" "(dFdx(sampleZ), dFdy(sampleZ)) / vec2(dFdx(tex.x), dFdy(tex.y));\r\n\t\r\n" "\tif (length(expectedSlope) > 5000.0)\r\n\t\treturn 1.0;\r\n\t\r\n\tvec2 of" "fsetScale = vec2(3.0 / sampleZ);\r\n\t\r\n\tmat2 rmat = randomRotation(tex)" ";\r\n\t\t\r\n\tint i;\r\n\tfor (i = 0; i < 3; i++)\r\n\t{\r\n\t\tvec2 offse" "t = rmat * poissonDisc[i] * offsetScale;\r\n\t\tfloat sampleZ2 = zFar * get" "LinearDepth(depthMap, tex + offset, zFarDivZNear);\r\n\r\n\t\tif (abs(sampl" "eZ - sampleZ2) > 20.0)\r\n\t\t\tresult += 1.0;\r\n\t\telse\r\n\t\t{\r\n\t\t" "\tfloat expectedZ = sampleZ + dot(expectedSlope, offset);\r\n\t\t\tresult +" "= step(expectedZ - 1.0, sampleZ2);\r\n\t\t}\r\n\t}\r\n\t\r\n\tresult *= 0.3" "3333;\r\n\t\r\n\treturn result;\r\n}\r\n\r\nvoid main()\r\n{\r\n\tfloat res" "ult = ambientOcclusion(u_ScreenDepthMap, var_ScreenTex, u_ViewInfo.x, u_Vie" "wInfo.y);\r\n\t\t\t\r\n\tgl_FragColor = vec4(vec3(result), 1.0);\r\n}\r\n"; static const char *fallbackDepthBlurShader_vp = "attribute vec4 attr_Position;\r\nattribute vec4 attr_TexCoord0;\r\n\r\nvary" "ing vec2 var_ScreenTex;\r\n\r\nvoid main()\r\n{\r\n\tgl_Position = attr_P" "osition;\r\n\tvar_ScreenTex = attr_TexCoord0.xy;\r\n\t//vec2 screenCoords =" " gl_Position.xy / gl_Position.w;\r\n\t//var_ScreenTex = screenCoords * 0.5 " "+ 0.5;\r\n}\r\n"; static const char *fallbackDepthBlurShader_fp = "uniform sampler2D u_ScreenImageMap;\r\nuniform sampler2D u_ScreenDepthMap;" "\r\n\r\nuniform vec4 u_ViewInfo; // zfar / znear, zfar\r\nvarying vec2 " "var_ScreenTex;\r\n\r\n//float gauss[5] = float[5](0.30, 0.23, 0.097, 0.024," " 0.0033);\r\nfloat gauss[4] = float[4](0.40, 0.24, 0.054, 0.0044);\r\n//flo" "at gauss[3] = float[3](0.60, 0.19, 0.0066);\r\n#define GAUSS_SIZE 4\r\n\r\n" "float getLinearDepth(sampler2D depthMap, const vec2 tex, const float zFarDi" "vZNear)\r\n{\r\n\t\tfloat sampleZDivW = texture2D(depthMap, tex).r;\r\n\t\t" "return 1.0 / mix(zFarDivZNear, 1.0, sampleZDivW);\r\n}\r\n\r\nvec4 depthGau" "ssian1D(sampler2D imageMap, sampler2D depthMap, vec2 tex, float zFarDivZNea" "r, float zFar)\r\n{\r\n\tfloat scale = 1.0 / 256.0;\r\n\r\n#if defined(USE_" "HORIZONTAL_BLUR)\r\n vec2 direction = vec2(1.0, 0.0) * scale;\r\n#else /" "/ if defined(USE_VERTICAL_BLUR)\r\n\tvec2 direction = vec2(0.0, 1.0) * scal" "e;\r\n#endif\r\n\t\r\n\tfloat depthCenter = zFar * getLinearDepth(depthMap," " tex, zFarDivZNear);\r\n\tvec2 centerSlope = vec2(dFdx(depthCenter), dFdy(d" "epthCenter)) / vec2(dFdx(tex.x), dFdy(tex.y));\r\n\t\t\r\n\tvec4 result = t" "exture2D(imageMap, tex) * gauss[0];\r\n\tfloat total = gauss[0];\r\n\r\n\ti" "nt i, j;\r\n\tfor (i = 0; i < 2; i++)\r\n\t{\r\n\t\tfor (j = 1; j < GAUSS_S" "IZE; j++)\r\n\t\t{\r\n\t\t\tvec2 offset = direction * j;\r\n\t\t\tfloat dep" "thSample = zFar * getLinearDepth(depthMap, tex + offset, zFarDivZNear);\r\n" "\t\t\tfloat depthExpected = depthCenter + dot(centerSlope, offset);\r\n\t\t" "\tif(abs(depthSample - depthExpected) < 5.0)\r\n\t\t\t{\r\n\t\t\t\tresult +" "= texture2D(imageMap, tex + offset) * gauss[j];\r\n\t\t\t\ttotal += gauss[j" "];\r\n\t\t\t}\r\n\t\t}\r\n\t\t\r\n\t\tdirection = -direction;\r\n\t}\t\r\n" "\t\t\r\n\treturn result / total;\r\n}\r\n\r\nvoid main()\r\n{\t\t\r\n\tgl_F" "ragColor = depthGaussian1D(u_ScreenImageMap, u_ScreenDepthMap, var_ScreenTe" "x, u_ViewInfo.x, u_ViewInfo.y);\r\n}\r\n"; static void GLSL_PrintInfoLog(GLhandleARB object, qboolean developerOnly) { char *msg; static char msgPart[1024]; int maxLength = 0; int i; int printLevel = developerOnly ? PRINT_DEVELOPER : PRINT_ALL; qglGetObjectParameterivARB(object, GL_OBJECT_INFO_LOG_LENGTH_ARB, &maxLength); if (maxLength <= 0) { ri.Printf(printLevel, "No compile log.\n"); return; } ri.Printf(printLevel, "compile log:\n"); if (maxLength < 1023) { qglGetInfoLogARB(object, maxLength, &maxLength, msgPart); msgPart[maxLength + 1] = '\0'; ri.Printf(printLevel, "%s\n", msgPart); } else { msg = ri.Malloc(maxLength); qglGetInfoLogARB(object, maxLength, &maxLength, msg); for(i = 0; i < maxLength; i += 1024) { Q_strncpyz(msgPart, msg + i, sizeof(msgPart)); ri.Printf(printLevel, "%s\n", msgPart); } ri.Free(msg); } } static void GLSL_PrintShaderSource(GLhandleARB object) { char *msg; static char msgPart[1024]; int maxLength = 0; int i; qglGetObjectParameterivARB(object, GL_OBJECT_SHADER_SOURCE_LENGTH_ARB, &maxLength); msg = ri.Malloc(maxLength); qglGetShaderSourceARB(object, maxLength, &maxLength, msg); for(i = 0; i < maxLength; i += 1024) { Q_strncpyz(msgPart, msg + i, sizeof(msgPart)); ri.Printf(PRINT_ALL, "%s\n", msgPart); } ri.Free(msg); } static void GLSL_GetShaderHeader( GLenum shaderType, const GLcharARB *extra, char *dest, int size ) { float fbufWidthScale, fbufHeightScale; dest[0] = '\0'; // HACK: abuse the GLSL preprocessor to turn GLSL 1.20 shaders into 1.30 ones if(glRefConfig.glslMajorVersion > 1 || (glRefConfig.glslMajorVersion == 1 && glRefConfig.glslMinorVersion >= 30)) { Q_strcat(dest, size, "#version 130\n"); if(shaderType == GL_VERTEX_SHADER_ARB) { Q_strcat(dest, size, "#define attribute in\n"); Q_strcat(dest, size, "#define varying out\n"); } else { Q_strcat(dest, size, "#define varying in\n"); Q_strcat(dest, size, "out vec4 out_Color;\n"); Q_strcat(dest, size, "#define gl_FragColor out_Color\n"); } } else { Q_strcat(dest, size, "#version 120\n"); } // HACK: add some macros to avoid extra uniforms and save speed and code maintenance //Q_strcat(dest, size, // va("#ifndef r_SpecularExponent\n#define r_SpecularExponent %f\n#endif\n", r_specularExponent->value)); //Q_strcat(dest, size, // va("#ifndef r_SpecularScale\n#define r_SpecularScale %f\n#endif\n", r_specularScale->value)); //Q_strcat(dest, size, // va("#ifndef r_NormalScale\n#define r_NormalScale %f\n#endif\n", r_normalScale->value)); Q_strcat(dest, size, "#ifndef M_PI\n#define M_PI 3.14159265358979323846f\n#endif\n"); //Q_strcat(dest, size, va("#ifndef MAX_SHADOWMAPS\n#define MAX_SHADOWMAPS %i\n#endif\n", MAX_SHADOWMAPS)); Q_strcat(dest, size, va("#ifndef deformGen_t\n" "#define deformGen_t\n" "#define DGEN_WAVE_SIN %i\n" "#define DGEN_WAVE_SQUARE %i\n" "#define DGEN_WAVE_TRIANGLE %i\n" "#define DGEN_WAVE_SAWTOOTH %i\n" "#define DGEN_WAVE_INVERSE_SAWTOOTH %i\n" "#define DGEN_BULGE %i\n" "#define DGEN_MOVE %i\n" "#endif\n", DGEN_WAVE_SIN, DGEN_WAVE_SQUARE, DGEN_WAVE_TRIANGLE, DGEN_WAVE_SAWTOOTH, DGEN_WAVE_INVERSE_SAWTOOTH, DGEN_BULGE, DGEN_MOVE)); Q_strcat(dest, size, va("#ifndef tcGen_t\n" "#define tcGen_t\n" "#define TCGEN_LIGHTMAP %i\n" "#define TCGEN_TEXTURE %i\n" "#define TCGEN_ENVIRONMENT_MAPPED %i\n" "#define TCGEN_FOG %i\n" "#define TCGEN_VECTOR %i\n" "#endif\n", TCGEN_LIGHTMAP, TCGEN_TEXTURE, TCGEN_ENVIRONMENT_MAPPED, TCGEN_FOG, TCGEN_VECTOR)); Q_strcat(dest, size, va("#ifndef colorGen_t\n" "#define colorGen_t\n" "#define CGEN_LIGHTING_DIFFUSE %i\n" "#endif\n", CGEN_LIGHTING_DIFFUSE)); Q_strcat(dest, size, va("#ifndef alphaGen_t\n" "#define alphaGen_t\n" "#define AGEN_LIGHTING_SPECULAR %i\n" "#define AGEN_PORTAL %i\n" "#define AGEN_FRESNEL %i\n" "#endif\n", AGEN_LIGHTING_SPECULAR, AGEN_PORTAL, AGEN_FRESNEL)); Q_strcat(dest, size, va("#ifndef texenv_t\n" "#define texenv_t\n" "#define TEXENV_MODULATE %i\n" "#define TEXENV_ADD %i\n" "#define TEXENV_REPLACE %i\n" "#endif\n", GL_MODULATE, GL_ADD, GL_REPLACE)); fbufWidthScale = 1.0f / ((float)glConfig.vidWidth); fbufHeightScale = 1.0f / ((float)glConfig.vidHeight); Q_strcat(dest, size, va("#ifndef r_FBufScale\n#define r_FBufScale vec2(%f, %f)\n#endif\n", fbufWidthScale, fbufHeightScale)); if (extra) { Q_strcat(dest, size, extra); } // OK we added a lot of stuff but if we do something bad in the GLSL shaders then we want the proper line // so we have to reset the line counting Q_strcat(dest, size, "#line 0\n"); } static int GLSL_CompileGPUShader(GLhandleARB program, GLhandleARB *prevShader, const GLcharARB *buffer, int size, GLenum shaderType) { GLint compiled; GLhandleARB shader; shader = qglCreateShaderObjectARB(shaderType); qglShaderSourceARB(shader, 1, (const GLcharARB **)&buffer, &size); // compile shader qglCompileShaderARB(shader); // check if shader compiled qglGetObjectParameterivARB(shader, GL_OBJECT_COMPILE_STATUS_ARB, &compiled); if(!compiled) { GLSL_PrintShaderSource(shader); GLSL_PrintInfoLog(shader, qfalse); ri.Error(ERR_DROP, "Couldn't compile shader"); return 0; } //GLSL_PrintInfoLog(shader, qtrue); //GLSL_PrintShaderSource(shader); if (*prevShader) { qglDetachObjectARB(program, *prevShader); qglDeleteObjectARB(*prevShader); } // attach shader to program qglAttachObjectARB(program, shader); *prevShader = shader; return 1; } static void GLSL_DumpText(const char *shaderText, int size, const char *name, GLenum shaderType) { int i, l, inc; ri.Printf(PRINT_ALL, "static const char *fallback%sShader_%s =\n\"", name, shaderType == GL_VERTEX_SHADER_ARB ? "vp" : "fp"); l = 0; for (i = 0; i < size; i++) { switch (shaderText[i]) { case '\a': case '\b': case '\f': case '\n': case '\r': case '\t': case '\v': case '"': case '\\': inc = 2; break; default: inc = 1; break; } l += inc; if (l >= 76) { ri.Printf(PRINT_ALL, "\"\n\""); l = inc; } switch (shaderText[i]) { case '\a': ri.Printf(PRINT_ALL, "\\a"); break; case '\b': ri.Printf(PRINT_ALL, "\\b"); break; case '\f': ri.Printf(PRINT_ALL, "\\f"); break; case '\n': ri.Printf(PRINT_ALL, "\\n"); break; case '\r': ri.Printf(PRINT_ALL, "\\r"); break; case '\t': ri.Printf(PRINT_ALL, "\\t"); break; case '\v': ri.Printf(PRINT_ALL, "\\v"); break; case '"': ri.Printf(PRINT_ALL, "\\\""); break; case '\\': ri.Printf(PRINT_ALL, "\\\\"); break; default: ri.Printf(PRINT_ALL, "%c", shaderText[i]); break; } } ri.Printf(PRINT_ALL, "\";\n\n"); } static int GLSL_LoadGPUShaderText(const char *name, const char *fallback, GLenum shaderType, char *dest, int destSize, qboolean dump) { char filename[MAX_QPATH]; GLcharARB *buffer = NULL; const GLcharARB *shaderText = NULL; int size; int result; if(shaderType == GL_VERTEX_SHADER_ARB) { Com_sprintf(filename, sizeof(filename), "glsl/%s_vp.glsl", name); } else { Com_sprintf(filename, sizeof(filename), "glsl/%s_fp.glsl", name); } ri.Printf(PRINT_DEVELOPER, "...loading '%s'\n", filename); size = ri.FS_ReadFile(filename, (void **)&buffer); if(!buffer) { if (fallback) { ri.Printf(PRINT_DEVELOPER, "couldn't load, using fallback\n"); shaderText = fallback; size = strlen(shaderText); } else { ri.Printf(PRINT_DEVELOPER, "couldn't load!\n"); return 0; } } else { shaderText = buffer; } if (dump) GLSL_DumpText(shaderText, size, name, shaderType); if (size > destSize) { result = 0; } else { Q_strncpyz(dest, shaderText, size + 1); result = 1; } if (buffer) { ri.FS_FreeFile(buffer); } return result; } static void GLSL_LinkProgram(GLhandleARB program) { GLint linked; qglLinkProgramARB(program); qglGetObjectParameterivARB(program, GL_OBJECT_LINK_STATUS_ARB, &linked); if(!linked) { GLSL_PrintInfoLog(program, qfalse); ri.Error(ERR_DROP, "\nshaders failed to link"); } } static void GLSL_ValidateProgram(GLhandleARB program) { GLint validated; qglValidateProgramARB(program); qglGetObjectParameterivARB(program, GL_OBJECT_VALIDATE_STATUS_ARB, &validated); if(!validated) { GLSL_PrintInfoLog(program, qfalse); ri.Error(ERR_DROP, "\nshaders failed to validate"); } } static void GLSL_ShowProgramUniforms(GLhandleARB program) { int i, count, size; GLenum type; char uniformName[1000]; // install the executables in the program object as part of current state. qglUseProgramObjectARB(program); // check for GL Errors // query the number of active uniforms qglGetObjectParameterivARB(program, GL_OBJECT_ACTIVE_UNIFORMS_ARB, &count); // Loop over each of the active uniforms, and set their value for(i = 0; i < count; i++) { qglGetActiveUniformARB(program, i, sizeof(uniformName), NULL, &size, &type, uniformName); ri.Printf(PRINT_DEVELOPER, "active uniform: '%s'\n", uniformName); } qglUseProgramObjectARB(0); } static int GLSL_InitGPUShader2(shaderProgram_t * program, const char *name, int attribs, const char *vpCode, const char *fpCode, int numUniforms) { ri.Printf(PRINT_DEVELOPER, "------- GPU shader -------\n"); if(strlen(name) >= MAX_QPATH) { ri.Error(ERR_DROP, "GLSL_InitGPUShader2: \"%s\" is too long\n", name); } Q_strncpyz(program->name, name, sizeof(program->name)); program->program = qglCreateProgramObjectARB(); program->attribs = attribs; if (!(GLSL_CompileGPUShader(program->program, &program->vertexShader, vpCode, strlen(vpCode), GL_VERTEX_SHADER_ARB))) { ri.Printf(PRINT_ALL, "GLSL_InitGPUShader2: Unable to load \"%s\" as GL_VERTEX_SHADER_ARB\n", name); qglDeleteObjectARB(program->program); return 0; } if(fpCode) { if(!(GLSL_CompileGPUShader(program->program, &program->fragmentShader, fpCode, strlen(fpCode), GL_FRAGMENT_SHADER_ARB))) { ri.Printf(PRINT_ALL, "GLSL_InitGPUShader2: Unable to load \"%s\" as GL_FRAGMENT_SHADER_ARB\n", name); qglDeleteObjectARB(program->program); return 0; } } if(attribs & ATTR_POSITION) qglBindAttribLocationARB(program->program, ATTR_INDEX_POSITION, "attr_Position"); if(attribs & ATTR_TEXCOORD) qglBindAttribLocationARB(program->program, ATTR_INDEX_TEXCOORD0, "attr_TexCoord0"); if(attribs & ATTR_LIGHTCOORD) qglBindAttribLocationARB(program->program, ATTR_INDEX_TEXCOORD1, "attr_TexCoord1"); // if(attribs & ATTR_TEXCOORD2) // qglBindAttribLocationARB(program->program, ATTR_INDEX_TEXCOORD2, "attr_TexCoord2"); // if(attribs & ATTR_TEXCOORD3) // qglBindAttribLocationARB(program->program, ATTR_INDEX_TEXCOORD3, "attr_TexCoord3"); #ifdef USE_VERT_TANGENT_SPACE if(attribs & ATTR_TANGENT) qglBindAttribLocationARB(program->program, ATTR_INDEX_TANGENT, "attr_Tangent"); if(attribs & ATTR_BITANGENT) qglBindAttribLocationARB(program->program, ATTR_INDEX_BITANGENT, "attr_Bitangent"); #endif if(attribs & ATTR_NORMAL) qglBindAttribLocationARB(program->program, ATTR_INDEX_NORMAL, "attr_Normal"); if(attribs & ATTR_COLOR) qglBindAttribLocationARB(program->program, ATTR_INDEX_COLOR, "attr_Color"); if(attribs & ATTR_PAINTCOLOR) qglBindAttribLocationARB(program->program, ATTR_INDEX_PAINTCOLOR, "attr_PaintColor"); if(attribs & ATTR_LIGHTDIRECTION) qglBindAttribLocationARB(program->program, ATTR_INDEX_LIGHTDIRECTION, "attr_LightDirection"); if(attribs & ATTR_POSITION2) qglBindAttribLocationARB(program->program, ATTR_INDEX_POSITION2, "attr_Position2"); if(attribs & ATTR_NORMAL2) qglBindAttribLocationARB(program->program, ATTR_INDEX_NORMAL2, "attr_Normal2"); #ifdef USE_VERT_TANGENT_SPACE if(attribs & ATTR_TANGENT2) qglBindAttribLocationARB(program->program, ATTR_INDEX_TANGENT2, "attr_Tangent2"); if(attribs & ATTR_BITANGENT2) qglBindAttribLocationARB(program->program, ATTR_INDEX_BITANGENT2, "attr_Bitangent2"); #endif GLSL_LinkProgram(program->program); program->numUniforms = numUniforms; { int i, size; size = sizeof(*program->uniforms) * numUniforms; program->uniforms = ri.Malloc(size); for (i = 0; i < numUniforms; i++) { program->uniforms[i] = -1; } size = sizeof(*program->uniformTypes) * numUniforms; program->uniformTypes = ri.Malloc(size); memset(program->uniformTypes, 0, size); size = sizeof(*program->uniformBufferOffsets) * numUniforms; program->uniformBufferOffsets = ri.Malloc(size); memset(program->uniformBufferOffsets, 0, size); } return 1; } static int GLSL_InitGPUShader(shaderProgram_t * program, const char *name, int attribs, qboolean fragmentShader, const GLcharARB *extra, qboolean addHeader, const char *fallback_vp, const char *fallback_fp, int numUniforms) { char vpCode[32000]; char fpCode[32000]; char *postHeader; int size; int result; size = sizeof(vpCode); if (addHeader) { GLSL_GetShaderHeader(GL_VERTEX_SHADER_ARB, extra, vpCode, size); postHeader = &vpCode[strlen(vpCode)]; size -= strlen(vpCode); } else { postHeader = &vpCode[0]; } if (!GLSL_LoadGPUShaderText(name, fallback_vp, GL_VERTEX_SHADER_ARB, postHeader, size, qfalse)) { return 0; } if (fragmentShader) { size = sizeof(fpCode); if (addHeader) { GLSL_GetShaderHeader(GL_FRAGMENT_SHADER_ARB, extra, fpCode, size); postHeader = &fpCode[strlen(fpCode)]; size -= strlen(fpCode); } else { postHeader = &fpCode[0]; } if (!GLSL_LoadGPUShaderText(name, fallback_fp, GL_FRAGMENT_SHADER_ARB, postHeader, size, qfalse)) { return 0; } } result = GLSL_InitGPUShader2(program, name, attribs, vpCode, fragmentShader ? fpCode : NULL, numUniforms); return result; } // intentionally deceiving the user here, not actually setting the names but getting their indexes. void GLSL_AddUniform(shaderProgram_t *program, int uniformNum, const char *name, int type) { GLint *uniforms = program->uniforms; uniforms[uniformNum] = qglGetUniformLocationARB(program->program, name); program->uniformTypes[uniformNum] = type; } void GLSL_EndUniforms(shaderProgram_t *program) { if (program->numUniforms) { int i, size; size = 0; for (i = 0; i < program->numUniforms; i++) { if (program->uniforms[i] != -1) { program->uniformBufferOffsets[i] = size; switch(program->uniformTypes[i]) { case GLSL_INT: size += sizeof(GLint); break; case GLSL_FLOAT: size += sizeof(GLfloat); break; case GLSL_FLOAT5: size += sizeof(vec_t) * 5; break; case GLSL_VEC2: size += sizeof(vec_t) * 2; break; case GLSL_VEC3: size += sizeof(vec_t) * 3; break; case GLSL_VEC4: size += sizeof(vec_t) * 4; break; case GLSL_MAT16: size += sizeof(vec_t) * 16; break; default: break; } } } program->uniformBuffer = ri.Malloc(size); } } void GLSL_FinishGPUShader(shaderProgram_t *program) { GLSL_ValidateProgram(program->program); GLSL_ShowProgramUniforms(program->program); GL_CheckErrors(); } void GLSL_SetUniformInt(shaderProgram_t *program, int uniformNum, GLint value) { GLint *uniforms = program->uniforms; GLint *compare = (GLint *)(program->uniformBuffer + program->uniformBufferOffsets[uniformNum]); if (uniforms[uniformNum] == -1) return; if (program->uniformTypes[uniformNum] != GLSL_INT) { ri.Printf( PRINT_WARNING, "GLSL_SetUniformInt: wrong type for uniform %i in program %s\n", uniformNum, program->name); return; } if (value == *compare) { return; } *compare = value; qglUniform1iARB(uniforms[uniformNum], value); } void GLSL_SetUniformFloat(shaderProgram_t *program, int uniformNum, GLfloat value) { GLint *uniforms = program->uniforms; GLfloat *compare = (GLfloat *)(program->uniformBuffer + program->uniformBufferOffsets[uniformNum]); if (uniforms[uniformNum] == -1) return; if (program->uniformTypes[uniformNum] != GLSL_FLOAT) { ri.Printf( PRINT_WARNING, "GLSL_SetUniformFloat: wrong type for uniform %i in program %s\n", uniformNum, program->name); return; } if (value == *compare) { return; } *compare = value; qglUniform1fARB(uniforms[uniformNum], value); } void GLSL_SetUniformVec2(shaderProgram_t *program, int uniformNum, const vec2_t v) { GLint *uniforms = program->uniforms; vec_t *compare = (float *)(program->uniformBuffer + program->uniformBufferOffsets[uniformNum]); if (uniforms[uniformNum] == -1) return; if (program->uniformTypes[uniformNum] != GLSL_VEC2) { ri.Printf( PRINT_WARNING, "GLSL_SetUniformVec2: wrong type for uniform %i in program %s\n", uniformNum, program->name); return; } if (v[0] == compare[0] && v[1] == compare[1]) { return; } compare[0] = v[0]; compare[1] = v[1]; qglUniform2fARB(uniforms[uniformNum], v[0], v[1]); } void GLSL_SetUniformVec3(shaderProgram_t *program, int uniformNum, const vec3_t v) { GLint *uniforms = program->uniforms; vec_t *compare = (float *)(program->uniformBuffer + program->uniformBufferOffsets[uniformNum]); if (uniforms[uniformNum] == -1) return; if (program->uniformTypes[uniformNum] != GLSL_VEC3) { ri.Printf( PRINT_WARNING, "GLSL_SetUniformVec3: wrong type for uniform %i in program %s\n", uniformNum, program->name); return; } if (VectorCompare(v, compare)) { return; } VectorCopy(v, compare); qglUniform3fARB(uniforms[uniformNum], v[0], v[1], v[2]); } void GLSL_SetUniformVec4(shaderProgram_t *program, int uniformNum, const vec4_t v) { GLint *uniforms = program->uniforms; vec_t *compare = (float *)(program->uniformBuffer + program->uniformBufferOffsets[uniformNum]); if (uniforms[uniformNum] == -1) return; if (program->uniformTypes[uniformNum] != GLSL_VEC4) { ri.Printf( PRINT_WARNING, "GLSL_SetUniformVec4: wrong type for uniform %i in program %s\n", uniformNum, program->name); return; } if (VectorCompare4(v, compare)) { return; } VectorCopy4(v, compare); qglUniform4fARB(uniforms[uniformNum], v[0], v[1], v[2], v[3]); } void GLSL_SetUniformFloat5(shaderProgram_t *program, int uniformNum, const vec5_t v) { GLint *uniforms = program->uniforms; vec_t *compare = (float *)(program->uniformBuffer + program->uniformBufferOffsets[uniformNum]); if (uniforms[uniformNum] == -1) { ri.Printf( PRINT_ALL, "well shit.\n"); return; } if (program->uniformTypes[uniformNum] != GLSL_FLOAT5) { ri.Printf( PRINT_WARNING, "GLSL_SetUniformFloat5: wrong type for uniform %i in program %s\n", uniformNum, program->name); return; } if (VectorCompare5(v, compare)) { return; } VectorCopy5(v, compare); qglUniform1fvARB(uniforms[uniformNum], 5, v); } void GLSL_SetUniformMatrix16(shaderProgram_t *program, int uniformNum, const matrix_t matrix) { GLint *uniforms = program->uniforms; vec_t *compare = (float *)(program->uniformBuffer + program->uniformBufferOffsets[uniformNum]); if (uniforms[uniformNum] == -1) return; if (program->uniformTypes[uniformNum] != GLSL_MAT16) { ri.Printf( PRINT_WARNING, "GLSL_SetUniformMatrix16: wrong type for uniform %i in program %s\n", uniformNum, program->name); return; } if (Matrix16Compare(matrix, compare)) { return; } Matrix16Copy(matrix, compare); qglUniformMatrix4fvARB(uniforms[uniformNum], 1, GL_FALSE, matrix); } void GLSL_DeleteGPUShader(shaderProgram_t *program) { if(program->program) { if (program->vertexShader) { qglDetachObjectARB(program->program, program->vertexShader); qglDeleteObjectARB(program->vertexShader); } if (program->fragmentShader) { qglDetachObjectARB(program->program, program->fragmentShader); qglDeleteObjectARB(program->fragmentShader); } qglDeleteObjectARB(program->program); if (program->uniforms) { ri.Free(program->uniforms); } if (program->uniformTypes) { ri.Free(program->uniformTypes); } if (program->uniformBuffer) { ri.Free(program->uniformBuffer); } if (program->uniformBufferOffsets) { ri.Free(program->uniformBufferOffsets); } Com_Memset(program, 0, sizeof(*program)); } } void GLSL_InitGPUShaders(void) { int startTime, endTime; int i; char extradefines[1024]; int attribs; int numGenShaders = 0, numLightShaders = 0, numEtcShaders = 0; ri.Printf(PRINT_ALL, "------- GLSL_InitGPUShaders -------\n"); // make sure the render thread is stopped R_SyncRenderThread(); startTime = ri.Milliseconds(); for (i = 0; i < GENERICDEF_COUNT; i++) { attribs = ATTR_POSITION | ATTR_TEXCOORD | ATTR_LIGHTCOORD | ATTR_NORMAL | ATTR_COLOR; extradefines[0] = '\0'; if (i & GENERICDEF_USE_DEFORM_VERTEXES) Q_strcat(extradefines, 1024, "#define USE_DEFORM_VERTEXES\n"); if (i & GENERICDEF_USE_TCGEN) Q_strcat(extradefines, 1024, "#define USE_TCGEN\n"); if (i & GENERICDEF_USE_VERTEX_ANIMATION) { Q_strcat(extradefines, 1024, "#define USE_VERTEX_ANIMATION\n"); attribs |= ATTR_POSITION2 | ATTR_NORMAL2; } if (i & GENERICDEF_USE_FOG) Q_strcat(extradefines, 1024, "#define USE_FOG\n"); if (i & GENERICDEF_USE_RGBAGEN) Q_strcat(extradefines, 1024, "#define USE_RGBAGEN\n"); if (i & GENERICDEF_USE_LIGHTMAP) Q_strcat(extradefines, 1024, "#define USE_LIGHTMAP\n"); if (r_hdr->integer && !