OpenGL2: Better BSP surface merging.

This commit is contained in:
SmileTheory 2014-10-07 04:17:01 -07:00
parent 918eed9295
commit a90c17ac1b

View file

@ -1808,6 +1808,19 @@ static int BSPSurfaceCompare(const void *a, const void *b)
else if(aa->cubemapIndex > bb->cubemapIndex) else if(aa->cubemapIndex > bb->cubemapIndex)
return 1; return 1;
// by leaf
if (s_worldData.surfacesViewCount[aa - s_worldData.surfaces] < s_worldData.surfacesViewCount[bb - s_worldData.surfaces])
return -1;
else if (s_worldData.surfacesViewCount[aa - s_worldData.surfaces] > s_worldData.surfacesViewCount[bb - s_worldData.surfaces])
return 1;
// by surface number
if (aa < bb)
return -1;
else if (aa > bb)
return 1;
return 0; return 0;
} }
@ -1815,31 +1828,17 @@ static int BSPSurfaceCompare(const void *a, const void *b)
static void CopyVert(const srfVert_t * in, srfVert_t * out) static void CopyVert(const srfVert_t * in, srfVert_t * out)
{ {
int j; VectorCopy(in->xyz, out->xyz);
for(j = 0; j < 3; j++)
{
out->xyz[j] = in->xyz[j];
#ifdef USE_VERT_TANGENT_SPACE #ifdef USE_VERT_TANGENT_SPACE
out->tangent[j] = in->tangent[j]; VectorCopy4(in->tangent, out->tangent);
//out->bitangent[j] = in->bitangent[j];
#endif #endif
out->normal[j] = in->normal[j]; VectorCopy(in->normal, out->normal);
out->lightdir[j] = in->lightdir[j]; VectorCopy(in->lightdir, out->lightdir);
}
out->tangent[3] = in->tangent[3]; VectorCopy2(in->st, out->st);
VectorCopy2(in->lightmap, out->lightmap);
for(j = 0; j < 2; j++) VectorCopy4(in->vertexColors, out->vertexColors);
{
out->st[j] = in->st[j];
out->lightmap[j] = in->lightmap[j];
}
for(j = 0; j < 4; j++)
{
out->vertexColors[j] = in->vertexColors[j];
}
} }
@ -1866,26 +1865,74 @@ static void R_CreateWorldVBOs(void)
IBO_t *ibo; IBO_t *ibo;
int maxVboSize = 4 * 1024 * 1024; int maxVboSize = 4 * 1024 * 1024;
int maxIboSize = 4 * 1024 * 1024;
int startTime, endTime; int startTime, endTime;
startTime = ri.Milliseconds(); startTime = ri.Milliseconds();
// mark surfaces with best matching leaf, using overlapping bounds
// using surfaceViewCount[] as leaf number, and surfacesDlightBits[] as coverage * 256
for (i = 0; i < s_worldData.numWorldSurfaces; i++)
{
s_worldData.surfacesViewCount[i] = -1;
}
for (i = 0; i < s_worldData.numWorldSurfaces; i++)
{
s_worldData.surfacesDlightBits[i] = 0;
}
for (i = s_worldData.numDecisionNodes; i < s_worldData.numnodes; i++)
{
mnode_t *leaf = s_worldData.nodes + i;
for (j = leaf->firstmarksurface; j < leaf->firstmarksurface + leaf->nummarksurfaces; j++)
{
int surfaceNum = s_worldData.marksurfaces[j];
msurface_t *surface = s_worldData.surfaces + surfaceNum;
float coverage = 1.0f;
int iCoverage;
for (k = 0; k < 3; k++)
{
float left, right;
if (leaf->mins[k] > surface->cullinfo.bounds[1][k] || surface->cullinfo.bounds[0][k] > leaf->maxs[k])
{
coverage = 0.0f;
break;
}
left = MAX(leaf->mins[k], surface->cullinfo.bounds[0][k]);
