/* =========================================================================== Copyright (C) 1999-2005 Id Software, Inc. This file is part of Quake III Arena source code. Quake III Arena source code is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. Quake III Arena source code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Quake III Arena source code; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA =========================================================================== */ #include #include "l_cmd.h" #include "l_math.h" #include "l_poly.h" #include "l_log.h" #include "l_mem.h" #define BOGUS_RANGE 65535 extern int numthreads; // counters are only bumped when running single threaded, // because they are an awefull coherence problem int c_active_windings; int c_peak_windings; int c_winding_allocs; int c_winding_points; int c_windingmemory; int c_peak_windingmemory; char windingerror[1024]; void pw(winding_t *w) { int i; for (i=0 ; inumpoints ; i++) printf ("(%5.3f, %5.3f, %5.3f)\n",w->p[i][0], w->p[i][1],w->p[i][2]); } void ResetWindings(void) { c_active_windings = 0; c_peak_windings = 0; c_winding_allocs = 0; c_winding_points = 0; c_windingmemory = 0; c_peak_windingmemory = 0; strcpy(windingerror, ""); } //end of the function ResetWindings /* ============= AllocWinding ============= */ winding_t *AllocWinding (int points) { winding_t *w; int s; s = sizeof(vec_t)*3*points + sizeof(int); w = GetMemory(s); memset(w, 0, s); if (numthreads == 1) { c_winding_allocs++; c_winding_points += points; c_active_windings++; if (c_active_windings > c_peak_windings) c_peak_windings = c_active_windings; c_windingmemory += MemorySize(w); if (c_windingmemory > c_peak_windingmemory) c_peak_windingmemory = c_windingmemory; } //end if return w; } //end of the function AllocWinding void FreeWinding (winding_t *w) { if (*(unsigned *)w == 0xdeaddead) Error ("FreeWinding: freed a freed winding"); if (numthreads == 1) { c_active_windings--; c_windingmemory -= MemorySize(w); } //end if *(unsigned *)w = 0xdeaddead; FreeMemory(w); } //end of the function FreeWinding int WindingMemory(void) { return c_windingmemory; } //end of the function WindingMemory int WindingPeakMemory(void) { return c_peak_windingmemory; } //end of the function WindingPeakMemory int ActiveWindings(void) { return c_active_windings; } //end of the function ActiveWindings /* ============ RemoveColinearPoints ============ */ int c_removed; void RemoveColinearPoints (winding_t *w) { int i, j, k; vec3_t v1, v2; int nump; vec3_t p[MAX_POINTS_ON_WINDING]; nump = 0; for (i=0 ; inumpoints ; i++) { j = (i+1)%w->numpoints; k = (i+w->numpoints-1)%w->numpoints; VectorSubtract (w->p[j], w->p[i], v1); VectorSubtract (w->p[i], w->p[k], v2); VectorNormalize(v1); VectorNormalize(v2); if (DotProduct(v1, v2) < 0.999) { if (nump >= MAX_POINTS_ON_WINDING) Error("RemoveColinearPoints: MAX_POINTS_ON_WINDING"); VectorCopy (w->p[i], p[nump]); nump++; } } if (nump == w->numpoints) return; if (numthreads == 1) c_removed += w->numpoints - nump; w->numpoints = nump; memcpy (w->p, p, nump*sizeof(p[0])); } /* ============ WindingPlane ============ */ void WindingPlane (winding_t *w, vec3_t normal, vec_t *dist) { vec3_t v1, v2; int i; //find two vectors each longer than 0.5 units for (i = 0; i < w->numpoints; i++) { VectorSubtract(w->p[(i+1) % w->numpoints], w->p[i], v1); VectorSubtract(w->p[(i+2) % w->numpoints], w->p[i], v2); if (VectorLength(v1) > 0.5 && VectorLength(v2) > 0.5) break; } //end for CrossProduct(v2, v1, normal); VectorNormalize(normal); *dist = DotProduct(w->p[0], normal); } //end of the function WindingPlane /* ============= WindingArea ============= */ vec_t WindingArea (winding_t *w) { int i; vec3_t d1, d2, cross; vec_t total; total = 0; for (i=2 ; inumpoints ; i++) { VectorSubtract (w->p[i-1], w->p[0], d1); VectorSubtract (w->p[i], w->p[0], d2); CrossProduct (d1, d2, cross); total += 0.5 * VectorLength ( cross ); } return total; } void WindingBounds (winding_t *w, vec3_t mins, vec3_t maxs) { vec_t v; int i,j; mins[0] = mins[1] = mins[2] = 99999; maxs[0] = maxs[1] = maxs[2] = -99999; for (i=0 ; inumpoints ; i++) { for (j=0 ; j<3 ; j++) { v = w->p[i][j]; if (v < mins[j]) mins[j] = v; if (v > maxs[j]) maxs[j] = v; } } } /* ============= WindingCenter ============= */ void WindingCenter (winding_t *w, vec3_t center) { int i; float scale; VectorCopy (vec3_origin, center); for (i=0 ; inumpoints ; i++) VectorAdd (w->p[i], center, center); scale = 1.0/w->numpoints; VectorScale (center, scale, center); } /* ================= BaseWindingForPlane ================= */ winding_t *BaseWindingForPlane (vec3_t normal, vec_t dist) { int i, x; vec_t max, v; vec3_t org, vright, vup; winding_t *w; // find the major axis max = -BOGUS_RANGE; x = -1; for (i=0 ; i<3; i++) { v = fabs(normal[i]); if (v > max) { x = i; max = v; } } if (x==-1) Error ("BaseWindingForPlane: no axis found"); VectorCopy (vec3_origin, vup); switch (x) { case 0: case 1: vup[2] = 1; break; case 2: vup[0] = 1; break; } v = DotProduct (vup, normal); VectorMA (vup, -v, normal, vup); VectorNormalize (vup); VectorScale (normal, dist, org); CrossProduct (vup, normal, vright); VectorScale (vup, BOGUS_RANGE, vup); VectorScale (vright, BOGUS_RANGE, vright); // project a really big axis aligned box onto the plane w = AllocWinding (4); VectorSubtract (org, vright, w->p[0]); VectorAdd (w->p[0], vup, w->p[0]); VectorAdd (org, vright, w->p[1]); VectorAdd (w->p[1], vup, w->p[1]); VectorAdd (org, vright, w->p[2]); VectorSubtract (w->p[2], vup, w->p[2]); VectorSubtract (org, vright, w->p[3]); VectorSubtract (w->p[3], vup, w->p[3]); w->numpoints = 4; return w; } /* ================== CopyWinding ================== */ winding_t *CopyWinding (winding_t *w) { int size; winding_t *c; c = AllocWinding (w->numpoints); size = (int)((winding_t *)0)->p[w->numpoints]; memcpy (c, w, size); return c; } /* ================== ReverseWinding ================== */ winding_t *ReverseWinding (winding_t *w) { int i; winding_t *c; c = AllocWinding (w->numpoints); for (i=0 ; inumpoints ; i++) { VectorCopy (w->p[w->numpoints-1-i], c->p[i]); } c->numpoints = w->numpoints; return c; } /* ============= ClipWindingEpsilon ============= */ void ClipWindingEpsilon (winding_t *in, vec3_t normal, vec_t dist, vec_t epsilon, winding_t **front, winding_t **back) { vec_t dists[MAX_POINTS_ON_WINDING+4]; int sides[MAX_POINTS_ON_WINDING+4]; int counts[3]; //MrElusive: DOH can't use statics when unsing multithreading!!! vec_t dot; // VC 4.2 optimizer bug if not static int i, j; vec_t *p1, *p2; vec3_t mid; winding_t *f, *b; int maxpts; counts[0] = counts[1] = counts[2] = 0; // determine sides for each point for (i=0 ; inumpoints ; i++) { dot = DotProduct (in->p[i], normal); dot -= dist; dists[i] = dot; if (dot > epsilon) sides[i] = SIDE_FRONT; else if (dot < -epsilon) sides[i] = SIDE_BACK; else { sides[i] = SIDE_ON; } counts[sides[i]]++; } sides[i] = sides[0]; dists[i] = dists[0]; *front = *back = NULL; if (!counts[0]) { *back = CopyWinding (in); return; } if (!counts[1]) { *front = CopyWinding (in); return; } maxpts = in->numpoints+4; // cant use counts[0]+2 because // of fp grouping errors *front = f = AllocWinding (maxpts); *back = b = AllocWinding (maxpts); for (i=0 ; inumpoints ; i++) { p1 = in->p[i]; if (sides[i] == SIDE_ON) { VectorCopy (p1, f->p[f->numpoints]); f->numpoints++; VectorCopy (p1, b->p[b->numpoints]); b->numpoints++; continue; } if (sides[i] == SIDE_FRONT) { VectorCopy (p1, f->p[f->numpoints]); f->numpoints++; } if (sides[i] == SIDE_BACK) { VectorCopy (p1, b->p[b->numpoints]); b->numpoints++; } if (sides[i+1] == SIDE_ON || sides[i+1] == sides[i]) continue; // generate a split point p2 = in->p[(i+1)%in->numpoints]; dot = dists[i] / (dists[i]-dists[i+1]); for (j=0 ; j<3 ; j++) { // avoid round off error when possible if (normal[j] == 1) mid[j] = dist; else if (normal[j] == -1) mid[j] = -dist; else mid[j] = p1[j] + dot*(p2[j]-p1[j]); } VectorCopy (mid, f->p[f->numpoints]); f->numpoints++; VectorCopy (mid, b->p[b->numpoints]); b->numpoints++; } if (f->numpoints > maxpts || b->numpoints > maxpts) Error ("ClipWinding: points exceeded estimate"); if (f->numpoints > MAX_POINTS_ON_WINDING || b->numpoints > MAX_POINTS_ON_WINDING) Error ("ClipWinding: MAX_POINTS_ON_WINDING"); } /* ============= ChopWindingInPlace ============= */ void ChopWindingInPlace (winding_t **inout, vec3_t normal, vec_t dist, vec_t epsilon) { winding_t *in; vec_t dists[MAX_POINTS_ON_WINDING+4]; int sides[MAX_POINTS_ON_WINDING+4]; int counts[3]; //MrElusive: DOH can't use statics when unsing multithreading!!! vec_t dot; // VC 4.2 optimizer bug if not static int i, j; vec_t *p1, *p2; vec3_t mid; winding_t *f; int maxpts; in = *inout; counts[0] = counts[1] = counts[2] = 0; // determine sides for each point for (i=0 ; inumpoints ; i++) { dot = DotProduct (in->p[i], normal); dot -= dist; dists[i] = dot; if (dot > epsilon) sides[i] = SIDE_FRONT; else if (dot < -epsilon) sides[i] = SIDE_BACK; else { sides[i] = SIDE_ON; } counts[sides[i]]++; } sides[i] = sides[0]; dists[i] = dists[0]; if (!counts[0]) { FreeWinding (in); *inout = NULL; return; } if (!counts[1]) return; // inout stays the same maxpts = in->numpoints+4; // cant use counts[0]+2 because // of fp grouping errors f = AllocWinding (maxpts); for (i=0 ; inumpoints ; i++) { p1 = in->p[i]; if (sides[i] == SIDE_ON) { VectorCopy (p1, f->p[f->numpoints]); f->numpoints++; continue; } if (sides[i] == SIDE_FRONT) { VectorCopy (p1, f->p[f->numpoints]); f->numpoints++; } if (sides[i+1] == SIDE_ON || sides[i+1] == sides[i]) continue; // generate a split point p2 = in->p[(i+1)%in->numpoints]; dot = dists[i] / (dists[i]-dists[i+1]); for (j=0 ; j<3 ; j++) { // avoid round off error when possible if (normal[j] == 1) mid[j] = dist; else if (normal[j] == -1) mid[j] = -dist; else mid[j] = p1[j] + dot*(p2[j]-p1[j]); } VectorCopy (mid, f->p[f->numpoints]); f->numpoints++; } if (f->numpoints > maxpts) Error ("ClipWinding: points exceeded estimate"); if (f->numpoints > MAX_POINTS_ON_WINDING) Error ("ClipWinding: MAX_POINTS_ON_WINDING"); FreeWinding (in); *inout = f; } /* ================= ChopWinding Returns the fragment of in that is on the front side of the cliping plane. The original is freed. ================= */ winding_t *ChopWinding (winding_t *in, vec3_t normal, vec_t dist) { winding_t *f, *b; ClipWindingEpsilon (in, normal, dist, ON_EPSILON, &f, &b); FreeWinding (in); if (b) FreeWinding (b); return f; } /* ================= CheckWinding ================= */ void CheckWinding (winding_t *w) { int i, j; vec_t *p1, *p2; vec_t d, edgedist; vec3_t dir, edgenormal, facenormal; vec_t area; vec_t facedist; if (w->numpoints < 3) Error ("CheckWinding: %i points",w->numpoints); area = WindingArea(w); if (area < 1) Error ("CheckWinding: %f area", area); WindingPlane (w, facenormal, &facedist); for (i=0 ; inumpoints ; i++) { p1 = w->p[i]; for (j=0 ; j<3 ; j++) if (p1[j] > BOGUS_RANGE || p1[j] < -BOGUS_RANGE) Error ("CheckWinding: BUGUS_RANGE: %f",p1[j]); j = i+1 == w->numpoints ? 0 : i+1; // check the point is on the face plane d = DotProduct (p1, facenormal) - facedist; if (d < -ON_EPSILON || d > ON_EPSILON) Error ("CheckWinding: point off plane"); // check the edge isnt degenerate p2 = w->p[j]; VectorSubtract (p2, p1, dir); if (VectorLength (dir) < ON_EPSILON) Error ("CheckWinding: degenerate edge"); CrossProduct (facenormal, dir, edgenormal); VectorNormalize (edgenormal); edgedist = DotProduct (p1, edgenormal); edgedist += ON_EPSILON; // all other points must be on front side for (j=0 ; jnumpoints ; j++) { if (j == i) continue; d = DotProduct (w->p[j], edgenormal); if (d > edgedist) Error ("CheckWinding: non-convex"); } } } /* ============ WindingOnPlaneSide ============ */ int WindingOnPlaneSide (winding_t *w, vec3_t normal, vec_t dist) { qboolean front, back; int i; vec_t d; front = false; back = false; for (i=0 ; inumpoints ; i++) { d = DotProduct (w->p[i], normal) - dist; if (d < -ON_EPSILON) { if (front) return SIDE_CROSS; back = true; continue; } if (d > ON_EPSILON) { if (back) return SIDE_CROSS; front = true; continue; } } if (back) return SIDE_BACK; if (front) return SIDE_FRONT; return SIDE_ON; } //#ifdef ME #define CONTINUOUS_EPSILON 0.005 //#else // #define CONTINUOUS_EPSILON 0.001 //#endif /* ============= TryMergeWinding If two polygons share a common edge and the edges that meet at the common points are both inside the other polygons, merge them Returns NULL if the faces couldn't be merged, or the new face. The originals will NOT be freed. ============= */ winding_t *TryMergeWinding (winding_t *f1, winding_t *f2, vec3_t planenormal) { vec_t *p1, *p2, *p3, *p4, *back; winding_t *newf; int i, j, k, l; vec3_t normal, delta; vec_t dot; qboolean keep1, keep2; // // find a common edge // p1 = p2 = NULL; // stop compiler warning j = 0; // for (i = 0; i < f1->numpoints; i++) { p1 = f1->p[i]; p2 = f1->p[(i+1) % f1->numpoints]; for (j = 0; j < f2->numpoints; j++) { p3 = f2->p[j]; p4 = f2->p[(j+1) % f2->numpoints]; for (k = 0; k < 3; k++) { if (fabs(p1[k] - p4[k]) > 0.1)//EQUAL_EPSILON) //ME break; if (fabs(p2[k] - p3[k]) > 0.1)//EQUAL_EPSILON) //ME break; } //end for if (k==3) break; } //end for if (j < f2->numpoints) break; } //end for if (i == f1->numpoints) return NULL; // no matching edges // // check slope of connected lines // if the slopes are colinear, the point can be removed // back = f1->p[(i+f1->numpoints-1)%f1->numpoints]; VectorSubtract (p1, back, delta); CrossProduct (planenormal, delta, normal); VectorNormalize (normal); back = f2->p[(j+2)%f2->numpoints]; VectorSubtract (back, p1, delta); dot = DotProduct (delta, normal); if (dot > CONTINUOUS_EPSILON) return NULL; // not a convex polygon keep1 = (qboolean)(dot < -CONTINUOUS_EPSILON); back = f1->p[(i+2)%f1->numpoints]; VectorSubtract (back, p2, delta); CrossProduct (planenormal, delta, normal); VectorNormalize (normal); back = f2->p[(j+f2->numpoints-1)%f2->numpoints]; VectorSubtract (back, p2, delta); dot = DotProduct (delta, normal); if (dot > CONTINUOUS_EPSILON) return NULL; // not a convex polygon keep2 = (qboolean)(dot < -CONTINUOUS_EPSILON); // // build the new polygon // newf = AllocWinding (f1->numpoints + f2->numpoints); // copy first polygon for (k=(i+1)%f1->numpoints ; k != i ; k=(k+1)%f1->numpoints) { if (k==(i+1)%f1->numpoints && !keep2) continue; VectorCopy (f1->p[k], newf->p[newf->numpoints]); newf->numpoints++; } // copy second polygon for (l= (j+1)%f2->numpoints ; l != j ; l=(l+1)%f2->numpoints) { if (l==(j+1)%f2->numpoints && !keep1) continue; VectorCopy (f2->p[l], newf->p[newf->numpoints]); newf->numpoints++; } return newf; } //#ifdef ME //=========================================================================== // // Parameter: - // Returns: - // Changes Globals: - //=========================================================================== winding_t *MergeWindings(winding_t *w1, winding_t *w2, vec3_t planenormal) { winding_t *neww; float dist; int i, j, n, found, insertafter; int sides[MAX_POINTS_ON_WINDING+4]; vec3_t newp[MAX_POINTS_ON_WINDING+4]; int numpoints; vec3_t edgevec, sepnormal, v; RemoveEqualPoints(w1, 0.2); numpoints = w1->numpoints; memcpy(newp, w1->p, w1->numpoints * sizeof(vec3_t)); // for (i = 0; i < w2->numpoints; i++) { VectorCopy(w2->p[i], v); for (j = 0; j < numpoints; j++) { VectorSubtract(newp[(j+1)%numpoints], newp[(j)%numpoints], edgevec); CrossProduct(edgevec, planenormal, sepnormal); VectorNormalize(sepnormal); if (VectorLength(sepnormal) < 0.9) { //remove the point from the new winding for (n = j; n < numpoints-1; n++) { VectorCopy(newp[n+1], newp[n]); sides[n] = sides[n+1]; } //end for numpoints--; j--; Log_Print("MergeWindings: degenerate edge on winding %f %f %f\n", sepnormal[0], sepnormal[1], sepnormal[2]); continue; } //end if dist = DotProduct(newp[(j)%numpoints], sepnormal); if (DotProduct(v, sepnormal) - dist < -0.1) sides[j] = SIDE_BACK; else sides[j] = SIDE_FRONT; } //end for //remove all unnecesary points for (j = 0; j < numpoints;) { if (sides[j] == SIDE_BACK && sides[(j+1)%numpoints] == SIDE_BACK) { //remove the point from the new winding for (n = (j+1)%numpoints; n < numpoints-1; n++) { VectorCopy(newp[n+1], newp[n]); sides[n] = sides[n+1]; } //end for numpoints--; } //end if else { j++; } //end else } //end for // found = false; for (j = 0; j < numpoints; j++) { if (sides[j] == SIDE_FRONT && sides[(j+1)%numpoints] == SIDE_BACK) { if (found) Log_Print("Warning: MergeWindings: front to back found twice\n"); found = true; } //end if } //end for // for (j = 0; j < numpoints; j++) { if (sides[j] == SIDE_FRONT && sides[(j+1)%numpoints] == SIDE_BACK) { insertafter = (j+1)%numpoints; //insert the new point after j+1 for (n = numpoints-1; n > insertafter; n--) { VectorCopy(newp[n], newp[n+1]); } //end for numpoints++; VectorCopy(v, newp[(insertafter+1)%numpoints]); break; } //end if } //end for } //end for neww = AllocWinding(numpoints); neww->numpoints = numpoints; memcpy(neww->p, newp, numpoints * sizeof(vec3_t)); RemoveColinearPoints(neww); return neww; } //end of the function MergeWindings //=========================================================================== // // Parameter: - // Returns: - // Changes Globals: - //=========================================================================== char *WindingErrorString(void) { return windingerror; } //end of the function WindingErrorString //=========================================================================== // // Parameter: - // Returns: - // Changes Globals: - //=========================================================================== int WindingError(winding_t *w) { int i, j; vec_t *p1, *p2; vec_t d, edgedist; vec3_t dir, edgenormal, facenormal; vec_t area; vec_t facedist; if (w->numpoints < 3) { sprintf(windingerror, "winding %i points", w->numpoints); return WE_NOTENOUGHPOINTS; } //end if area = WindingArea(w); if (area < 1) { sprintf(windingerror, "winding %f area", area); return WE_SMALLAREA; } //end if WindingPlane (w, facenormal, &facedist); for (i=0 ; inumpoints ; i++) { p1 = w->p[i]; for (j=0 ; j<3 ; j++) { if (p1[j] > BOGUS_RANGE || p1[j] < -BOGUS_RANGE) { sprintf(windingerror, "winding point %d BUGUS_RANGE \'%f %f %f\'", j, p1[0], p1[1], p1[2]); return WE_POINTBOGUSRANGE; } //end if } //end for j = i+1 == w->numpoints ? 0 : i+1; // check the point is on the face plane d = DotProduct (p1, facenormal) - facedist; if (d < -ON_EPSILON || d > ON_EPSILON) { sprintf(windingerror, "winding point %d off plane", i); return WE_POINTOFFPLANE; } //end if // check the edge isnt degenerate p2 = w->p[j]; VectorSubtract (p2, p1, dir); if (VectorLength (dir) < ON_EPSILON) { sprintf(windingerror, "winding degenerate edge %d-%d", i, j); return WE_DEGENERATEEDGE; } //end if CrossProduct (facenormal, dir, edgenormal); VectorNormalize (edgenormal); edgedist = DotProduct (p1, edgenormal); edgedist += ON_EPSILON; // all other points must be on front side for (j=0 ; jnumpoints ; j++) { if (j == i) continue; d = DotProduct (w->p[j], edgenormal); if (d > edgedist) { sprintf(windingerror, "winding non-convex"); return WE_NONCONVEX; } //end if } //end for } //end for return WE_NONE; } //end of the function WindingError //=========================================================================== // // Parameter: - // Returns: - // Changes Globals: - //=========================================================================== void RemoveEqualPoints(winding_t *w, float epsilon) { int i, nump; vec3_t v; vec3_t p[MAX_POINTS_ON_WINDING]; VectorCopy(w->p[0], p[0]); nump = 1; for (i = 1; i < w->numpoints; i++) { VectorSubtract(w->p[i], p[nump-1], v); if (VectorLength(v) > epsilon) { if (nump >= MAX_POINTS_ON_WINDING) Error("RemoveColinearPoints: MAX_POINTS_ON_WINDING"); VectorCopy (w->p[i], p[nump]); nump++; } //end if } //end for if (nump == w->numpoints) return; w->numpoints = nump; memcpy(w->p, p, nump * sizeof(p[0])); } //end of the function RemoveEqualPoints //=========================================================================== // adds the given point to a winding at the given spot // (for instance when spot is zero then the point is added at position zero) // the original winding is NOT freed // // Parameter: - // Returns: the new winding with the added point // Changes Globals: - //=========================================================================== winding_t *AddWindingPoint(winding_t *w, vec3_t point, int spot) { int i, j; winding_t *neww; if (spot > w->numpoints) { Error("AddWindingPoint: num > w->numpoints"); } //end if if (spot < 0) { Error("AddWindingPoint: num < 0"); } //end if neww = AllocWinding(w->numpoints + 1); neww->numpoints = w->numpoints + 1; for (i = 0, j = 0; i < neww->numpoints; i++) { if (i == spot) { VectorCopy(point, neww->p[i]); } //end if else { VectorCopy(w->p[j], neww->p[i]); j++; } //end else } //end for return neww; } //end of the function AddWindingPoint //=========================================================================== // the position where the new point should be added in the winding is // stored in *spot // // Parameter: - // Returns: true if the point is on the winding // Changes Globals: - //=========================================================================== #define MELT_ON_EPSILON 0.2 int PointOnWinding(winding_t *w, vec3_t normal, float dist, vec3_t point, int *spot) { int i, j; vec3_t v1, v2; vec3_t edgenormal, edgevec; float edgedist, dot; *spot = 0; //the point must be on the winding plane dot = DotProduct(point, normal) - dist; if (dot < -MELT_ON_EPSILON || dot > MELT_ON_EPSILON) return false; // for (i = 0; i < w->numpoints; i++) { j = (i+1) % w->numpoints; //get a plane orthogonal to the winding plane through the edge VectorSubtract(w->p[j], w->p[i], edgevec); CrossProduct(normal, edgevec, edgenormal); VectorNormalize(edgenormal); edgedist = DotProduct(edgenormal, w->p[i]); //point must be not too far from the plane dot = DotProduct(point, edgenormal) - edgedist; if (dot < -MELT_ON_EPSILON || dot > MELT_ON_EPSILON) continue; //vector from first point of winding to the point to test VectorSubtract(point, w->p[i], v1); //vector from second point of winding to the point to test VectorSubtract(point, w->p[j], v2); //if the length of the vector is not larger than 0.5 units then //the point is assumend to be the same as one of the winding points if (VectorNormalize(v1) < 0.5) return false; if (VectorNormalize(v2) < 0.5) return false; //point must be between the two winding points //(the two vectors must be directed towards each other, and on the //same straight line) if (DotProduct(v1, v2) < -0.99) { *spot = i + 1; return true; } //end if } //end for return false; } //end of the function PointOnWinding //=========================================================================== // // Parameter: - // Returns: - // Changes Globals: - //=========================================================================== int FindPlaneSeperatingWindings(winding_t *w1, winding_t *w2, vec3_t dir, vec3_t normal, float *dist) { int i, i2, j, j2, n; int sides1[3], sides2[3]; float dist1, dist2, dot, diff; vec3_t normal1, normal2; vec3_t v1, v2; for (i = 0; i < w1->numpoints; i++) { i2 = (i+1) % w1->numpoints; // VectorSubtract(w1->p[i2], w1->p[i], v1); if (VectorLength(v1) < 0.1) { //Log_Write("FindPlaneSeperatingWindings: winding1 with degenerate edge\r\n"); continue; } //end if CrossProduct(v1, dir, normal1); VectorNormalize(normal1); dist1 = DotProduct(normal1, w1->p[i]); // for (j = 0; j < w2->numpoints; j++) { j2 = (j+1) % w2->numpoints; // VectorSubtract(w2->p[j2], w2->p[j], v2); if (VectorLength(v2) < 0.1) { //Log_Write("FindPlaneSeperatingWindings: winding2 with degenerate edge\r\n"); continue; } //end if CrossProduct(v2, dir, normal2); VectorNormalize(normal2); dist2 = DotProduct(normal2, w2->p[j]); // diff = dist1 - dist2; if (diff < -0.1 || diff > 0.1) { dist2 = -dist2; VectorNegate(normal2, normal2); diff = dist1 - dist2; if (diff < -0.1 || diff > 0.1) continue; } //end if //check if the normal vectors are equal for (n = 0; n < 3; n++) { diff = normal1[n] - normal2[n]; if (diff < -0.0001 || diff > 0.0001) break; } //end for if (n != 3) continue; //check on which side of the seperating plane the points of //the first winding are sides1[0] = sides1[1] = sides1[2] = 0; for (n = 0; n < w1->numpoints; n++) { dot = DotProduct(w1->p[n], normal1) - dist1; if (dot > 0.1) sides1[0]++; else if (dot < -0.1) sides1[1]++; else sides1[2]++; } //end for //check on which side of the seperating plane the points of //the second winding are sides2[0] = sides2[1] = sides2[2] = 0; for (n = 0; n < w2->numpoints; n++) { //used normal1 and dist1 (they are equal to normal2 and dist2) dot = DotProduct(w2->p[n], normal1) - dist1; if (dot > 0.1) sides2[0]++; else if (dot < -0.1) sides2[1]++; else sides2[2]++; } //end for //if the first winding has points at both sides if (sides1[0] && sides1[1]) { Log_Write("FindPlaneSeperatingWindings: winding1 non-convex\r\n"); continue; } //end if //if the second winding has points at both sides if (sides2[0] && sides2[1]) { Log_Write("FindPlaneSeperatingWindings: winding2 non-convex\r\n"); continue; } //end if // if ((!sides1[0] && !sides1[1]) || (!sides2[0] && !sides2[1])) { //don't use one of the winding planes as the seperating plane continue; } //end if //the windings must be at different sides of the seperating plane if ((!sides1[0] && !sides2[1]) || (!sides1[1] && !sides2[0])) { VectorCopy(normal1, normal); *dist = dist1; return true; } //end if } //end for } //end for return false; } //end of the function FindPlaneSeperatingWindings //=========================================================================== // // Parameter: - // Returns: - // Changes Globals: - //=========================================================================== #define WCONVEX_EPSILON 0.2 int WindingsNonConvex(winding_t *w1, winding_t *w2, vec3_t normal1, vec3_t normal2, float dist1, float dist2) { int i; if (!w1 || !w2) return false; //check if one of the points of face1 is at the back of the plane of face2 for (i = 0; i < w1->numpoints; i++) { if (DotProduct(normal2, w1->p[i]) - dist2 > WCONVEX_EPSILON) return true; } //end for //check if one of the points of face2 is at the back of the plane of face1 for (i = 0; i < w2->numpoints; i++) { if (DotProduct(normal1, w2->p[i]) - dist1 > WCONVEX_EPSILON) return true; } //end for return false; } //end of the function WindingsNonConvex //=========================================================================== // // Parameter: - // Returns: - // Changes Globals: - //=========================================================================== /* #define VERTEX_EPSILON 0.5 qboolean EqualVertexes(vec3_t v1, vec3_t v2) { float diff; diff = v1[0] - v2[0]; if (diff > -VERTEX_EPSILON && diff < VERTEX_EPSILON) { diff = v1[1] - v2[1]; if (diff > -VERTEX_EPSILON && diff < VERTEX_EPSILON) { diff = v1[2] - v2[2]; if (diff > -VERTEX_EPSILON && diff < VERTEX_EPSILON) { return true; } //end if } //end if } //end if return false; } //end of the function EqualVertexes #define