(glRefConfig.textureFloat && glRefConfig.halfFloatPixel)) Q_strcat(extradefines, 1024, "#define RGBE_LIGHTMAP\n"); if (!GLSL_InitGPUShader(&tr.genericShader[i], "generic", attribs, qtrue, extradefines, qtrue, fallbackGenericShader_vp, fallbackGenericShader_fp, GENERIC_UNIFORM_COUNT)) { ri.Error(ERR_FATAL, "Could not load generic shader!\n"); } // There's actually no need to filter these out, since they'll // redirect to -1 if nonexistent, but it's more understandable this way. GLSL_AddUniform(&tr.genericShader[i], GENERIC_UNIFORM_MODELVIEWPROJECTIONMATRIX, "u_ModelViewProjectionMatrix", GLSL_MAT16); GLSL_AddUniform(&tr.genericShader[i], GENERIC_UNIFORM_BASECOLOR, "u_BaseColor", GLSL_VEC4); GLSL_AddUniform(&tr.genericShader[i], GENERIC_UNIFORM_VERTCOLOR, "u_VertColor", GLSL_VEC4); if (i & GENERICDEF_USE_RGBAGEN) { GLSL_AddUniform(&tr.genericShader[i], GENERIC_UNIFORM_COLORGEN, "u_ColorGen", GLSL_INT); GLSL_AddUniform(&tr.genericShader[i], GENERIC_UNIFORM_ALPHAGEN, "u_AlphaGen", GLSL_INT); GLSL_AddUniform(&tr.genericShader[i], GENERIC_UNIFORM_AMBIENTLIGHT, "u_AmbientLight", GLSL_VEC3); GLSL_AddUniform(&tr.genericShader[i], GENERIC_UNIFORM_DIRECTEDLIGHT, "u_DirectedLight", GLSL_VEC3); GLSL_AddUniform(&tr.genericShader[i], GENERIC_UNIFORM_LIGHTORIGIN, "u_LightOrigin", GLSL_VEC4); GLSL_AddUniform(&tr.genericShader[i], GENERIC_UNIFORM_PORTALRANGE, "u_PortalRange", GLSL_FLOAT); } if (i & GENERICDEF_USE_TCGEN) { GLSL_AddUniform(&tr.genericShader[i], GENERIC_UNIFORM_TCGEN0, "u_TCGen0", GLSL_INT); GLSL_AddUniform(&tr.genericShader[i], GENERIC_UNIFORM_TCGEN0VECTOR0, "u_TCGen0Vector0", GLSL_VEC3); GLSL_AddUniform(&tr.genericShader[i], GENERIC_UNIFORM_TCGEN0VECTOR1, "u_TCGen0Vector1", GLSL_VEC3); } if (i & GENERICDEF_USE_FOG) { GLSL_AddUniform(&tr.genericShader[i], GENERIC_UNIFORM_FOGCOLORMASK, "u_FogColorMask", GLSL_VEC4); GLSL_AddUniform(&tr.genericShader[i], GENERIC_UNIFORM_FOGDISTANCE, "u_FogDistance", GLSL_VEC4); GLSL_AddUniform(&tr.genericShader[i], GENERIC_UNIFORM_FOGDEPTH, "u_FogDepth", GLSL_VEC4); GLSL_AddUniform(&tr.genericShader[i], GENERIC_UNIFORM_FOGEYET, "u_FogEyeT", GLSL_FLOAT); } if (i & GENERICDEF_USE_DEFORM_VERTEXES) { GLSL_AddUniform(&tr.genericShader[i], GENERIC_UNIFORM_DEFORMGEN, "u_DeformGen", GLSL_INT); GLSL_AddUniform(&tr.genericShader[i], GENERIC_UNIFORM_DEFORMPARAMS, "u_DeformParams", GLSL_FLOAT5); } GLSL_AddUniform(&tr.genericShader[i], GENERIC_UNIFORM_TIME, "u_Time", GLSL_FLOAT); GLSL_AddUniform(&tr.genericShader[i], GENERIC_UNIFORM_VIEWORIGIN, "u_ViewOrigin", GLSL_VEC3); GLSL_AddUniform(&tr.genericShader[i], GENERIC_UNIFORM_DIFFUSETEXMATRIX, "u_DiffuseTexMatrix", GLSL_MAT16); GLSL_AddUniform(&tr.genericShader[i], GENERIC_UNIFORM_TEXTURE1ENV, "u_Texture1Env", GLSL_INT); GLSL_AddUniform(&tr.genericShader[i], GENERIC_UNIFORM_DIFFUSEMAP, "u_DiffuseMap", GLSL_INT); GLSL_AddUniform(&tr.genericShader[i], GENERIC_UNIFORM_LIGHTMAP, "u_LightMap", GLSL_INT); if (i & GENERICDEF_USE_VERTEX_ANIMATION) { GLSL_AddUniform(&tr.genericShader[i], GENERIC_UNIFORM_VERTEXLERP, "u_VertexLerp", GLSL_FLOAT); } GLSL_EndUniforms(&tr.genericShader[i]); qglUseProgramObjectARB(tr.genericShader[i].program); GLSL_SetUniformInt(&tr.genericShader[i], GENERIC_UNIFORM_DIFFUSEMAP, TB_DIFFUSEMAP); GLSL_SetUniformInt(&tr.genericShader[i], GENERIC_UNIFORM_LIGHTMAP, TB_LIGHTMAP); qglUseProgramObjectARB(0); GLSL_FinishGPUShader(&tr.genericShader[i]); numGenShaders++; } attribs = ATTR_POSITION | ATTR_TEXCOORD; if (!GLSL_InitGPUShader(&tr.textureColorShader, "texturecolor", attribs, qtrue, NULL, qfalse, fallbackTextureColorShader_vp, fallbackTextureColorShader_fp, TEXTURECOLOR_UNIFORM_COUNT)) { ri.Error(ERR_FATAL, "Could not load texturecolor shader!\n"); } GLSL_AddUniform(&tr.textureColorShader, TEXTURECOLOR_UNIFORM_MODELVIEWPROJECTIONMATRIX, "u_ModelViewProjectionMatrix", GLSL_MAT16); GLSL_AddUniform(&tr.textureColorShader, TEXTURECOLOR_UNIFORM_COLOR, "u_Color", GLSL_VEC4); GLSL_AddUniform(&tr.textureColorShader, TEXTURECOLOR_UNIFORM_TEXTUREMAP, "u_DiffuseMap", GLSL_INT); GLSL_EndUniforms(&tr.textureColorShader); qglUseProgramObjectARB(tr.textureColorShader.program); GLSL_SetUniformInt(&tr.textureColorShader, TEXTURECOLOR_UNIFORM_TEXTUREMAP, TB_DIFFUSEMAP); qglUseProgramObjectARB(0); GLSL_FinishGPUShader(&tr.textureColorShader); numEtcShaders++; attribs = ATTR_POSITION | ATTR_POSITION2 | ATTR_NORMAL | ATTR_NORMAL2 | ATTR_TEXCOORD; if (!GLSL_InitGPUShader(&tr.fogShader, "fogpass", attribs, qtrue, NULL, qtrue, fallbackFogPassShader_vp, fallbackFogPassShader_fp, FOGPASS_UNIFORM_COUNT)) { ri.Error(ERR_FATAL, "Could not load fogpass shader!\n"); } GLSL_AddUniform(&tr.fogShader, FOGPASS_UNIFORM_FOGDISTANCE, "u_FogDistance", GLSL_VEC4); GLSL_AddUniform(&tr.fogShader, FOGPASS_UNIFORM_FOGDEPTH, "u_FogDepth", GLSL_VEC4); GLSL_AddUniform(&tr.fogShader, FOGPASS_UNIFORM_FOGEYET, "u_FogEyeT", GLSL_FLOAT); GLSL_AddUniform(&tr.fogShader, FOGPASS_UNIFORM_DEFORMGEN, "u_DeformGen", GLSL_INT); GLSL_AddUniform(&tr.fogShader, FOGPASS_UNIFORM_DEFORMPARAMS, "u_DeformParams", GLSL_FLOAT5); GLSL_AddUniform(&tr.fogShader, FOGPASS_UNIFORM_TIME, "u_Time", GLSL_FLOAT); GLSL_AddUniform(&tr.fogShader, FOGPASS_UNIFORM_COLOR, "u_Color", GLSL_VEC4); GLSL_AddUniform(&tr.fogShader, FOGPASS_UNIFORM_MODELVIEWPROJECTIONMATRIX, "u_ModelViewProjectionMatrix", GLSL_MAT16); GLSL_AddUniform(&tr.fogShader, FOGPASS_UNIFORM_VERTEXLERP, "u_VertexLerp", GLSL_FLOAT); GLSL_EndUniforms(&tr.fogShader); GLSL_FinishGPUShader(&tr.fogShader); numEtcShaders++; attribs = ATTR_POSITION | ATTR_NORMAL | ATTR_TEXCOORD; if (!GLSL_InitGPUShader(&tr.dlightallShader, "dlight", attribs, qtrue, NULL, qtrue, fallbackDlightShader_vp, fallbackDlightShader_fp, DLIGHT_UNIFORM_COUNT)) { ri.Error(ERR_FATAL, "Could not load dlight shader!\n"); } GLSL_AddUniform(&tr.dlightallShader, DLIGHT_UNIFORM_DLIGHTINFO, "u_DlightInfo", GLSL_VEC4); GLSL_AddUniform(&tr.dlightallShader, DLIGHT_UNIFORM_DEFORMGEN, "u_DeformGen", GLSL_INT); GLSL_AddUniform(&tr.dlightallShader, DLIGHT_UNIFORM_DEFORMPARAMS, "u_DeformParams", GLSL_FLOAT5); GLSL_AddUniform(&tr.dlightallShader, DLIGHT_UNIFORM_TIME, "u_Time", GLSL_FLOAT); GLSL_AddUniform(&tr.dlightallShader, DLIGHT_UNIFORM_COLOR, "u_Color", GLSL_VEC4); GLSL_AddUniform(&tr.dlightallShader, DLIGHT_UNIFORM_MODELVIEWPROJECTIONMATRIX, "u_ModelViewProjectionMatrix", GLSL_MAT16); GLSL_EndUniforms(&tr.dlightallShader); qglUseProgramObjectARB(tr.dlightallShader.program); GLSL_SetUniformInt(&tr.dlightallShader, DLIGHT_UNIFORM_DIFFUSEMAP, TB_DIFFUSEMAP); qglUseProgramObjectARB(0); GLSL_FinishGPUShader(&tr.dlightallShader); numEtcShaders++; for (i = 0; i < LIGHTDEF_COUNT; i++) { // skip impossible combos if ((i & LIGHTDEF_USE_NORMALMAP) && !r_normalMapping->integer) continue; if ((i & LIGHTDEF_USE_PARALLAXMAP) && !r_parallaxMapping->integer) continue; if ((i & LIGHTDEF_USE_SPECULARMAP) && !r_specularMapping->integer) continue; if ((i & LIGHTDEF_USE_DELUXEMAP) && !r_deluxeMapping->integer) continue; if (!((i & LIGHTDEF_LIGHTTYPE_MASK) == LIGHTDEF_USE_LIGHTMAP) && (i & LIGHTDEF_USE_DELUXEMAP)) continue; if (!(i & LIGHTDEF_USE_NORMALMAP) && (i & LIGHTDEF_USE_PARALLAXMAP)) continue; if (!((i & LIGHTDEF_LIGHTTYPE_MASK) == LIGHTDEF_USE_LIGHT_VECTOR)) { if (i & LIGHTDEF_USE_SHADOWMAP) continue; } attribs = ATTR_POSITION | ATTR_TEXCOORD | ATTR_COLOR | ATTR_NORMAL; extradefines[0] = '\0'; if (r_normalAmbient->value > 0.003f) Q_strcat(extradefines, 1024, va("#define r_normalAmbient %f\n", r_normalAmbient->value)); if (r_dlightMode->integer >= 2) Q_strcat(extradefines, 1024, "#define USE_SHADOWMAP\n"); if (1) { Q_strcat(extradefines, 1024, "#define SWIZZLE_NORMALMAP\n"); } if (r_hdr->integer && !