doom3quest/Projects/Android/jni/d3es-multithread-master/neo/renderer/Interaction.cpp
Simon b2b8f43c9d Initial Commit
Builds, runs, no stereo or much else is working, menus work ok though
2020-09-08 23:10:45 +01:00

1297 lines
39 KiB
C++

/*
===========================================================================
Doom 3 GPL Source Code
Copyright (C) 1999-2011 id Software LLC, a ZeniMax Media company.
This file is part of the Doom 3 GPL Source Code ("Doom 3 Source Code").
Doom 3 Source Code is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Doom 3 Source Code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Doom 3 Source Code. If not, see <http://www.gnu.org/licenses/>.
In addition, the Doom 3 Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the Doom 3 Source Code. If not, please request a copy in writing from id Software at the address below.
If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA.
===========================================================================
*/
#include "sys/platform.h"
#include "renderer/tr_local.h"
#include "renderer/RenderWorld_local.h"
#include "renderer/VertexCache.h"
#include "renderer/Interaction.h"
/*
===========================================================================
idInteraction implementation
===========================================================================
*/
// FIXME: use private allocator for srfCullInfo_t
/*
================
R_CalcInteractionFacing
Determines which triangles of the surface are facing towards the light origin.
The facing array should be allocated with one extra index than
the number of surface triangles, which will be used to handle dangling
edge silhouettes.
================
*/
void R_CalcInteractionFacing( const idRenderEntityLocal *ent, const srfTriangles_t *tri, const idRenderLightLocal *light, srfCullInfo_t &cullInfo ) {
idVec3 localLightOrigin;
if ( cullInfo.facing != NULL ) {
return;
}
R_GlobalPointToLocal( ent->modelMatrix, light->globalLightOrigin, localLightOrigin );
int numFaces = tri->numIndexes / 3;
if ( !tri->facePlanes || !tri->facePlanesCalculated ) {
R_DeriveFacePlanes( const_cast<srfTriangles_t *>(tri) );
}
cullInfo.facing = (byte *) R_StaticAlloc( ( numFaces + 1 ) * sizeof( cullInfo.facing[0] ) );
// calculate back face culling
float *planeSide = (float *) _alloca16( numFaces * sizeof( float ) );
// exact geometric cull against face
SIMDProcessor->Dot( planeSide, localLightOrigin, tri->facePlanes, numFaces );
SIMDProcessor->CmpGE( cullInfo.facing, planeSide, 0.0f, numFaces );
cullInfo.facing[ numFaces ] = 1; // for dangling edges to reference
}
/*
=====================
R_CalcInteractionCullBits
We want to cull a little on the sloppy side, because the pre-clipping
of geometry to the lights in dmap will give many cases that are right
at the border we throw things out on the border, because if any one
vertex is clearly inside, the entire triangle will be accepted.
=====================
*/
void R_CalcInteractionCullBits( const idRenderEntityLocal *ent, const srfTriangles_t *tri, const idRenderLightLocal *light, srfCullInfo_t &cullInfo ) {
int i, frontBits;
if ( cullInfo.cullBits != NULL ) {
return;
}
frontBits = 0;
// cull the triangle surface bounding box
for ( i = 0; i < 6; i++ ) {
R_GlobalPlaneToLocal( ent->modelMatrix, -light->frustum[i], cullInfo.localClipPlanes[i] );
// get front bits for the whole surface
if ( tri->bounds.PlaneDistance( cullInfo.localClipPlanes[i] ) >= LIGHT_CLIP_EPSILON ) {
frontBits |= 1<<i;
}
}
// if the surface is completely inside the light frustum
if ( frontBits == ( ( 1 << 6 ) - 1 ) ) {
cullInfo.cullBits = LIGHT_CULL_ALL_FRONT;
return;
}
cullInfo.cullBits = (byte *) R_StaticAlloc( tri->numVerts * sizeof( cullInfo.cullBits[0] ) );
SIMDProcessor->Memset( cullInfo.cullBits, 0, tri->numVerts * sizeof( cullInfo.cullBits[0] ) );
float *planeSide = (float *) _alloca16( tri->numVerts * sizeof( float ) );
for ( i = 0; i < 6; i++ ) {
// if completely infront of this clipping plane
if ( frontBits & ( 1 << i ) ) {
continue;
}
SIMDProcessor->Dot( planeSide, cullInfo.localClipPlanes[i], tri->verts, tri->numVerts );
SIMDProcessor->CmpLT( cullInfo.cullBits, i, planeSide, LIGHT_CLIP_EPSILON, tri->numVerts );
}
}
/*
================
R_FreeInteractionCullInfo
================
*/
void R_FreeInteractionCullInfo( srfCullInfo_t &cullInfo ) {
if ( cullInfo.facing != NULL ) {
R_StaticFree( cullInfo.facing );
cullInfo.facing = NULL;
}
if ( cullInfo.cullBits != NULL ) {
if ( cullInfo.cullBits != LIGHT_CULL_ALL_FRONT ) {
R_StaticFree( cullInfo.cullBits );
}
cullInfo.cullBits = NULL;
}
}
#define MAX_CLIPPED_POINTS 20
typedef struct {
int numVerts;
idVec3 verts[MAX_CLIPPED_POINTS];
} clipTri_t;
/*
=============
R_ChopWinding
Clips a triangle from one buffer to another, setting edge flags
The returned buffer may be the same as inNum if no clipping is done
If entirely clipped away, clipTris[returned].numVerts == 0
I have some worries about edge flag cases when polygons are clipped
multiple times near the epsilon.