right = MIN(leaf->maxs[k], surface->cullinfo.bounds[1][k]);
// nudge a bit in case this is an axis aligned wall
coverage *= right - left + 1.0f/256.0f;
}
iCoverage = coverage * 256;
if (iCoverage > s_worldData.surfacesDlightBits[surfaceNum])
{
s_worldData.surfacesDlightBits[surfaceNum] = iCoverage;
s_worldData.surfacesViewCount[surfaceNum] = i - s_worldData.numDecisionNodes;
}
}
}
for (i = 0; i < s_worldData.numWorldSurfaces; i++)
{
s_worldData.surfacesDlightBits[i] = 0;
}
// count surfaces // count surfaces
numSortedSurfaces = 0; numSortedSurfaces = 0;
for(surface = &s_worldData.surfaces[0]; surface < &s_worldData.surfaces[s_worldData.numsurfaces]; surface++) for(surface = s_worldData.surfaces; surface < s_worldData.surfaces + s_worldData.numWorldSurfaces; surface++)
{ {
srfBspSurface_t *bspSurf; srfBspSurface_t *bspSurf;
shader_t *shader = surface->shader; shader_t *shader = surface->shader;
if (shader->isPortal) if (shader->isPortal || shader->isSky || ShaderRequiresCPUDeforms(shader))
continue;
if (shader->isSky)
continue;
if (ShaderRequiresCPUDeforms(shader))
continue; continue;
// check for this now so we can use srfBspSurface_t* universally in the rest of the function // check for this now so we can use srfBspSurface_t* universally in the rest of the function
@ -1904,18 +1951,12 @@ static void R_CreateWorldVBOs(void)
surfacesSorted = ri.Malloc(numSortedSurfaces * sizeof(*surfacesSorted)); surfacesSorted = ri.Malloc(numSortedSurfaces * sizeof(*surfacesSorted));
j = 0; j = 0;
for(surface = &s_worldData.surfaces[0]; surface < &s_worldData.surfaces[s_worldData.numsurfaces]; surface++) for(surface = s_worldData.surfaces; surface < s_worldData.surfaces + s_worldData.numWorldSurfaces; surface++)
{ {
srfBspSurface_t *bspSurf; srfBspSurface_t *bspSurf;
shader_t *shader = surface->shader; shader_t *shader = surface->shader;
if (shader->isPortal) if (shader->isPortal || shader->isSky || ShaderRequiresCPUDeforms(shader))
continue;
if (shader->isSky)
continue;
if (ShaderRequiresCPUDeforms(shader))
continue; continue;
// check for this now so we can use srfBspSurface_t* universally in the rest of the function // check for this now so we can use srfBspSurface_t* universally in the rest of the function
@ -1933,37 +1974,34 @@ static void R_CreateWorldVBOs(void)
qsort(surfacesSorted, numSortedSurfaces, sizeof(*surfacesSorted), BSPSurfaceCompare); qsort(surfacesSorted, numSortedSurfaces, sizeof(*surfacesSorted), BSPSurfaceCompare);
k = 0; k = 0;
for(firstSurf = lastSurf = surfacesSorted; firstSurf < &surfacesSorted[numSortedSurfaces]; firstSurf = lastSurf) for(firstSurf = lastSurf = surfacesSorted; firstSurf < surfacesSorted + numSortedSurfaces; firstSurf = lastSurf)
{ {
int currVboSize, currIboSize; int currVboSize;
// Find range of surfaces to merge by: // Find range of surfaces to place in a vbo/ibo by:
// - Collecting a number of surfaces which fit under maxVboSize/maxIboSize, or // - Collecting a number of surfaces which fit under maxVboSize, or