CONTINUOUS_EPSILON 0.001 winding_t *AAS_MergeWindings(winding_t *w1, winding_t *w2, vec3_t windingnormal) { int n, i, k; vec3_t normal, delta; winding_t *winding, *neww; float dist, dot; int p1, p2; int points[2][64]; int numpoints[2] = {0, 0}; int newnumpoints; int keep[2]; if (!FindPlaneSeperatingWindings(w1, w2, windingnormal, normal, &dist)) return NULL; //for both windings for (n = 0; n < 2; n++) { if (n == 0) winding = w1; else winding = w2; //get the points of the winding which are on the seperating plane for (i = 0; i < winding->numpoints; i++) { dot = DotProduct(winding->p[i], normal) - dist; if (dot > -ON_EPSILON && dot < ON_EPSILON) { //don't allow more than 64 points on the seperating plane if (numpoints[n] >= 64) Error("AAS_MergeWindings: more than 64 points on seperating plane\n"); points[n][numpoints[n]++] = i; } //end if } //end for //there must be at least two points of each winding on the seperating plane if (numpoints[n] < 2) return NULL; } //end for //if the first point of winding1 (which is on the seperating plane) is unequal //to the last point of winding2 (which is on the seperating plane) if (!EqualVertexes(w1->p[points[0][0]], w2->p[points[1][numpoints[1]-1]])) { return NULL; } //end if //if the last point of winding1 (which is on the seperating plane) is unequal //to the first point of winding2 (which is on the seperating plane) if (!EqualVertexes(w1->p[points[0][numpoints[0]-1]], w2->p[points[1][0]])) { return NULL; } //end if // // check slope of connected lines // if the slopes are colinear, the point can be removed // //first point of winding1 which is on the seperating plane p1 = points[0][0]; //point before p1 p2 = (p1 + w1->numpoints - 1) % w1->numpoints; VectorSubtract(w1->p[p1], w1->p[p2], delta); CrossProduct(windingnormal, delta, normal); VectorNormalize(normal, normal); //last point of winding2 which is on the seperating plane p1 = points[1][numpoints[1]-1]; //point after p1 p2 = (p1 + 1) % w2->numpoints; VectorSubtract(w2->p[p2], w2->p[p1], delta); dot = DotProduct(delta, normal); if (dot > CONTINUOUS_EPSILON) return NULL; //merging would create a non-convex polygon keep[0] = (qboolean)(dot < -CONTINUOUS_EPSILON); //first point of winding2 which is on the seperating plane p1 = points[1][0]; //point before p1 p2 = (p1 + w2->numpoints - 1) % w2->numpoints; VectorSubtract(w2->p[p1], w2->p[p2], delta); CrossProduct(windingnormal, delta, normal); VectorNormalize(normal, normal); //last point of winding1 which is on the seperating plane p1 = points[0][numpoints[0]-1]; //point after p1 p2 = (p1 + 1) % w1->numpoints; VectorSubtract(w1->p[p2], w1->p[p1], delta); dot = DotProduct(delta, normal); if (dot > CONTINUOUS_EPSILON) return NULL; //merging would create a non-convex polygon keep[1] = (qboolean)(dot < -CONTINUOUS_EPSILON); //number of points on the new winding newnumpoints = w1->numpoints - numpoints[0] + w2->numpoints - numpoints[1] + 2; //allocate the winding neww = AllocWinding(newnumpoints); neww->numpoints = newnumpoints; //copy all the points k = 0; //for both windings for (n = 0; n < 2; n++) { if (n == 0) winding = w1; else winding = w2; //copy the points of the winding starting with the last point on the //seperating plane and ending before the first point on the seperating plane for (i = points[n][numpoints[n]-1]; i != points[n][0]; i = (i+1)%winding->numpoints) { if (k >= newnumpoints) { Log_Print("numpoints[0] = %d\n", numpoints[0]); Log_Print("numpoints[1] = %d\n", numpoints[1]); Error("AAS_MergeWindings: k = %d >= newnumpoints = %d\n", k, newnumpoints); } //end if VectorCopy(winding->p[i], neww->p[k]); k++; } //end for } //end for RemoveEqualPoints(neww); if (!WindingIsOk(neww, 1)) { Log_Print("AAS_MergeWindings: winding not ok after merging\n"); FreeWinding(neww); return NULL; } //end if return neww; } //end of the function AAS_MergeWindings*/ //#endif //ME