=============
*/
static int R_ChopWinding( clipTri_t clipTris[2], int inNum, const idPlane plane ) {
clipTri_t *in, *out;
float dists[MAX_CLIPPED_POINTS];
int sides[MAX_CLIPPED_POINTS];
int counts[3];
float dot;
int i, j;
idVec3 mid;
bool front;
in = &clipTris[inNum];
out = &clipTris[inNum^1];
counts[0] = counts[1] = counts[2] = 0;
// determine sides for each point
front = false;
for ( i = 0; i < in->numVerts; i++ ) {
dot = in->verts[i] * plane.Normal() + plane[3];
dists[i] = dot;
if ( dot < LIGHT_CLIP_EPSILON ) { // slop onto the back
sides[i] = SIDE_BACK;
} else {
sides[i] = SIDE_FRONT;
if ( dot > LIGHT_CLIP_EPSILON ) {
front = true;
}
}
counts[sides[i]]++;
}
// if none in front, it is completely clipped away
if ( !front ) {
in->numVerts = 0;
return inNum;
}
if ( !counts[SIDE_BACK] ) {
return inNum; // inout stays the same
}
// avoid wrapping checks by duplicating first value to end
sides[i] = sides[0];
dists[i] = dists[0];
in->verts[in->numVerts] = in->verts[0];
out->numVerts = 0;
for ( i = 0 ; i < in->numVerts ; i++ ) {
idVec3 &p1 = in->verts[i];
if ( sides[i] == SIDE_FRONT ) {
out->verts[out->numVerts] = p1;
out->numVerts++;
}
if ( sides[i+1] == sides[i] ) {
continue;
}
// generate a split point
idVec3 &p2 = in->verts[i+1];
dot = dists[i] / ( dists[i] - dists[i+1] );
for ( j = 0; j < 3; j++ ) {
mid[j] = p1[j] + dot * ( p2[j] - p1[j] );
}
out->verts[out->numVerts] = mid;
out->numVerts++;
}
return inNum ^ 1;
}
/*
===================
R_ClipTriangleToLight
Returns false if nothing is left after clipping
===================
*/
static bool R_ClipTriangleToLight( const idVec3 &a, const idVec3 &b, const idVec3 &c, int planeBits, const idPlane frustum[6] ) {
int i;
clipTri_t pingPong[2];
int p;
pingPong[0].numVerts = 3;
pingPong[0].verts[0] = a;
pingPong[0].verts[1] = b;
pingPong[0].verts[2] = c;
p = 0;
for ( i = 0 ; i < 6 ; i++ ) {
if ( planeBits & ( 1 << i ) ) {
p = R_ChopWinding( pingPong, p, frustum[i] );
if ( pingPong[p].numVerts < 1 ) {
return false;
}
}
}
return true;
}
/*
====================
R_CreateLightTris
The resulting surface will be a subset of the original triangles,
it will never clip triangles, but it may cull on a per-triangle basis.