// - All the surfaces with a single shader which go over maxVboSize/maxIboSize // - All the surfaces with a single shader which go over maxVboSize
currVboSize = currIboSize = 0; currVboSize = 0;
while (currVboSize < maxVboSize && currIboSize < maxIboSize && lastSurf < &surfacesSorted[numSortedSurfaces]) while (currVboSize < maxVboSize && lastSurf < surfacesSorted + numSortedSurfaces)
{ {
int addVboSize, addIboSize, currShaderIndex; int addVboSize, currShaderIndex;
addVboSize = addIboSize = 0; addVboSize = 0;
currShaderIndex = (*lastSurf)->shader->sortedIndex; currShaderIndex = (*lastSurf)->shader->sortedIndex;
for(currSurf = lastSurf; currSurf < &surfacesSorted[numSortedSurfaces] && (*currSurf)->shader->sortedIndex == currShaderIndex; currSurf++) for(currSurf = lastSurf; currSurf < surfacesSorted + numSortedSurfaces && (*currSurf)->shader->sortedIndex == currShaderIndex; currSurf++)
{ {
srfBspSurface_t *bspSurf = (srfBspSurface_t *) (*currSurf)->data; srfBspSurface_t *bspSurf = (srfBspSurface_t *) (*currSurf)->data;
addVboSize += bspSurf->numVerts * sizeof(srfVert_t); addVboSize += bspSurf->numVerts * sizeof(srfVert_t);
addIboSize += bspSurf->numIndexes * sizeof(glIndex_t);
} }
if ((currVboSize != 0 && addVboSize + currVboSize > maxVboSize) if (currVboSize != 0 && addVboSize + currVboSize > maxVboSize)
|| (currIboSize != 0 && addIboSize + currIboSize > maxIboSize))
break; break;
lastSurf = currSurf; lastSurf = currSurf;
currVboSize += addVboSize; currVboSize += addVboSize;
currIboSize += addIboSize;
} }
// count verts/indexes/surfaces // count verts/indexes/surfaces
@ -2039,6 +2077,141 @@ static void R_CreateWorldVBOs(void)
k++; k++;
} }
if (r_mergeLeafSurfaces->integer)
{
msurface_t *mergedSurf;
// count merged surfaces
int numMergedSurfaces = 0, numUnmergedSurfaces = 0;
for(firstSurf = lastSurf = surfacesSorted; firstSurf < surfacesSorted + numSortedSurfaces; firstSurf = lastSurf)
{
for (lastSurf++ ; lastSurf < surfacesSorted + numSortedSurfaces; lastSurf++)
{
int lastSurfLeafIndex, firstSurfLeafIndex;
if ((*lastSurf)->shader != (*firstSurf)->shader
|| (*lastSurf)->fogIndex != (*firstSurf)->fogIndex
|| (*lastSurf)->cubemapIndex != (*firstSurf)->cubemapIndex)
break;
lastSurfLeafIndex = s_worldData.surfacesViewCount[*lastSurf - s_worldData.surfaces];
firstSurfLeafIndex = s_worldData.surfacesViewCount[*firstSurf - s_worldData.surfaces];
if (lastSurfLeafIndex != firstSurfLeafIndex)
break;
}
// don't merge single surfaces
if (firstSurf + 1 == lastSurf)
{
numUnmergedSurfaces++;
continue;
}
numMergedSurfaces++;
}
// Allocate merged surfaces
s_worldData.mergedSurfaces = ri.Hunk_Alloc(sizeof(*s_worldData.mergedSurfaces) * numMergedSurfaces, h_low);
s_worldData.mergedSurfacesViewCount = ri.Hunk_Alloc(sizeof(*s_worldData.mergedSurfacesViewCount) * numMergedSurfaces, h_low);