(glRefConfig.textureFloat && glRefConfig.halfFloatPixel)) Q_strcat(extradefines, 1024, "#define RGBE_LIGHTMAP\n"); if (i & LIGHTDEF_LIGHTTYPE_MASK) { Q_strcat(extradefines, 1024, "#define USE_LIGHT\n"); if (r_normalMapping->integer == 0 && r_specularMapping->integer == 0) Q_strcat(extradefines, 1024, "#define USE_FAST_LIGHT\n"); switch (i & LIGHTDEF_LIGHTTYPE_MASK) { case LIGHTDEF_USE_LIGHTMAP: Q_strcat(extradefines, 1024, "#define USE_LIGHTMAP\n"); attribs |= ATTR_LIGHTCOORD | ATTR_LIGHTDIRECTION; break; case LIGHTDEF_USE_LIGHT_VECTOR: Q_strcat(extradefines, 1024, "#define USE_LIGHT_VECTOR\n"); break; case LIGHTDEF_USE_LIGHT_VERTEX: Q_strcat(extradefines, 1024, "#define USE_LIGHT_VERTEX\n"); attribs |= ATTR_LIGHTDIRECTION; break; default: break; } } if ((i & LIGHTDEF_USE_NORMALMAP) && r_normalMapping->integer) { Q_strcat(extradefines, 1024, "#define USE_NORMALMAP\n"); if (r_normalMapping->integer == 2) Q_strcat(extradefines, 1024, "#define USE_OREN_NAYAR\n"); if (r_normalMapping->integer == 3) Q_strcat(extradefines, 1024, "#define USE_TRIACE_OREN_NAYAR\n"); #ifdef USE_VERT_TANGENT_SPACE Q_strcat(extradefines, 1024, "#define USE_VERT_TANGENT_SPACE\n"); attribs |= ATTR_TANGENT | ATTR_BITANGENT; #endif } if ((i & LIGHTDEF_USE_SPECULARMAP) && r_specularMapping->integer) { Q_strcat(extradefines, 1024, "#define USE_SPECULARMAP\n"); switch (r_specularMapping->integer) { case 1: default: Q_strcat(extradefines, 1024, "#define USE_TRIACE\n"); break; case 2: Q_strcat(extradefines, 1024, "#define USE_BLINN\n"); break; case 3: Q_strcat(extradefines, 1024, "#define USE_COOK_TORRANCE\n"); break; case 4: Q_strcat(extradefines, 1024, "#define USE_TORRANCE_SPARROW\n"); break; } } if ((i & LIGHTDEF_USE_DELUXEMAP) && r_deluxeMapping->integer) Q_strcat(extradefines, 1024, "#define USE_DELUXEMAP\n"); if ((i & LIGHTDEF_USE_PARALLAXMAP) && !(i & LIGHTDEF_ENTITY) && r_parallaxMapping->integer) Q_strcat(extradefines, 1024, "#define USE_PARALLAXMAP\n"); if (i & LIGHTDEF_USE_SHADOWMAP) Q_strcat(extradefines, 1024, "#define USE_SHADOWMAP\n"); if (i & LIGHTDEF_TCGEN_ENVIRONMENT) Q_strcat(extradefines, 1024, "#define TCGEN_ENVIRONMENT\n"); if (i & LIGHTDEF_ENTITY) { Q_strcat(extradefines, 1024, "#define USE_VERTEX_ANIMATION\n#define USE_MODELMATRIX\n"); attribs |= ATTR_POSITION2 | ATTR_NORMAL2; #ifdef USE_VERT_TANGENT_SPACE if (i & LIGHTDEF_USE_NORMALMAP && r_normalMapping->integer) { attribs |= ATTR_TANGENT2 | ATTR_BITANGENT2; } #endif } if (!GLSL_InitGPUShader(&tr.lightallShader[i], "lightall", attribs, qtrue, extradefines, qtrue, fallbackLightallShader_vp, fallbackLightallShader_fp, GENERIC_UNIFORM_COUNT)) { ri.Error(ERR_FATAL, "Could not load lightall shader!\n"); } GLSL_AddUniform(&tr.lightallShader[i], GENERIC_UNIFORM_MODELVIEWPROJECTIONMATRIX, "u_ModelViewProjectionMatrix", GLSL_MAT16); GLSL_AddUniform(&tr.lightallShader[i], GENERIC_UNIFORM_MODELMATRIX, "u_ModelMatrix", GLSL_MAT16); GLSL_AddUniform(&tr.lightallShader[i], GENERIC_UNIFORM_DIFFUSETEXMATRIX, "u_DiffuseTexMatrix", GLSL_MAT16); //GLSL_AddUniform(&tr.lightallShader[i], GENERIC_UNIFORM_NORMALTEXMATRIX, "u_NormalTexMatrix", GLSL_MAT16); //GLSL_AddUniform(&tr.lightallShader[i], GENERIC_UNIFORM_SPECULARTEXMATRIX, "u_SpecularTexMatrix", GLSL_MAT16); GLSL_AddUniform(&tr.lightallShader[i], GENERIC_UNIFORM_VIEWORIGIN, "u_ViewOrigin", GLSL_VEC3); GLSL_AddUniform(&tr.lightallShader[i], GENERIC_UNIFORM_DIFFUSEMAP, "u_DiffuseMap", GLSL_INT); GLSL_AddUniform(&tr.lightallShader[i], GENERIC_UNIFORM_LIGHTMAP, "u_LightMap", GLSL_INT); GLSL_AddUniform(&tr.lightallShader[i], GENERIC_UNIFORM_NORMALMAP, "u_NormalMap", GLSL_INT); GLSL_AddUniform(&tr.lightallShader[i], GENERIC_UNIFORM_DELUXEMAP, "u_DeluxeMap", GLSL_INT); GLSL_AddUniform(&tr.lightallShader[i], GENERIC_UNIFORM_SPECULARMAP, "u_SpecularMap", GLSL_INT); GLSL_AddUniform(&tr.lightallShader[i], GENERIC_UNIFORM_SHADOWMAP, "u_ShadowMap", GLSL_INT); GLSL_AddUniform(&tr.lightallShader[i], GENERIC_UNIFORM_AMBIENTLIGHT, "u_AmbientLight", GLSL_VEC3); GLSL_AddUniform(&tr.lightallShader[i], GENERIC_UNIFORM_DIRECTEDLIGHT, "u_DirectedLight", GLSL_VEC3); GLSL_AddUniform(&tr.lightallShader[i], GENERIC_UNIFORM_LIGHTORIGIN, "u_LightOrigin", GLSL_VEC4); GLSL_AddUniform(&tr.lightallShader[i], GENERIC_UNIFORM_LIGHTRADIUS, "u_LightRadius", GLSL_FLOAT); GLSL_AddUniform(&tr.lightallShader[i], GENERIC_UNIFORM_MATERIALINFO, "u_MaterialInfo", GLSL_VEC2); GLSL_AddUniform(&tr.lightallShader[i], GENERIC_UNIFORM_BASECOLOR, "u_BaseColor", GLSL_VEC4); GLSL_AddUniform(&tr.lightallShader[i], GENERIC_UNIFORM_VERTCOLOR, "u_VertColor", GLSL_VEC4); GLSL_AddUniform(&tr.lightallShader[i], GENERIC_UNIFORM_VERTEXLERP, "u_VertexLerp", GLSL_FLOAT); GLSL_EndUniforms(&tr.lightallShader[i]); qglUseProgramObjectARB(tr.lightallShader[i].program); GLSL_SetUniformInt(&tr.lightallShader[i], GENERIC_UNIFORM_DIFFUSEMAP, TB_DIFFUSEMAP); GLSL_SetUniformInt(&tr.lightallShader[i], GENERIC_UNIFORM_LIGHTMAP, TB_LIGHTMAP); GLSL_SetUniformInt(&tr.lightallShader[i], GENERIC_UNIFORM_NORMALMAP, TB_NORMALMAP); GLSL_SetUniformInt(&tr.lightallShader[i], GENERIC_UNIFORM_DELUXEMAP, TB_DELUXEMAP); GLSL_SetUniformInt(&tr.lightallShader[i], GENERIC_UNIFORM_SPECULARMAP, TB_SPECULARMAP); GLSL_SetUniformInt(&tr.lightallShader[i], GENERIC_UNIFORM_SHADOWMAP, TB_SHADOWMAP); qglUseProgramObjectARB(0); GLSL_FinishGPUShader(&tr.lightallShader[i]); numLightShaders++; } attribs = ATTR_POSITION | ATTR_POSITION2 | ATTR_NORMAL | ATTR_NORMAL2 | ATTR_TEXCOORD; extradefines[0] = '\0'; if (!GLSL_InitGPUShader(&tr.shadowmapShader, "shadowfill", attribs, qtrue, extradefines, qtrue, fallbackShadowfillShader_vp, fallbackShadowfillShader_fp, GENERIC_UNIFORM_COUNT)) { ri.Error(ERR_FATAL, "Could not load shadowfill shader!\n"); } GLSL_AddUniform(&tr.shadowmapShader, GENERIC_UNIFORM_DEFORMGEN, "u_DeformGen", GLSL_INT); GLSL_AddUniform(&tr.shadowmapShader, GENERIC_UNIFORM_DEFORMPARAMS, "u_DeformParams", GLSL_FLOAT5); GLSL_AddUniform(&tr.shadowmapShader, GENERIC_UNIFORM_TIME, "u_Time", GLSL_FLOAT); GLSL_AddUniform(&tr.shadowmapShader, GENERIC_UNIFORM_MODELVIEWPROJECTIONMATRIX, "u_ModelViewProjectionMatrix", GLSL_MAT16); GLSL_AddUniform(&tr.shadowmapShader, GENERIC_UNIFORM_MODELMATRIX, "u_ModelMatrix", GLSL_MAT16); GLSL_AddUniform(&tr.shadowmapShader, GENERIC_UNIFORM_VERTEXLERP, "u_VertexLerp", GLSL_FLOAT); GLSL_AddUniform(&tr.shadowmapShader, GENERIC_UNIFORM_LIGHTORIGIN, "u_LightOrigin", GLSL_VEC4); GLSL_AddUniform(&tr.shadowmapShader, GENERIC_UNIFORM_LIGHTRADIUS, "u_LightRadius", GLSL_FLOAT); GLSL_EndUniforms(&tr.shadowmapShader); GLSL_FinishGPUShader(&tr.shadowmapShader); numEtcShaders++; attribs = ATTR_POSITION | ATTR_NORMAL; extradefines[0] = '\0'; Q_strcat(extradefines, 1024, "#define USE_PCF\n#define USE_DISCARD\n"); if (!GLSL_InitGPUShader(&tr.pshadowShader, "pshadow", attribs, qtrue, extradefines, qtrue, fallbackPshadowShader_vp, fallbackPshadowShader_fp, PSHADOW_UNIFORM_COUNT)) { ri.Error(ERR_FATAL, "Could not load pshadow shader!\n"); } GLSL_AddUniform(&tr.pshadowShader, PSHADOW_UNIFORM_MODELVIEWPROJECTIONMATRIX, "u_ModelViewProjectionMatrix", GLSL_MAT16); GLSL_AddUniform(&tr.pshadowShader, PSHADOW_UNIFORM_LIGHTFORWARD, "u_LightForward", GLSL_VEC3); GLSL_AddUniform(&tr.pshadowShader, PSHADOW_UNIFORM_LIGHTUP, "u_LightUp", GLSL_VEC3); GLSL_AddUniform(&tr.pshadowShader, PSHADOW_UNIFORM_LIGHTRIGHT, "u_LightRight", GLSL_VEC3); GLSL_AddUniform(&tr.pshadowShader, PSHADOW_UNIFORM_LIGHTORIGIN, "u_LightOrigin", GLSL_VEC4); GLSL_AddUniform(&tr.pshadowShader, PSHADOW_UNIFORM_LIGHTRADIUS, "u_LightRadius", GLSL_FLOAT); GLSL_EndUniforms(&tr.pshadowShader); qglUseProgramObjectARB(tr.pshadowShader.program); GLSL_SetUniformInt(&tr.pshadowShader, PSHADOW_UNIFORM_SHADOWMAP, TB_DIFFUSEMAP); qglUseProgramObjectARB(0); GLSL_FinishGPUShader(&tr.pshadowShader); numEtcShaders++; attribs = ATTR_POSITION | ATTR_TEXCOORD; extradefines[0] = '\0'; if (!GLSL_InitGPUShader(&tr.down4xShader, "down4x", attribs, qtrue, extradefines, qtrue, fallbackDown4xShader_vp, fallbackDown4xShader_fp, TEXTURECOLOR_UNIFORM_COUNT)) { ri.Error(ERR_FATAL, "Could not load down4x shader!