====================
*/
static srfTriangles_t *R_CreateLightTris( const idRenderEntityLocal *ent,
const srfTriangles_t *tri, const idRenderLightLocal *light,
const idMaterial *shader, srfCullInfo_t &cullInfo ) {
int i;
int numIndexes;
glIndex_t *indexes;
srfTriangles_t *newTri;
int c_backfaced;
int c_distance;
idBounds bounds;
bool includeBackFaces;
int faceNum;
tr.pc.c_createLightTris++;
c_backfaced = 0;
c_distance = 0;
numIndexes = 0;
indexes = NULL;
// it is debatable if non-shadowing lights should light back faces. we aren't at the moment
if ( r_lightAllBackFaces.GetBool() || light->lightShader->LightEffectsBackSides()
|| shader->ReceivesLightingOnBackSides()
|| ent->parms.noSelfShadow || ent->parms.noShadow ) {
includeBackFaces = true;
} else {
includeBackFaces = false;
}
// allocate a new surface for the lit triangles
newTri = R_AllocStaticTriSurf();
// save a reference to the original surface
newTri->ambientSurface = const_cast<srfTriangles_t *>(tri);
// the light surface references the verts of the ambient surface
newTri->numVerts = tri->numVerts;
R_ReferenceStaticTriSurfVerts( newTri, tri );
// calculate cull information
if ( !includeBackFaces ) {
R_CalcInteractionFacing( ent, tri, light, cullInfo );
}
R_CalcInteractionCullBits( ent, tri, light, cullInfo );
// if the surface is completely inside the light frustum
if ( cullInfo.cullBits == LIGHT_CULL_ALL_FRONT ) {
// if we aren't self shadowing, let back facing triangles get
// through so the smooth shaded bump maps light all the way around
if ( includeBackFaces ) {
// the whole surface is lit so the light surface just references the indexes of the ambient surface
R_ReferenceStaticTriSurfIndexes( newTri, tri );
numIndexes = tri->numIndexes;
bounds = tri->bounds;
} else {
// the light tris indexes are going to be a subset of the original indexes so we generally
// allocate too much memory here but we decrease the memory block when the number of indexes is known
R_AllocStaticTriSurfIndexes( newTri, tri->numIndexes );
// back face cull the individual triangles
indexes = newTri->indexes;
const byte *facing = cullInfo.facing;
for ( faceNum = i = 0; i < tri->numIndexes; i += 3, faceNum++ ) {
if ( !facing[ faceNum ] ) {
c_backfaced++;
continue;
}
indexes[numIndexes+0] = tri->indexes[i+0];
indexes[numIndexes+1] = tri->indexes[i+1];
indexes[numIndexes+2] = tri->indexes[i+2];
numIndexes += 3;
}
// get bounds for the surface
SIMDProcessor->MinMax( bounds[0], bounds[1], tri->verts, indexes, numIndexes );
// decrease the size of the memory block to the size of the number of used indexes
R_ResizeStaticTriSurfIndexes( newTri, numIndexes );
}
} else {
// the light tris indexes are going to be a subset of the original indexes so we generally
// allocate too much memory here but we decrease the memory block when the number of indexes is known
R_AllocStaticTriSurfIndexes( newTri, tri->numIndexes );
// cull individual triangles
indexes = newTri->indexes;
const byte *facing = cullInfo.facing;
const byte *cullBits = cullInfo.cullBits;
for ( faceNum = i = 0; i < tri->numIndexes; i += 3, faceNum++ ) {
int i1, i2, i3;
// if we aren't self shadowing, let back facing triangles get
// through so the smooth shaded bump maps light all the way around
if ( !includeBackFaces ) {
// back face cull
if ( !facing[ faceNum ] ) {
c_backfaced++;
continue;
}
}
i1 = tri->indexes[i+0];
i2 = tri->indexes[i+1];
i3 = tri->indexes[i+2];
// fast cull outside the frustum
// if all three points are off one plane side, it definately isn't visible
if ( cullBits[i1] & cullBits[i2] & cullBits[i3] ) {
c_distance++;
continue;
}
if ( r_usePreciseTriangleInteractions.GetBool() ) {
// do a precise clipped cull if none of the points is completely inside the frustum
// note that we do not actually use the clipped triangle, which would have Z fighting issues.