s_worldData.mergedSurfacesDlightBits = ri.Hunk_Alloc(sizeof(*s_worldData.mergedSurfacesDlightBits) * numMergedSurfaces, h_low);
s_worldData.mergedSurfacesPshadowBits = ri.Hunk_Alloc(sizeof(*s_worldData.mergedSurfacesPshadowBits) * numMergedSurfaces, h_low);
s_worldData.numMergedSurfaces = numMergedSurfaces;
// view surfaces are like mark surfaces, except negative ones represent merged surfaces
// -1 represents 0, -2 represents 1, and so on
s_worldData.viewSurfaces = ri.Hunk_Alloc(sizeof(*s_worldData.viewSurfaces) * s_worldData.nummarksurfaces, h_low);
// copy view surfaces into mark surfaces
for (i = 0; i < s_worldData.nummarksurfaces; i++)
{
s_worldData.viewSurfaces[i] = s_worldData.marksurfaces[i];
}
// actually merge surfaces
mergedSurf = s_worldData.mergedSurfaces;
for(firstSurf = lastSurf = surfacesSorted; firstSurf < surfacesSorted + numSortedSurfaces; firstSurf = lastSurf)
{
srfBspSurface_t *bspSurf, *vboSurf;
for ( lastSurf++ ; lastSurf < surfacesSorted + numSortedSurfaces; lastSurf++)
{
int lastSurfLeafIndex, firstSurfLeafIndex;
if ((*lastSurf)->shader != (*firstSurf)->shader
|| (*lastSurf)->fogIndex != (*firstSurf)->fogIndex
|| (*lastSurf)->cubemapIndex != (*firstSurf)->cubemapIndex)
break;
lastSurfLeafIndex = s_worldData.surfacesViewCount[*lastSurf - s_worldData.surfaces];
firstSurfLeafIndex = s_worldData.surfacesViewCount[*firstSurf - s_worldData.surfaces];
if (lastSurfLeafIndex != firstSurfLeafIndex)
break;
}
// don't merge single surfaces
if (firstSurf + 1 == lastSurf)
continue;
bspSurf = (srfBspSurface_t *)(*firstSurf)->data;
vboSurf = ri.Hunk_Alloc(sizeof(*vboSurf), h_low);
memset(vboSurf, 0, sizeof(*vboSurf));
vboSurf->surfaceType = SF_VBO_MESH;
vboSurf->vbo = bspSurf->vbo;
vboSurf->ibo = bspSurf->ibo;
vboSurf->firstIndex = bspSurf->firstIndex;
vboSurf->minIndex = bspSurf->minIndex;
vboSurf->maxIndex = bspSurf->maxIndex;
ClearBounds(vboSurf->cullBounds[0], vboSurf->cullBounds[1]);
for (currSurf = firstSurf; currSurf < lastSurf; currSurf++)
{
srfBspSurface_t *currBspSurf = (srfBspSurface_t *)(*currSurf)->data;
vboSurf->numVerts += currBspSurf->numVerts;
vboSurf->numIndexes += currBspSurf->numIndexes;
vboSurf->minIndex = MIN(vboSurf->minIndex, currBspSurf->minIndex);
vboSurf->maxIndex = MAX(vboSurf->maxIndex, currBspSurf->maxIndex);
AddPointToBounds((*currSurf)->cullinfo.bounds[0], vboSurf->cullBounds[0], vboSurf->cullBounds[1]);
AddPointToBounds((*currSurf)->cullinfo.bounds[1], vboSurf->cullBounds[0], vboSurf->cullBounds[1]);
}
VectorCopy(vboSurf->cullBounds[0], mergedSurf->cullinfo.bounds[0]);
VectorCopy(vboSurf->cullBounds[1], mergedSurf->cullinfo.bounds[1]);
mergedSurf->cullinfo.type = CULLINFO_BOX;
mergedSurf->data = (surfaceType_t *)vboSurf;
mergedSurf->fogIndex = (*firstSurf)->fogIndex;
mergedSurf->cubemapIndex = (*firstSurf)->cubemapIndex;
mergedSurf->shader = (*firstSurf)->shader;
// redirect view surfaces to this surf
for (currSurf = firstSurf; currSurf < lastSurf; currSurf++)