\n"); } GLSL_AddUniform(&tr.down4xShader, TEXTURECOLOR_UNIFORM_MODELVIEWPROJECTIONMATRIX, "u_ModelViewProjectionMatrix", GLSL_MAT16); GLSL_AddUniform(&tr.down4xShader, TEXTURECOLOR_UNIFORM_INVTEXRES, "u_InvTexRes", GLSL_VEC2); GLSL_AddUniform(&tr.down4xShader, TEXTURECOLOR_UNIFORM_TEXTUREMAP, "u_TextureMap", GLSL_INT); GLSL_EndUniforms(&tr.down4xShader); qglUseProgramObjectARB(tr.down4xShader.program); GLSL_SetUniformInt(&tr.down4xShader, TEXTURECOLOR_UNIFORM_TEXTUREMAP, TB_DIFFUSEMAP); qglUseProgramObjectARB(0); GLSL_FinishGPUShader(&tr.down4xShader); numEtcShaders++; attribs = ATTR_POSITION | ATTR_TEXCOORD; extradefines[0] = '\0'; if (!GLSL_InitGPUShader(&tr.bokehShader, "bokeh", attribs, qtrue, extradefines, qtrue, fallbackBokehShader_vp, fallbackBokehShader_fp, TEXTURECOLOR_UNIFORM_COUNT)) { ri.Error(ERR_FATAL, "Could not load bokeh shader!\n"); } GLSL_AddUniform(&tr.bokehShader, TEXTURECOLOR_UNIFORM_MODELVIEWPROJECTIONMATRIX, "u_ModelViewProjectionMatrix", GLSL_MAT16); GLSL_AddUniform(&tr.bokehShader, TEXTURECOLOR_UNIFORM_INVTEXRES, "u_InvTexRes", GLSL_VEC2); GLSL_AddUniform(&tr.bokehShader, TEXTURECOLOR_UNIFORM_COLOR, "u_Color", GLSL_VEC4); GLSL_AddUniform(&tr.bokehShader, TEXTURECOLOR_UNIFORM_TEXTUREMAP, "u_TextureMap", GLSL_INT); GLSL_EndUniforms(&tr.bokehShader); qglUseProgramObjectARB(tr.bokehShader.program); GLSL_SetUniformInt(&tr.bokehShader, TEXTURECOLOR_UNIFORM_TEXTUREMAP, TB_DIFFUSEMAP); qglUseProgramObjectARB(0); GLSL_FinishGPUShader(&tr.bokehShader); numEtcShaders++; attribs = ATTR_POSITION | ATTR_TEXCOORD; extradefines[0] = '\0'; if (!GLSL_InitGPUShader(&tr.tonemapShader, "tonemap", attribs, qtrue, extradefines, qtrue, fallbackToneMapShader_vp, fallbackToneMapShader_fp, TEXTURECOLOR_UNIFORM_COUNT)) { ri.Error(ERR_FATAL, "Could not load tonemap shader!\n"); } GLSL_AddUniform(&tr.tonemapShader, TEXTURECOLOR_UNIFORM_MODELVIEWPROJECTIONMATRIX, "u_ModelViewProjectionMatrix", GLSL_MAT16); GLSL_AddUniform(&tr.tonemapShader, TEXTURECOLOR_UNIFORM_INVTEXRES, "u_InvTexRes", GLSL_VEC2); GLSL_AddUniform(&tr.tonemapShader, TEXTURECOLOR_UNIFORM_COLOR, "u_Color", GLSL_VEC4); GLSL_AddUniform(&tr.tonemapShader, TEXTURECOLOR_UNIFORM_AUTOEXPOSUREMINMAX, "u_AutoExposureMinMax", GLSL_VEC2); GLSL_AddUniform(&tr.tonemapShader, TEXTURECOLOR_UNIFORM_TONEMINAVGMAXLINEAR, "u_ToneMinAvgMaxLinear", GLSL_VEC3); GLSL_AddUniform(&tr.tonemapShader, TEXTURECOLOR_UNIFORM_TEXTUREMAP, "u_TextureMap", GLSL_INT); GLSL_AddUniform(&tr.tonemapShader, TEXTURECOLOR_UNIFORM_LEVELSMAP, "u_LevelsMap", GLSL_INT); GLSL_EndUniforms(&tr.tonemapShader); qglUseProgramObjectARB(tr.tonemapShader.program); GLSL_SetUniformInt(&tr.tonemapShader, TEXTURECOLOR_UNIFORM_TEXTUREMAP, TB_COLORMAP); GLSL_SetUniformInt(&tr.tonemapShader, TEXTURECOLOR_UNIFORM_LEVELSMAP, TB_LEVELSMAP); qglUseProgramObjectARB(0); GLSL_FinishGPUShader(&tr.tonemapShader); numEtcShaders++; for (i = 0; i < 2; i++) { attribs = ATTR_POSITION | ATTR_TEXCOORD; extradefines[0] = '\0'; if (!i) Q_strcat(extradefines, 1024, "#define FIRST_PASS\n"); if (!GLSL_InitGPUShader(&tr.calclevels4xShader[i], "calclevels4x", attribs, qtrue, extradefines, qtrue, fallbackCalcLevels4xShader_vp, fallbackCalcLevels4xShader_fp, TEXTURECOLOR_UNIFORM_COUNT)) { ri.Error(ERR_FATAL, "Could not load calclevels4x shader!\n"); } GLSL_AddUniform(&tr.calclevels4xShader[i], TEXTURECOLOR_UNIFORM_MODELVIEWPROJECTIONMATRIX, "u_ModelViewProjectionMatrix", GLSL_MAT16); GLSL_AddUniform(&tr.calclevels4xShader[i], TEXTURECOLOR_UNIFORM_INVTEXRES, "u_InvTexRes", GLSL_VEC2); GLSL_AddUniform(&tr.calclevels4xShader[i], TEXTURECOLOR_UNIFORM_COLOR, "u_Color", GLSL_VEC4); GLSL_AddUniform(&tr.calclevels4xShader[i], TEXTURECOLOR_UNIFORM_TEXTUREMAP, "u_TextureMap", GLSL_INT); GLSL_EndUniforms(&tr.calclevels4xShader[i]); qglUseProgramObjectARB(tr.calclevels4xShader[i].program); GLSL_SetUniformInt(&tr.calclevels4xShader[i], TEXTURECOLOR_UNIFORM_TEXTUREMAP, TB_DIFFUSEMAP); qglUseProgramObjectARB(0); GLSL_FinishGPUShader(&tr.calclevels4xShader[i]); numEtcShaders++; } attribs = ATTR_POSITION | ATTR_TEXCOORD; extradefines[0] = '\0'; if (r_shadowFilter->integer >= 1) Q_strcat(extradefines, 1024, "#define USE_SHADOW_FILTER\n"); if (r_shadowFilter->integer >= 2) Q_strcat(extradefines, 1024, "#define USE_SHADOW_FILTER2\n"); Q_strcat(extradefines, 1024, "#define USE_SHADOW_CASCADE\n"); Q_strcat(extradefines, 1024, va("#define r_shadowMapSize %d\n", r_shadowMapSize->integer)); Q_strcat(extradefines, 1024, va("#define r_shadowCascadeZFar %f\n", r_shadowCascadeZFar->value)); if (!GLSL_InitGPUShader(&tr.shadowmaskShader, "shadowmask", attribs, qtrue, extradefines, qtrue, fallbackShadowmaskShader_vp, fallbackShadowmaskShader_fp, SHADOWMASK_UNIFORM_COUNT)) { ri.Error(ERR_FATAL, "Could not load shadowmask shader!\n"); } GLSL_AddUniform(&tr.shadowmaskShader, SHADOWMASK_UNIFORM_SHADOWMVP, "u_ShadowMvp", GLSL_MAT16); GLSL_AddUniform(&tr.shadowmaskShader, SHADOWMASK_UNIFORM_SHADOWMVP2, "u_ShadowMvp2", GLSL_MAT16); GLSL_AddUniform(&tr.shadowmaskShader, SHADOWMASK_UNIFORM_SHADOWMVP3, "u_ShadowMvp3", GLSL_MAT16); GLSL_AddUniform(&tr.shadowmaskShader, SHADOWMASK_UNIFORM_VIEWORIGIN, "u_ViewOrigin", GLSL_VEC3); GLSL_AddUniform(&tr.shadowmaskShader, SHADOWMASK_UNIFORM_VIEWINFO, "u_ViewInfo", GLSL_VEC4); GLSL_AddUniform(&tr.shadowmaskShader, SHADOWMASK_UNIFORM_VIEWFORWARD,"u_ViewForward", GLSL_VEC3); GLSL_AddUniform(&tr.shadowmaskShader, SHADOWMASK_UNIFORM_VIEWLEFT, "u_ViewLeft", GLSL_VEC3); GLSL_AddUniform(&tr.shadowmaskShader, SHADOWMASK_UNIFORM_VIEWUP, "u_ViewUp", GLSL_VEC3); GLSL_AddUniform(&tr.shadowmaskShader, SHADOWMASK_UNIFORM_SCREENDEPTHMAP, "u_ScreenDepthMap", GLSL_INT); GLSL_AddUniform(&tr.shadowmaskShader, SHADOWMASK_UNIFORM_SHADOWMAP, "u_ShadowMap", GLSL_INT); GLSL_AddUniform(&tr.shadowmaskShader, SHADOWMASK_UNIFORM_SHADOWMAP2, "u_ShadowMap2", GLSL_INT); GLSL_AddUniform(&tr.shadowmaskShader, SHADOWMASK_UNIFORM_SHADOWMAP3, "u_ShadowMap3", GLSL_INT); GLSL_EndUniforms(&tr.shadowmaskShader); qglUseProgramObjectARB(tr.shadowmaskShader.program); GLSL_SetUniformInt(&tr.shadowmaskShader, SHADOWMASK_UNIFORM_SCREENDEPTHMAP, TB_COLORMAP); GLSL_SetUniformInt(&tr.shadowmaskShader, SHADOWMASK_UNIFORM_SHADOWMAP, TB_SHADOWMAP); GLSL_SetUniformInt(&tr.shadowmaskShader, SHADOWMASK_UNIFORM_SHADOWMAP2, TB_SHADOWMAP2); GLSL_SetUniformInt(&tr.shadowmaskShader, SHADOWMASK_UNIFORM_SHADOWMAP3, TB_SHADOWMAP3); qglUseProgramObjectARB(0); GLSL_FinishGPUShader(&tr.shadowmaskShader); numEtcShaders++; attribs = ATTR_POSITION | ATTR_TEXCOORD; extradefines[0] = '\0'; if (!GLSL_InitGPUShader(&tr.ssaoShader, "ssao", attribs, qtrue, extradefines, qtrue, fallbackSsaoShader_vp, fallbackSsaoShader_fp, SSAO_UNIFORM_COUNT)) { ri.Error(ERR_FATAL, "Could not load ssao shader!\n"); } GLSL_AddUniform(&tr.ssaoShader, SSAO_UNIFORM_VIEWINFO, "u_ViewInfo", GLSL_VEC4); GLSL_AddUniform(&tr.ssaoShader, SSAO_UNIFORM_SCREENDEPTHMAP, "u_ScreenDepthMap", GLSL_INT); GLSL_EndUniforms(&tr.ssaoShader); qglUseProgramObjectARB(tr.ssaoShader.program); GLSL_SetUniformInt(&tr.ssaoShader, SSAO_UNIFORM_SCREENDEPTHMAP, TB_COLORMAP); qglUseProgramObjectARB(0); GLSL_FinishGPUShader(&tr.ssaoShader); numEtcShaders++; for (i = 0; i < 2; i++) { attribs = ATTR_POSITION | ATTR_TEXCOORD; extradefines[0] = '\0'; if (i & 1) Q_strcat(extradefines, 1024, "#define USE_VERTICAL_BLUR\n"); else Q_strcat(extradefines, 1024, "#define USE_HORIZONTAL_BLUR\n"); if (!GLSL_InitGPUShader(&tr.depthBlurShader[i], "depthBlur", attribs, qtrue, extradefines, qtrue, fallbackDepthBlurShader_vp, fallbackDepthBlurShader_fp, DEPTHBLUR_UNIFORM_COUNT)) { ri.Error(ERR_FATAL, "Could not load depthBlur shader!