if ( cullBits[i1] && cullBits[i2] && cullBits[i3] ) {
int cull = cullBits[i1] | cullBits[i2] | cullBits[i3];
if ( !R_ClipTriangleToLight( tri->verts[i1].xyz, tri->verts[i2].xyz, tri->verts[i3].xyz, cull, cullInfo.localClipPlanes ) ) {
continue;
}
}
}
// add to the list
indexes[numIndexes+0] = i1;
indexes[numIndexes+1] = i2;
indexes[numIndexes+2] = i3;
numIndexes += 3;
}
// get bounds for the surface
SIMDProcessor->MinMax( bounds[0], bounds[1], tri->verts, indexes, numIndexes );
// decrease the size of the memory block to the size of the number of used indexes
R_ResizeStaticTriSurfIndexes( newTri, numIndexes );
}
if ( !numIndexes ) {
R_ReallyFreeStaticTriSurf( newTri );
return NULL;
}
newTri->numIndexes = numIndexes;
newTri->bounds = bounds;
return newTri;
}
/*
===============
idInteraction::idInteraction
===============
*/
idInteraction::idInteraction( void ) {
numSurfaces = 0;
surfaces = NULL;
entityDef = NULL;
lightDef = NULL;
lightNext = NULL;
lightPrev = NULL;
entityNext = NULL;
entityPrev = NULL;
dynamicModelFrameCount = 0;
frustumState = FRUSTUM_UNINITIALIZED;
frustumAreas = NULL;
}
/*
===============
idInteraction::AllocAndLink
===============
*/
idInteraction *idInteraction::AllocAndLink( idRenderEntityLocal *edef, idRenderLightLocal *ldef ) {
if ( !edef || !ldef ) {
common->Error( "idInteraction::AllocAndLink: NULL parm" );
}
idRenderWorldLocal *renderWorld = edef->world;
idInteraction *interaction = renderWorld->interactionAllocator.Alloc();
// link and initialize
interaction->dynamicModelFrameCount = 0;
interaction->lightDef = ldef;
interaction->entityDef = edef;
interaction->numSurfaces = -1; // not checked yet
interaction->surfaces = NULL;
interaction->frustumState = idInteraction::FRUSTUM_UNINITIALIZED;
interaction->frustumAreas = NULL;
// link at the start of the entity's list
interaction->lightNext = ldef->firstInteraction;
interaction->lightPrev = NULL;
ldef->firstInteraction = interaction;
if ( interaction->lightNext != NULL ) {
interaction->lightNext->lightPrev = interaction;
} else {
ldef->lastInteraction = interaction;
}
// link at the start of the light's list
interaction->entityNext = edef->firstInteraction;
interaction->entityPrev = NULL;
edef->firstInteraction = interaction;
if ( interaction->entityNext != NULL ) {
interaction->entityNext->entityPrev = interaction;
} else {
edef->lastInteraction = interaction;
}
// update the interaction table
if ( renderWorld->interactionTable ) {
int index = ldef->index * renderWorld->interactionTableWidth + edef->index;
if ( renderWorld->interactionTable[index] != NULL ) {
common->Error( "idInteraction::AllocAndLink: non NULL table entry" );
}
renderWorld->interactionTable[ index ] = interaction;
}
return interaction;
}
/*
===============
idInteraction::FreeSurfaces
Frees the surfaces, but leaves the interaction linked in, so it
will be regenerated automatically
===============
*/
void idInteraction::FreeSurfaces( void ) {
if ( this->surfaces ) {
for ( int i = 0 ; i < this->numSurfaces ; i++ ) {
surfaceInteraction_t *sint = &this->surfaces[i];
if ( sint->lightTris ) {
if ( sint->lightTris != LIGHT_TRIS_DEFERRED ) {
R_FreeStaticTriSurf( sint->lightTris );
}
sint->lightTris = NULL;
}
if ( sint->shadowTris ) {
// if it doesn't have an entityDef, it is part of a prelight
// model, not a generated interaction
if ( this->entityDef ) {
R_FreeStaticTriSurf( sint->shadowTris );
sint->shadowTris = NULL;
}
}
R_FreeInteractionCullInfo( sint->cullInfo );
}
R_StaticFree( this->surfaces );
this->surfaces = NULL;
}
this->numSurfaces = -1;
}
/*
===============
idInteraction::Unlink
===============
*/
void idInteraction::Unlink( void ) {
// unlink from the entity's list
if ( this->entityPrev ) {
this->entityPrev->entityNext = this->entityNext;
} else {
this->entityDef->firstInteraction = this->entityNext;
}
if ( this->entityNext ) {
this->entityNext->entityPrev = this->entityPrev;
} else {
this->entityDef->lastInteraction = this->entityPrev;
}
this->entityNext = this->entityPrev = NULL;
// unlink from the light's list
if ( this->lightPrev ) {
this->lightPrev->lightNext = this->lightNext;
} else {
this->lightDef->firstInteraction = this->lightNext;
}
if ( this->lightNext ) {
this->lightNext->lightPrev = this->lightPrev;
} else {
this->lightDef->lastInteraction = this->lightPrev;
}
this->lightNext = this->lightPrev = NULL;
}
/*
===============
idInteraction::UnlinkAndFree
Removes links and puts it back on the free list.