s_worldData.surfacesViewCount[*currSurf - s_worldData.surfaces] = -2;
for (k = 0; k < s_worldData.nummarksurfaces; k++)
{
if (s_worldData.surfacesViewCount[s_worldData.marksurfaces[k]] == -2)
s_worldData.viewSurfaces[k] = -((int)(mergedSurf - s_worldData.mergedSurfaces) + 1);
}
for (currSurf = firstSurf; currSurf < lastSurf; currSurf++)
s_worldData.surfacesViewCount[*currSurf - s_worldData.surfaces] = -1;
mergedSurf++;
}
ri.Printf(PRINT_ALL, "Processed %d mergeable surfaces into %d merged, %d unmerged\n",
numSortedSurfaces, numMergedSurfaces, numUnmergedSurfaces);
}
for (i = 0; i < s_worldData.numWorldSurfaces; i++)
s_worldData.surfacesViewCount[i] = -1;
ri.Free(surfacesSorted); ri.Free(surfacesSorted);
endTime = ri.Milliseconds(); endTime = ri.Milliseconds();
@ -2914,335 +3087,6 @@ void R_RenderAllCubemaps(void)
} }
/*
=================
R_MergeLeafSurfaces
Merges surfaces that share a common leaf
=================
*/
void R_MergeLeafSurfaces(void)
{
int i, j, k;
int numWorldSurfaces;
int mergedSurfIndex;
int numMergedSurfaces;
int numUnmergedSurfaces;
VBO_t *vbo;
IBO_t *ibo;
msurface_t *mergedSurf;
glIndex_t *iboIndexes, *outIboIndexes;
int numIboIndexes;
int startTime, endTime;
startTime = ri.Milliseconds();
numWorldSurfaces = s_worldData.numWorldSurfaces;
// use viewcount to keep track of mergers
for (i = 0; i < numWorldSurfaces; i++)
{
s_worldData.surfacesViewCount[i] = -1;
}
// mark matching surfaces
for (i = 0; i < s_worldData.numnodes - s_worldData.numDecisionNodes; i++)
{
mnode_t *leaf = s_worldData.nodes + s_worldData.numDecisionNodes + i;
for (j = 0; j < leaf->nummarksurfaces; j++)
{
msurface_t *surf1;
shader_t *shader1;
int fogIndex1;
int cubemapIndex1;
int surfNum1;
surfNum1 = *(s_worldData.marksurfaces + leaf->firstmarksurface + j);
if (s_worldData.surfacesViewCount[surfNum1] != -1)
continue;
surf1 = s_worldData.surfaces + surfNum1;
if ((*surf1->data != SF_GRID) && (*surf1->data != SF_TRIANGLES) && (*surf1->data != SF_FACE))
continue;
shader1 = surf1->shader;
if(shader1->isSky)
continue;
if(shader1->isPortal)
continue;
if(ShaderRequiresCPUDeforms(shader1))
continue;
fogIndex1 = surf1->fogIndex;
cubemapIndex1 = surf1->cubemapIndex;
s_worldData.surfacesViewCount[surfNum1] = surfNum1;
for (k = j + 1; k < leaf->nummarksurfaces; k++)
{
msurface_t *surf2;
shader_t *shader2;
int fogIndex2;
int cubemapIndex2;
int surfNum2;
surfNum2 = *(s_worldData.marksurfaces + leaf->firstmarksurface + k);
if (s_worldData.surfacesViewCount[surfNum2] != -1)
continue;
surf2 = s_worldData.surfaces + surfNum2;
if ((*surf2->data != SF_GRID) && (*surf2->data != SF_TRIANGLES) && (*surf2->data != SF_FACE))
continue;
shader2 = surf2->shader;
if (shader1 != shader2)
continue;
fogIndex2 = surf2->fogIndex;
if (fogIndex1 != fogIndex2)
continue;
cubemapIndex2 = surf2->cubemapIndex;
if (cubemapIndex1 != cubemapIndex2)
continue;
s_worldData.surfacesViewCount[surfNum2] = surfNum1;
}
}
}