\n"); } GLSL_AddUniform(&tr.depthBlurShader[i], DEPTHBLUR_UNIFORM_VIEWINFO, "u_ViewInfo", GLSL_VEC4); GLSL_AddUniform(&tr.depthBlurShader[i], DEPTHBLUR_UNIFORM_SCREENIMAGEMAP, "u_ScreenImageMap", GLSL_INT); GLSL_AddUniform(&tr.depthBlurShader[i], DEPTHBLUR_UNIFORM_SCREENDEPTHMAP, "u_ScreenDepthMap", GLSL_INT); GLSL_EndUniforms(&tr.depthBlurShader[i]); qglUseProgramObjectARB(tr.depthBlurShader[i].program); GLSL_SetUniformInt(&tr.depthBlurShader[i], DEPTHBLUR_UNIFORM_SCREENIMAGEMAP, TB_COLORMAP); GLSL_SetUniformInt(&tr.depthBlurShader[i], DEPTHBLUR_UNIFORM_SCREENDEPTHMAP, TB_LIGHTMAP); qglUseProgramObjectARB(0); GLSL_FinishGPUShader(&tr.depthBlurShader[i]); numEtcShaders++; } endTime = ri.Milliseconds(); ri.Printf(PRINT_ALL, "loaded %i GLSL shaders (%i gen %i light %i etc) in %5.2f seconds\n", numGenShaders + numLightShaders + numEtcShaders, numGenShaders, numLightShaders, numEtcShaders, (endTime - startTime) / 1000.0); if (0) { GLSL_LoadGPUShaderText("Generic", NULL, GL_VERTEX_SHADER_ARB, NULL, 0, qtrue); GLSL_LoadGPUShaderText("Generic", NULL, GL_FRAGMENT_SHADER_ARB, NULL, 0, qtrue); GLSL_LoadGPUShaderText("TextureColor", NULL, GL_VERTEX_SHADER_ARB, NULL, 0, qtrue); GLSL_LoadGPUShaderText("TextureColor", NULL, GL_FRAGMENT_SHADER_ARB, NULL, 0, qtrue); GLSL_LoadGPUShaderText("FogPass", NULL, GL_VERTEX_SHADER_ARB, NULL, 0, qtrue); GLSL_LoadGPUShaderText("FogPass", NULL, GL_FRAGMENT_SHADER_ARB, NULL, 0, qtrue); GLSL_LoadGPUShaderText("Dlight", NULL, GL_VERTEX_SHADER_ARB, NULL, 0, qtrue); GLSL_LoadGPUShaderText("Dlight", NULL, GL_FRAGMENT_SHADER_ARB, NULL, 0, qtrue); GLSL_LoadGPUShaderText("Lightall", NULL, GL_VERTEX_SHADER_ARB, NULL, 0, qtrue); GLSL_LoadGPUShaderText("Lightall", NULL, GL_FRAGMENT_SHADER_ARB, NULL, 0, qtrue); GLSL_LoadGPUShaderText("Shadowfill", NULL, GL_VERTEX_SHADER_ARB, NULL, 0, qtrue); GLSL_LoadGPUShaderText("Shadowfill", NULL, GL_FRAGMENT_SHADER_ARB, NULL, 0, qtrue); GLSL_LoadGPUShaderText("Pshadow", NULL, GL_VERTEX_SHADER_ARB, NULL, 0, qtrue); GLSL_LoadGPUShaderText("Pshadow", NULL, GL_FRAGMENT_SHADER_ARB, NULL, 0, qtrue); GLSL_LoadGPUShaderText("Down4x", NULL, GL_VERTEX_SHADER_ARB, NULL, 0, qtrue); GLSL_LoadGPUShaderText("Down4x", NULL, GL_FRAGMENT_SHADER_ARB, NULL, 0, qtrue); GLSL_LoadGPUShaderText("Bokeh", NULL, GL_VERTEX_SHADER_ARB, NULL, 0, qtrue); GLSL_LoadGPUShaderText("Bokeh", NULL, GL_FRAGMENT_SHADER_ARB, NULL, 0, qtrue); GLSL_LoadGPUShaderText("ToneMap", NULL, GL_VERTEX_SHADER_ARB, NULL, 0, qtrue); GLSL_LoadGPUShaderText("ToneMap", NULL, GL_FRAGMENT_SHADER_ARB, NULL, 0, qtrue); GLSL_LoadGPUShaderText("CalcLevels4x", NULL, GL_VERTEX_SHADER_ARB, NULL, 0, qtrue); GLSL_LoadGPUShaderText("CalcLevels4x", NULL, GL_FRAGMENT_SHADER_ARB, NULL, 0, qtrue); GLSL_LoadGPUShaderText("Shadowmask", NULL, GL_VERTEX_SHADER_ARB, NULL, 0, qtrue); GLSL_LoadGPUShaderText("Shadowmask", NULL, GL_FRAGMENT_SHADER_ARB, NULL, 0, qtrue); GLSL_LoadGPUShaderText("Ssao", NULL, GL_VERTEX_SHADER_ARB, NULL, 0, qtrue); GLSL_LoadGPUShaderText("Ssao", NULL, GL_FRAGMENT_SHADER_ARB, NULL, 0, qtrue); GLSL_LoadGPUShaderText("DepthBlur", NULL, GL_VERTEX_SHADER_ARB, NULL, 0, qtrue); GLSL_LoadGPUShaderText("DepthBlur", NULL, GL_FRAGMENT_SHADER_ARB, NULL, 0, qtrue); } } void GLSL_ShutdownGPUShaders(void) { int i; ri.Printf(PRINT_ALL, "------- GLSL_ShutdownGPUShaders -------\n"); qglDisableVertexAttribArrayARB(ATTR_INDEX_TEXCOORD0); qglDisableVertexAttribArrayARB(ATTR_INDEX_TEXCOORD1); qglDisableVertexAttribArrayARB(ATTR_INDEX_POSITION); qglDisableVertexAttribArrayARB(ATTR_INDEX_POSITION2); qglDisableVertexAttribArrayARB(ATTR_INDEX_NORMAL); #ifdef USE_VERT_TANGENT_SPACE qglDisableVertexAttribArrayARB(ATTR_INDEX_TANGENT); qglDisableVertexAttribArrayARB(ATTR_INDEX_BITANGENT); #endif qglDisableVertexAttribArrayARB(ATTR_INDEX_NORMAL2); #ifdef USE_VERT_TANGENT_SPACE qglDisableVertexAttribArrayARB(ATTR_INDEX_TANGENT2); qglDisableVertexAttribArrayARB(ATTR_INDEX_BITANGENT2); #endif qglDisableVertexAttribArrayARB(ATTR_INDEX_COLOR); qglDisableVertexAttribArrayARB(ATTR_INDEX_LIGHTDIRECTION); GLSL_BindNullProgram(); for ( i = 0; i < GENERICDEF_COUNT; i++) GLSL_DeleteGPUShader(&tr.genericShader[i]); GLSL_DeleteGPUShader(&tr.textureColorShader); GLSL_DeleteGPUShader(&tr.fogShader); GLSL_DeleteGPUShader(&tr.dlightallShader); for ( i = 0; i < LIGHTDEF_COUNT; i++) GLSL_DeleteGPUShader(&tr.lightallShader[i]); GLSL_DeleteGPUShader(&tr.shadowmapShader); GLSL_DeleteGPUShader(&tr.pshadowShader); GLSL_DeleteGPUShader(&tr.down4xShader); for ( i = 0; i < 2; i++) GLSL_DeleteGPUShader(&tr.calclevels4xShader[i]); glState.currentProgram = 0; qglUseProgramObjectARB(0); } void GLSL_BindProgram(shaderProgram_t * program) { if(!program) { GLSL_BindNullProgram(); return; } if(r_logFile->integer) { // don't just call LogComment, or we will get a call to va() every frame! GLimp_LogComment(va("--- GL_BindProgram( %s ) ---\n", program->name)); } if(glState.currentProgram != program) { qglUseProgramObjectARB(program->program); glState.currentProgram = program; backEnd.pc.c_glslShaderBinds++; } } void GLSL_BindNullProgram(void) { if(r_logFile->integer) { GLimp_LogComment("--- GL_BindNullProgram ---\n"); } if(glState.currentProgram) { qglUseProgramObjectARB(0); glState.currentProgram = NULL; } } void GLSL_VertexAttribsState(uint32_t stateBits) { uint32_t diff; GLSL_VertexAttribPointers(stateBits); diff = stateBits ^ glState.vertexAttribsState; if(!diff) { return; } if(diff & ATTR_POSITION) { if(stateBits & ATTR_POSITION) { GLimp_LogComment("qglEnableVertexAttribArrayARB( ATTR_INDEX_POSITION )\n"); qglEnableVertexAttribArrayARB(ATTR_INDEX_POSITION); } else { GLimp_LogComment("qglDisableVertexAttribArrayARB( ATTR_INDEX_POSITION )\n"); qglDisableVertexAttribArrayARB(ATTR_INDEX_POSITION); } } if(diff & ATTR_TEXCOORD) { if(stateBits & ATTR_TEXCOORD) { GLimp_LogComment("qglEnableVertexAttribArrayARB( ATTR_INDEX_TEXCOORD )\n"); qglEnableVertexAttribArrayARB(ATTR_INDEX_TEXCOORD0); } else { GLimp_LogComment("qglDisableVertexAttribArrayARB( ATTR_INDEX_TEXCOORD )\n"); qglDisableVertexAttribArrayARB(ATTR_INDEX_TEXCOORD0); } } if(diff & ATTR_LIGHTCOORD) { if(stateBits & ATTR_LIGHTCOORD) { GLimp_LogComment("qglEnableVertexAttribArrayARB( ATTR_INDEX_LIGHTCOORD )\n"); qglEnableVertexAttribArrayARB(ATTR_INDEX_TEXCOORD1); } else { GLimp_LogComment("qglDisableVertexAttribArrayARB( ATTR_INDEX_LIGHTCOORD )\n"); qglDisableVertexAttribArrayARB(ATTR_INDEX_TEXCOORD1); } } if(diff & ATTR_NORMAL) { if(stateBits & ATTR_NORMAL) { GLimp_LogComment("qglEnableVertexAttribArrayARB( ATTR_INDEX_NORMAL )\n"); qglEnableVertexAttribArrayARB(ATTR_INDEX_NORMAL); } else { GLimp_LogComment("qglDisableVertexAttribArrayARB( ATTR_INDEX_NORMAL )\n"); qglDisableVertexAttribArrayARB(ATTR_INDEX_NORMAL); } } #ifdef USE_VERT_TANGENT_SPACE if(diff & ATTR_TANGENT) { if(stateBits & ATTR_TANGENT) { GLimp_LogComment("qglEnableVertexAttribArrayARB( ATTR_INDEX_TANGENT )\n"); qglEnableVertexAttribArrayARB(ATTR_INDEX_TANGENT); } else { GLimp_LogComment("qglDisableVertexAttribArrayARB( ATTR_INDEX_TANGENT )\n"); qglDisableVertexAttribArrayARB(ATTR_INDEX_TANGENT); } } if(diff & ATTR_BITANGENT) { if(stateBits & ATTR_BITANGENT) { GLimp_LogComment("qglEnableVertexAttribArrayARB( ATTR_INDEX_BITANGENT )\n"); qglEnableVertexAttribArrayARB(ATTR_INDEX_BITANGENT); } else { GLimp_LogComment("qglDisableVertexAttribArrayARB( ATTR_INDEX_BITANGENT )\n"); qglDisableVertexAttribArrayARB(ATTR_INDEX_BITANGENT); } } #endif if(diff & ATTR_COLOR) { if(stateBits & ATTR_COLOR) { GLimp_LogComment("qglEnableVertexAttribArrayARB( ATTR_INDEX_COLOR )\n"); qglEnableVertexAttribArrayARB(ATTR_INDEX_COLOR); } else { GLimp_LogComment("qglDisableVertexAttribArrayARB( ATTR_INDEX_COLOR )\n"); qglDisableVertexAttribArrayARB(ATTR_INDEX_COLOR); } } if(diff & ATTR_LIGHTDIRECTION) { if(stateBits & ATTR_LIGHTDIRECTION) { GLimp_LogComment("qglEnableVertexAttribArrayARB( ATTR_INDEX_LIGHTDIRECTION )\n"); qglEnableVertexAttribArrayARB(ATTR_INDEX_LIGHTDIRECTION); } else { GLimp_LogComment("qglDisableVertexAttribArrayARB( ATTR_INDEX_LIGHTDIRECTION )\n"); qglDisableVertexAttribArrayARB(ATTR_INDEX_LIGHTDIRECTION); } } if(diff & ATTR_POSITION2) { if(stateBits & ATTR_POSITION2) { GLimp_LogComment("qglEnableVertexAttribArrayARB( ATTR_INDEX_POSITION2 )\n"); qglEnableVertexAttribArrayARB(ATTR_INDEX_POSITION2); } else { GLimp_LogComment("qglDisableVertexAttribArrayARB( ATTR_INDEX_POSITION2 )\n"); qglDisableVertexAttribArrayARB(ATTR_INDEX_POSITION2); } } if(diff & ATTR_NORMAL2) { if(stateBits & ATTR_NORMAL2) { GLimp_LogComment("qglEnableVertexAttribArrayARB( ATTR_INDEX_NORMAL2 )\n"); qglEnableVertexAttribArrayARB(ATTR_INDEX_NORMAL2); } else { GLimp_LogComment("qglDisableVertexAttribArrayARB( ATTR_INDEX_NORMAL2 )\n"); qglDisableVertexAttribArrayARB(ATTR_INDEX_NORMAL2); } } #ifdef USE_VERT_TANGENT_SPACE if(diff & ATTR_TANGENT2) { if(stateBits & ATTR_TANGENT2) { GLimp_LogComment("qglEnableVertexAttribArrayARB( ATTR_INDEX_TANGENT2 )\n"); qglEnableVertexAttribArrayARB(ATTR_INDEX_TANGENT2); } else { GLimp_LogComment("qglDisableVertexAttribArrayARB( ATTR_INDEX_TANGENT2 )\n"); qglDisableVertexAttribArrayARB(ATTR_INDEX_TANGENT2); } } if(diff & ATTR_BITANGENT2) { if(stateBits & ATTR_BITANGENT2) { GLimp_LogComment("qglEnableVertexAttribArrayARB( ATTR_INDEX_BITANGENT2 )\n"); qglEnableVertexAttribArrayARB(ATTR_INDEX_BITANGENT2); } else { GLimp_LogComment("qglDisableVertexAttribArrayARB( ATTR_INDEX_BITANGENT2 )\n"); qglDisableVertexAttribArrayARB(ATTR_INDEX_BITANGENT2); } } #endif glState.vertexAttribsState = stateBits; } void GLSL_VertexAttribPointers(uint32_t attribBits) { if(!glState.currentVBO) { ri.Error(ERR_FATAL, "GL_VertexAttribPointers: no VBO bound"); return; } // don't just call LogComment, or we will get a call to va() every frame! GLimp_LogComment(va("--- GL_VertexAttribPointers( %s ) ---\n", glState.currentVBO->name)); if((attribBits & ATTR_POSITION) && !(glState.vertexAttribPointersSet & ATTR_POSITION)) { GLimp_LogComment("qglVertexAttribPointerARB( ATTR_INDEX_POSITION )\n"); qglVertexAttribPointerARB(ATTR_INDEX_POSITION, 3, GL_FLOAT, 0, glState.currentVBO->stride_xyz, BUFFER_OFFSET(glState.currentVBO->ofs_xyz + glState.vertexAttribsNewFrame * glState.currentVBO->size_xyz)); glState.vertexAttribPointersSet |= ATTR_POSITION; } if((attribBits & ATTR_TEXCOORD) && !(glState.vertexAttribPointersSet & ATTR_TEXCOORD)) { GLimp_LogComment("qglVertexAttribPointerARB( ATTR_INDEX_TEXCOORD )\n"); qglVertexAttribPointerARB(ATTR_INDEX_TEXCOORD0, 2, GL_FLOAT, 0, glState.currentVBO->stride_st, BUFFER_OFFSET(glState.currentVBO->ofs_st)); glState.vertexAttribPointersSet |= ATTR_TEXCOORD; } if((attribBits & ATTR_LIGHTCOORD) && !(glState.vertexAttribPointersSet & ATTR_LIGHTCOORD)) { GLimp_LogComment("qglVertexAttribPointerARB( ATTR_INDEX_LIGHTCOORD )\n"); qglVertexAttribPointerARB(ATTR_INDEX_TEXCOORD1, 2, GL_FLOAT, 0, glState.currentVBO->stride_lightmap, BUFFER_OFFSET(glState.currentVBO->ofs_lightmap)); glState.vertexAttribPointersSet |= ATTR_LIGHTCOORD; } if((attribBits & ATTR_NORMAL) && !(glState.vertexAttribPointersSet & ATTR_NORMAL)) { GLimp_LogComment("qglVertexAttribPointerARB( ATTR_INDEX_NORMAL )\n"); qglVertexAttribPointerARB(ATTR_INDEX_NORMAL, 3, GL_FLOAT, 0, glState.currentVBO->stride_normal, BUFFER_OFFSET(glState.currentVBO->ofs_normal + glState.vertexAttribsNewFrame * glState.currentVBO->size_normal)); glState.vertexAttribPointersSet |= ATTR_NORMAL; } #ifdef USE_VERT_TANGENT_SPACE if((attribBits & ATTR_TANGENT) && !(glState.vertexAttribPointersSet & ATTR_TANGENT)) { GLimp_LogComment("qglVertexAttribPointerARB( ATTR_INDEX_TANGENT )\n"); qglVertexAttribPointerARB(ATTR_INDEX_TANGENT, 3, GL_FLOAT, 0, glState.currentVBO->stride_tangent, BUFFER_OFFSET(glState.currentVBO->ofs_tangent + glState.vertexAttribsNewFrame * glState.currentVBO->size_normal)); // FIXME glState.vertexAttribPointersSet |= ATTR_TANGENT; } if((attribBits & ATTR_BITANGENT) && !(glState.vertexAttribPointersSet & ATTR_BITANGENT)) { GLimp_LogComment("qglVertexAttribPointerARB( ATTR_INDEX_BITANGENT )\n"); qglVertexAttribPointerARB(ATTR_INDEX_BITANGENT, 3, GL_FLOAT, 0, glState.currentVBO->stride_bitangent, BUFFER_OFFSET(glState.currentVBO->ofs_bitangent + glState.vertexAttribsNewFrame * glState.currentVBO->size_normal)); // FIXME glState.vertexAttribPointersSet |= ATTR_BITANGENT; } #endif if((attribBits & ATTR_COLOR) && !(glState.vertexAttribPointersSet & ATTR_COLOR)) { GLimp_LogComment("qglVertexAttribPointerARB( ATTR_INDEX_COLOR )\n"); qglVertexAttribPointerARB(ATTR_INDEX_COLOR, 4, GL_FLOAT, 0, glState.currentVBO->stride_vertexcolor, BUFFER_OFFSET(glState.currentVBO->ofs_vertexcolor)); glState.vertexAttribPointersSet |= ATTR_COLOR; } if((attribBits & ATTR_LIGHTDIRECTION) && !(glState.vertexAttribPointersSet & ATTR_LIGHTDIRECTION)) { GLimp_LogComment("qglVertexAttribPointerARB( ATTR_INDEX_LIGHTDIRECTION )\n"); qglVertexAttribPointerARB(ATTR_INDEX_LIGHTDIRECTION, 3, GL_FLOAT, 0, glState.currentVBO->stride_lightdir, BUFFER_OFFSET(glState.currentVBO->ofs_lightdir)); glState.vertexAttribPointersSet |= ATTR_LIGHTDIRECTION; } if((attribBits & ATTR_POSITION2) && !(glState.vertexAttribPointersSet & ATTR_POSITION2)) { GLimp_LogComment("qglVertexAttribPointerARB( ATTR_INDEX_POSITION2 )\n"); qglVertexAttribPointerARB(ATTR_INDEX_POSITION2, 3, GL_FLOAT, 0, glState.currentVBO->stride_xyz, BUFFER_OFFSET(glState.currentVBO->ofs_xyz + glState.vertexAttribsOldFrame * glState.currentVBO->size_xyz)); glState.vertexAttribPointersSet |= ATTR_POSITION2; } if((attribBits & ATTR_NORMAL2) && !(glState.vertexAttribPointersSet & ATTR_NORMAL2)) { GLimp_LogComment("qglVertexAttribPointerARB( ATTR_INDEX_NORMAL2 )\n"); qglVertexAttribPointerARB(ATTR_INDEX_NORMAL2, 3, GL_FLOAT, 0, glState.currentVBO->stride_normal, BUFFER_OFFSET(glState.currentVBO->ofs_normal + glState.vertexAttribsOldFrame * glState.currentVBO->size_normal)); glState.vertexAttribPointersSet |= ATTR_NORMAL2; } #ifdef USE_VERT_TANGENT_SPACE if((attribBits & ATTR_TANGENT2) && !(glState.vertexAttribPointersSet & ATTR_TANGENT2)) { GLimp_LogComment("qglVertexAttribPointerARB( ATTR_INDEX_TANGENT2 )\n"); qglVertexAttribPointerARB(ATTR_INDEX_TANGENT2, 3, GL_FLOAT, 0, glState.currentVBO->stride_tangent, BUFFER_OFFSET(glState.currentVBO->ofs_tangent + glState.vertexAttribsOldFrame * glState.currentVBO->size_normal)); // FIXME glState.vertexAttribPointersSet |= ATTR_TANGENT2; } if((attribBits & ATTR_BITANGENT2) && !(glState.vertexAttribPointersSet & ATTR_BITANGENT2)) { GLimp_LogComment("qglVertexAttribPointerARB( ATTR_INDEX_BITANGENT2 )\n"); qglVertexAttribPointerARB(ATTR_INDEX_BITANGENT2, 3, GL_FLOAT, 0, glState.currentVBO->stride_bitangent, BUFFER_OFFSET(glState.currentVBO->ofs_bitangent + glState.vertexAttribsOldFrame * glState.currentVBO->size_normal)); // FIXME glState.vertexAttribPointersSet |= ATTR_BITANGENT2; } #endif } shaderProgram_t *GLSL_GetGenericShaderProgram(int stage) { shaderStage_t *pStage = tess.xstages[stage]; int shaderAttribs = 0; if (tess.fogNum && pStage->adjustColorsForFog) { shaderAttribs |= GENERICDEF_USE_FOG; } if (pStage->bundle[1].image[0] && tess.shader->multitextureEnv) { shaderAttribs |= GENERICDEF_USE_LIGHTMAP; } switch (pStage->rgbGen) { case CGEN_LIGHTING_DIFFUSE: shaderAttribs |= GENERICDEF_USE_RGBAGEN; break; default: break; } switch (pStage->alphaGen) { case AGEN_LIGHTING_SPECULAR: case AGEN_PORTAL: case AGEN_FRESNEL: shaderAttribs |= GENERICDEF_USE_RGBAGEN; break; default: break; } if (pStage->bundle[0].tcGen != TCGEN_TEXTURE) { shaderAttribs |= GENERICDEF_USE_TCGEN; } if (tess.shader->numDeforms && !ShaderRequiresCPUDeforms(tess.shader)) { shaderAttribs |= GENERICDEF_USE_DEFORM_VERTEXES; } if (glState.vertexAttribsInterpolation > 0.0f && backEnd.currentEntity && backEnd.currentEntity != &tr.worldEntity) { shaderAttribs |= GENERICDEF_USE_VERTEX_ANIMATION; } return &tr.genericShader[shaderAttribs]; }