===============
*/
void idInteraction::UnlinkAndFree( void ) {
// clear the table pointer
idRenderWorldLocal *renderWorld = this->lightDef->world;
if ( renderWorld->interactionTable ) {
int index = this->lightDef->index * renderWorld->interactionTableWidth + this->entityDef->index;
if ( renderWorld->interactionTable[index] != this ) {
common->Error( "idInteraction::UnlinkAndFree: interactionTable wasn't set" );
}
renderWorld->interactionTable[index] = NULL;
}
Unlink();
FreeSurfaces();
// free the interaction area references
areaNumRef_t *area, *nextArea;
for ( area = frustumAreas; area; area = nextArea ) {
nextArea = area->next;
renderWorld->areaNumRefAllocator.Free( area );
}
// put it back on the free list
renderWorld->interactionAllocator.Free( this );
}
/*
===============
idInteraction::MakeEmpty
Makes the interaction empty and links it at the end of the entity's and light's interaction lists.
===============
*/
void idInteraction::MakeEmpty( void ) {
// an empty interaction has no surfaces
numSurfaces = 0;
Unlink();
// relink at the end of the entity's list
this->entityNext = NULL;
this->entityPrev = this->entityDef->lastInteraction;
this->entityDef->lastInteraction = this;
if ( this->entityPrev ) {
this->entityPrev->entityNext = this;
} else {
this->entityDef->firstInteraction = this;
}
// relink at the end of the light's list
this->lightNext = NULL;
this->lightPrev = this->lightDef->lastInteraction;
this->lightDef->lastInteraction = this;
if ( this->lightPrev ) {
this->lightPrev->lightNext = this;
} else {
this->lightDef->firstInteraction = this;
}
}
/*
===============
idInteraction::HasShadows
===============
*/
ID_INLINE bool idInteraction::HasShadows( void ) const {
return ( !lightDef->parms.noShadows && !entityDef->parms.noShadow && lightDef->lightShader->LightCastsShadows() );
}
/*
===============
idInteraction::MemoryUsed
Counts up the memory used by all the surfaceInteractions, which
will be used to determine when we need to start purging old interactions.
===============
*/
int idInteraction::MemoryUsed( void ) {
int total = 0;
for ( int i = 0 ; i < numSurfaces ; i++ ) {
surfaceInteraction_t *inter = &surfaces[i];
total += R_TriSurfMemory( inter->lightTris );
total += R_TriSurfMemory( inter->shadowTris );
}
return total;
}
/*
==================
idInteraction::CalcInteractionScissorRectangle
==================
*/
idScreenRect idInteraction::CalcInteractionScissorRectangle( const idFrustum &viewFrustum ) {
idBounds projectionBounds;
idScreenRect portalRect;
idScreenRect scissorRect;
if ( r_useInteractionScissors.GetInteger() == 0 ) {
return lightDef->viewLight->scissorRect;
}
if ( r_useInteractionScissors.GetInteger() < 0 ) {
// this is the code from Cass at nvidia, it is more precise, but slower
return R_CalcIntersectionScissor( lightDef, entityDef, tr.viewDef );
}
// the following is Mr.E's code
// frustum must be initialized and valid
if ( frustumState == idInteraction::FRUSTUM_UNINITIALIZED || frustumState == idInteraction::FRUSTUM_INVALID ) {
return lightDef->viewLight->scissorRect;
}
// calculate scissors for the portals through which the interaction is visible
if ( r_useInteractionScissors.GetInteger() > 1 ) {
areaNumRef_t *area;
if ( frustumState == idInteraction::FRUSTUM_VALID ) {
// retrieve all the areas the interaction frustum touches
for ( areaReference_t *ref = entityDef->entityRefs; ref; ref = ref->ownerNext ) {
area = entityDef->world->areaNumRefAllocator.Alloc();
area->areaNum = ref->area->areaNum;
area->next = frustumAreas;
frustumAreas = area;
}
frustumAreas = tr.viewDef->renderWorld->FloodFrustumAreas( frustum, frustumAreas );
frustumState = idInteraction::FRUSTUM_VALIDAREAS;
}
portalRect.Clear();