// don't add surfaces that don't merge to any others to the merged list
for (i = 0; i < numWorldSurfaces; i++)
{
qboolean merges = qfalse;
if (s_worldData.surfacesViewCount[i] != i)
continue;
for (j = 0; j < numWorldSurfaces; j++)
{
if (j == i)
continue;
if (s_worldData.surfacesViewCount[j] == i)
{
merges = qtrue;
break;
}
}
if (!merges)
s_worldData.surfacesViewCount[i] = -1;
}
// count merged/unmerged surfaces
numMergedSurfaces = 0;
numUnmergedSurfaces = 0;
for (i = 0; i < numWorldSurfaces; i++)
{
if (s_worldData.surfacesViewCount[i] == i)
{
numMergedSurfaces++;
}
else if (s_worldData.surfacesViewCount[i] == -1)
{
numUnmergedSurfaces++;
}
}
// Allocate merged surfaces
s_worldData.mergedSurfaces = ri.Hunk_Alloc(sizeof(*s_worldData.mergedSurfaces) * numMergedSurfaces, h_low);
s_worldData.mergedSurfacesViewCount = ri.Hunk_Alloc(sizeof(*s_worldData.mergedSurfacesViewCount) * numMergedSurfaces, h_low);
s_worldData.mergedSurfacesDlightBits = ri.Hunk_Alloc(sizeof(*s_worldData.mergedSurfacesDlightBits) * numMergedSurfaces, h_low);
s_worldData.mergedSurfacesPshadowBits = ri.Hunk_Alloc(sizeof(*s_worldData.mergedSurfacesPshadowBits) * numMergedSurfaces, h_low);
s_worldData.numMergedSurfaces = numMergedSurfaces;
// view surfaces are like mark surfaces, except negative ones represent merged surfaces
// -1 represents 0, -2 represents 1, and so on
s_worldData.viewSurfaces = ri.Hunk_Alloc(sizeof(*s_worldData.viewSurfaces) * s_worldData.nummarksurfaces, h_low);
// copy view surfaces into mark surfaces
for (i = 0; i < s_worldData.nummarksurfaces; i++)
{
s_worldData.viewSurfaces[i] = s_worldData.marksurfaces[i];
}
// need to be synched here
R_IssuePendingRenderCommands();
// actually merge surfaces
mergedSurfIndex = 0;
mergedSurf = s_worldData.mergedSurfaces;
for (i = 0; i < numWorldSurfaces; i++)
{
msurface_t *surf1;
vec3_t bounds[2];
int numSurfsToMerge;
int numIndexes;
int numVerts;
int firstIndex;
srfBspSurface_t *vboSurf;
if (s_worldData.surfacesViewCount[i] != i)
continue;
surf1 = s_worldData.surfaces + i;
// retrieve vbo
vbo = ((srfBspSurface_t *)(surf1->data))->vbo;
// count verts, indexes, and surfaces
numSurfsToMerge = 0;
numIndexes = 0;
numVerts = 0;
for (j = i; j < numWorldSurfaces; j++)
{
msurface_t *surf2;
srfBspSurface_t *bspSurf;
if (s_worldData.surfacesViewCount[j] != i)
continue;
surf2 = s_worldData.surfaces + j;
bspSurf = (srfBspSurface_t *) surf2->data;
numIndexes += bspSurf->numIndexes;
numVerts += bspSurf->numVerts;
numSurfsToMerge++;
}
if (numVerts == 0 || numIndexes == 0 || numSurfsToMerge < 2)
{
continue;
}
// create ibo
ibo = tr.ibos[tr.numIBOs] = ri.Hunk_Alloc(sizeof(*ibo), h_low);
memset(ibo, 0, sizeof(*ibo));
Q_strncpyz(ibo->name, va("staticWorldMesh_IBO_mergedSurfs%i", tr.numIBOs++), sizeof(ibo->name));
numIboIndexes = 0;
// allocate indexes
iboIndexes = outIboIndexes = ri.Malloc(numIndexes * sizeof(*outIboIndexes));
// Merge surfaces (indexes) and calculate bounds