for ( area = frustumAreas; area; area = area->next ) {
portalRect.Union( entityDef->world->GetAreaScreenRect( area->areaNum ) );
}
portalRect.Intersect( lightDef->viewLight->scissorRect );
} else {
portalRect = lightDef->viewLight->scissorRect;
}
// early out if the interaction is not visible through any portals
if ( portalRect.IsEmpty() ) {
return portalRect;
}
// calculate bounds of the interaction frustum projected into the view frustum
if ( lightDef->parms.pointLight ) {
viewFrustum.ClippedProjectionBounds( frustum, idBox( lightDef->parms.origin, lightDef->parms.lightRadius, lightDef->parms.axis ), projectionBounds );
} else {
viewFrustum.ClippedProjectionBounds( frustum, idBox( lightDef->frustumTris->bounds ), projectionBounds );
}
if ( projectionBounds.IsCleared() ) {
return portalRect;
}
// derive a scissor rectangle from the projection bounds
scissorRect = R_ScreenRectFromViewFrustumBounds( projectionBounds );
// intersect with the portal crossing scissor rectangle
scissorRect.Intersect( portalRect );
if ( r_showInteractionScissors.GetInteger() > 0 ) {
R_ShowColoredScreenRect( scissorRect, lightDef->index );
}
return scissorRect;
}
/*
===================
idInteraction::CullInteractionByViewFrustum
===================
*/
bool idInteraction::CullInteractionByViewFrustum( const idFrustum &viewFrustum ) {
if ( !r_useInteractionCulling.GetBool() ) {
return false;
}
if ( frustumState == idInteraction::FRUSTUM_INVALID ) {
return false;
}
if ( frustumState == idInteraction::FRUSTUM_UNINITIALIZED ) {
frustum.FromProjection( idBox( entityDef->referenceBounds, entityDef->parms.origin, entityDef->parms.axis ), lightDef->globalLightOrigin, MAX_WORLD_SIZE );
if ( !frustum.IsValid() ) {
frustumState = idInteraction::FRUSTUM_INVALID;
return false;
}
if ( lightDef->parms.pointLight ) {
frustum.ConstrainToBox( idBox( lightDef->parms.origin, lightDef->parms.lightRadius, lightDef->parms.axis ) );
} else {
frustum.ConstrainToBox( idBox( lightDef->frustumTris->bounds ) );
}
frustumState = idInteraction::FRUSTUM_VALID;
}
if ( !viewFrustum.IntersectsFrustum( frustum ) ) {
return true;
}
if ( r_showInteractionFrustums.GetInteger() ) {
static idVec4 colors[] = { colorRed, colorGreen, colorBlue, colorYellow, colorMagenta, colorCyan, colorWhite, colorPurple };
tr.viewDef->renderWorld->DebugFrustum( colors[lightDef->index & 7], frustum, ( r_showInteractionFrustums.GetInteger() > 1 ) );
if ( r_showInteractionFrustums.GetInteger() > 2 ) {
tr.viewDef->renderWorld->DebugBox( colorWhite, idBox( entityDef->referenceBounds, entityDef->parms.origin, entityDef->parms.axis ) );
}
}
return false;
}
/*
====================
idInteraction::CreateInteraction
Called when a entityDef and a lightDef are both present in a
portalArea, and might be visible. Performs cull checking before doing the expensive
computations.
References tr.viewCount so lighting surfaces will only be created if the ambient surface is visible,
otherwise it will be marked as deferred.
The results of this are cached and valid until the light or entity change.
====================
*/
void idInteraction::CreateInteraction( const idRenderModel *model ) {
const idMaterial * lightShader = lightDef->lightShader;
const idMaterial* shader;
bool interactionGenerated;
idBounds bounds;
tr.pc.c_createInteractions++;
bounds = model->Bounds( &entityDef->parms );
// if it doesn't contact the light frustum, none of the surfaces will
if ( R_CullLocalBox( bounds, entityDef->modelMatrix, 6, lightDef->frustum ) ) {
MakeEmpty();
return;
}
// use the turbo shadow path
shadowGen_t shadowGen = SG_DYNAMIC;
// really large models, like outside terrain meshes, should use
// the more exactly culled static shadow path instead of the turbo shadow path.
// FIXME: this is a HACK, we should probably have a material flag.
if ( bounds[1][0] - bounds[0][0] > 3000 ) {
shadowGen = SG_STATIC;
}
//
// create slots for each of the model's surfaces
//
numSurfaces = model->NumSurfaces();
surfaces = (surfaceInteraction_t *)R_ClearedStaticAlloc( sizeof( *surfaces ) * numSurfaces );
interactionGenerated = false;
// check each surface in the model
for ( int c = 0 ; c < model->NumSurfaces() ; c++ ) {
const modelSurface_t *surf;
srfTriangles_t *tri;
surf = model->Surface( c );
tri = surf->geometry;
if ( !tri ) {
continue;
}
// determine the shader for this surface, possibly by skinning
shader = surf->shader;
shader = R_RemapShaderBySkin( shader, entityDef->parms.customSkin, entityDef->parms.customShader );
if ( !shader ) {
continue;
}
// try to cull each surface
if ( R_CullLocalBox( tri->bounds, entityDef->modelMatrix, 6, lightDef->frustum ) ) {
continue;
}
surfaceInteraction_t *sint = &surfaces[c];
sint->shader = shader;
// save the ambient tri pointer so we can reject lightTri interactions
// when the ambient surface isn't in view, and we can get shared vertex
// and shadow data from the source surface
sint->ambientTris = tri;
// "invisible ink" lights and shaders
if ( shader->Spectrum() != lightShader->Spectrum() ) {
continue;
}
// generate a lighted surface and add it
if ( shader->ReceivesLighting() ) {
if ( tri->ambientViewCount == tr.viewCount ) {
sint->lightTris = R_CreateLightTris( entityDef, tri, lightDef, shader, sint->cullInfo );
} else {
// this will be calculated when sint->ambientTris is actually in view
sint->lightTris = LIGHT_TRIS_DEFERRED;
}
interactionGenerated = true;
}
// if the interaction has shadows and this surface casts a shadow
if ( HasShadows() && shader->SurfaceCastsShadow() && tri->silEdges != NULL ) {
// if the light has an optimized shadow volume, don't create shadows for any models that are part of the base areas
if ( lightDef->parms.prelightModel == NULL || !model->IsStaticWorldModel() || !r_useOptimizedShadows.GetBool() ) {
// this is the only place during gameplay (outside the utilities) that R_CreateShadowVolume() is called
sint->shadowTris = R_CreateShadowVolume( entityDef, tri, lightDef, shadowGen, sint->cullInfo );
if ( sint->shadowTris ) {
if ( shader->Coverage() != MC_OPAQUE || ( !r_skipSuppress.GetBool() && entityDef->parms.suppressSurfaceInViewID ) ) {
// if any surface is a shadow-casting perforated or translucent surface, or the
// base surface is suppressed in the view (world weapon shadows) we can't use
// the external shadow optimizations because we can see through some of the faces
sint->shadowTris->numShadowIndexesNoCaps = sint->shadowTris->numIndexes;
sint->shadowTris->numShadowIndexesNoFrontCaps = sint->shadowTris->numIndexes;
}
}
interactionGenerated = true;
}
}
// free the cull information when it's no longer needed
if ( sint->lightTris != LIGHT_TRIS_DEFERRED ) {
R_FreeInteractionCullInfo( sint->cullInfo );
}
}
// if none of the surfaces generated anything, don't even bother checking?
if ( !interactionGenerated ) {
MakeEmpty();
}
}
/*
======================
R_PotentiallyInsideInfiniteShadow
If we know that we are "off to the side" of an infinite shadow volume,
we can draw it without caps in zpass mode
======================
*/
static bool R_PotentiallyInsideInfiniteShadow( const srfTriangles_t *occluder,
const idVec3 &localView, const idVec3 &localLight ) {
idBounds exp;
// expand the bounds to account for the near clip plane, because the
// view could be mathematically outside, but if the near clip plane
// chops a volume edge, the zpass rendering would fail.