ClearBounds(bounds[0], bounds[1]);
firstIndex = numIboIndexes;
for (j = i; j < numWorldSurfaces; j++)
{
msurface_t *surf2;
srfBspSurface_t *bspSurf;
if (s_worldData.surfacesViewCount[j] != i)
continue;
surf2 = s_worldData.surfaces + j;
AddPointToBounds(surf2->cullinfo.bounds[0], bounds[0], bounds[1]);
AddPointToBounds(surf2->cullinfo.bounds[1], bounds[0], bounds[1]);
bspSurf = (srfBspSurface_t *) surf2->data;
for (k = 0; k < bspSurf->numIndexes; k++)
{
*outIboIndexes++ = bspSurf->indexes[k] + bspSurf->firstVert;
numIboIndexes++;
}
break;
}
vboSurf = ri.Hunk_Alloc(sizeof(*vboSurf), h_low);
memset(vboSurf, 0, sizeof(*vboSurf));
vboSurf->surfaceType = SF_VBO_MESH;
vboSurf->vbo = vbo;
vboSurf->ibo = ibo;
vboSurf->numIndexes = numIndexes;
vboSurf->numVerts = numVerts;
vboSurf->firstIndex = firstIndex;
vboSurf->minIndex = *(iboIndexes + firstIndex);
vboSurf->maxIndex = *(iboIndexes + firstIndex);
for (j = 0; j < numIndexes; j++)
{
vboSurf->minIndex = MIN(vboSurf->minIndex, *(iboIndexes + firstIndex + j));
vboSurf->maxIndex = MAX(vboSurf->maxIndex, *(iboIndexes + firstIndex + j));
}
VectorCopy(bounds[0], vboSurf->cullBounds[0]);
VectorCopy(bounds[1], vboSurf->cullBounds[1]);
VectorCopy(bounds[0], mergedSurf->cullinfo.bounds[0]);
VectorCopy(bounds[1], mergedSurf->cullinfo.bounds[1]);
mergedSurf->cullinfo.type = CULLINFO_BOX;
mergedSurf->data = (surfaceType_t *)vboSurf;
mergedSurf->fogIndex = surf1->fogIndex;
mergedSurf->cubemapIndex = surf1->cubemapIndex;
mergedSurf->shader = surf1->shader;
// finish up the ibo
qglGenBuffersARB(1, &ibo->indexesVBO);
R_BindIBO(ibo);
qglBufferDataARB(GL_ELEMENT_ARRAY_BUFFER_ARB, numIboIndexes * sizeof(*iboIndexes), iboIndexes, GL_STATIC_DRAW_ARB);
R_BindNullIBO();
GL_CheckErrors();
ri.Free(iboIndexes);
// redirect view surfaces to this surf
for (j = 0; j < numWorldSurfaces; j++)
{
if (s_worldData.surfacesViewCount[j] != i)
continue;
for (k = 0; k < s_worldData.nummarksurfaces; k++)
{
int *mark = s_worldData.marksurfaces + k;
int *view = s_worldData.viewSurfaces + k;
if (*mark == j)
*view = -(mergedSurfIndex + 1);
}
}
mergedSurfIndex++;
mergedSurf++;
}
endTime = ri.Milliseconds();
ri.Printf(PRINT_ALL, "Processed %d surfaces into %d merged, %d unmerged in %5.2f seconds\n",
numWorldSurfaces, numMergedSurfaces, numUnmergedSurfaces, (endTime - startTime) / 1000.0f);
// reset viewcounts
for (i = 0; i < numWorldSurfaces; i++)
{
s_worldData.surfacesViewCount[i] = -1;
}
}
void R_CalcVertexLightDirs( void ) void R_CalcVertexLightDirs( void )
{ {
int i, k; int i, k;
@ -3569,10 +3413,6 @@ void RE_LoadWorldMap( const char *name ) {
// create static VBOS from the world // create static VBOS from the world
R_CreateWorldVBOs(); R_CreateWorldVBOs();
if (r_mergeLeafSurfaces->integer)
{
R_MergeLeafSurfaces();
}
s_worldData.dataSize = (byte *)ri.Hunk_Alloc(0, h_low) - startMarker; s_worldData.dataSize = (byte *)ri.Hunk_Alloc(0, h_low) - startMarker;