float znear = r_znear.GetFloat();
if ( tr.viewDef->renderView.cramZNear ) {
znear *= 0.25f;
}
float stretch = znear * 2; // in theory, should vary with FOV
exp[0][0] = occluder->bounds[0][0] - stretch;
exp[0][1] = occluder->bounds[0][1] - stretch;
exp[0][2] = occluder->bounds[0][2] - stretch;
exp[1][0] = occluder->bounds[1][0] + stretch;
exp[1][1] = occluder->bounds[1][1] + stretch;
exp[1][2] = occluder->bounds[1][2] + stretch;
if ( exp.ContainsPoint( localView ) ) {
return true;
}
if ( exp.ContainsPoint( localLight ) ) {
return true;
}
// if the ray from localLight to localView intersects a face of the
// expanded bounds, we will be inside the projection
idVec3 ray = localView - localLight;
// intersect the ray from the view to the light with the near side of the bounds
for ( int axis = 0; axis < 3; axis++ ) {
float d, frac;
idVec3 hit;
if ( localLight[axis] < exp[0][axis] ) {
if ( localView[axis] < exp[0][axis] ) {
continue;
}
d = exp[0][axis] - localLight[axis];
frac = d / ray[axis];
hit = localLight + frac * ray;
hit[axis] = exp[0][axis];
} else if ( localLight[axis] > exp[1][axis] ) {
if ( localView[axis] > exp[1][axis] ) {
continue;
}
d = exp[1][axis] - localLight[axis];
frac = d / ray[axis];
hit = localLight + frac * ray;
hit[axis] = exp[1][axis];
} else {
continue;
}
if ( exp.ContainsPoint( hit ) ) {
return true;
}
}
// the view is definitely not inside the projected shadow
return false;
}
/*
==================
idInteraction::AddActiveInteraction
Create and add any necessary light and shadow triangles
If the model doesn't have any surfaces that need interactions
with this type of light, it can be skipped, but we might need to
instantiate the dynamic model to find out
==================
*/
void idInteraction::AddActiveInteraction( void ) {
viewLight_t * vLight;
viewEntity_t * vEntity;
idScreenRect shadowScissor;
idScreenRect lightScissor;
idVec3 localLightOrigin;
idVec3 localViewOrigin;
vLight = lightDef->viewLight;
vEntity = entityDef->viewEntity;
// do not waste time culling the interaction frustum if there will be no shadows
if ( !HasShadows() ) {
// use the entity scissor rectangle
shadowScissor = vEntity->scissorRect;
// culling does not seem to be worth it for static world models
} else if ( entityDef->parms.hModel->IsStaticWorldModel() ) {
// use the light scissor rectangle
shadowScissor = vLight->scissorRect;
} else {
// try to cull the interaction
// this will also cull the case where the light origin is inside the
// view frustum and the entity bounds are outside the view frustum
if ( CullInteractionByViewFrustum( tr.viewDef->viewFrustum ) ) {
return;
}
// calculate the shadow scissor rectangle
shadowScissor = CalcInteractionScissorRectangle( tr.viewDef->viewFrustum );
}
// get out before making the dynamic model if the shadow scissor rectangle is empty
if ( shadowScissor.IsEmpty() ) {
return;
}
// We will need the dynamic surface created to make interactions, even if the
// model itself wasn't visible. This just returns a cached value after it
// has been generated once in the view.
idRenderModel *model = R_EntityDefDynamicModel( entityDef );
if ( model == NULL || model->NumSurfaces() <= 0 ) {
return;
}
// the dynamic model may have changed since we built the surface list
if ( !IsDeferred() && entityDef->dynamicModelFrameCount != dynamicModelFrameCount ) {
FreeSurfaces();
}
dynamicModelFrameCount = entityDef->dynamicModelFrameCount;
// actually create the interaction if needed, building light and shadow surfaces as needed
if ( IsDeferred() ) {
CreateInteraction( model );
}
R_GlobalPointToLocal( vEntity->modelMatrix, lightDef->globalLightOrigin, localLightOrigin );
R_GlobalPointToLocal( vEntity->modelMatrix, tr.viewDef->renderView.vieworg, localViewOrigin );
// calculate the scissor as the intersection of the light and model rects
// this is used for light triangles, but not for shadow triangles
lightScissor = vLight->scissorRect;
lightScissor.Intersect( vEntity->scissorRect );
bool lightScissorsEmpty = lightScissor.IsEmpty();
// for each surface of this entity / light interaction
for ( int i = 0; i < numSurfaces; i++ ) {
surfaceInteraction_t *sint = &surfaces[i];
// see if the base surface is visible, we may still need to add shadows even if empty
if ( !lightScissorsEmpty && sint->ambientTris && sint->ambientTris->ambientViewCount == tr.viewCount ) {
// make sure we have created this interaction, which may have been deferred
// on a previous use that only needed the shadow
if ( sint->lightTris == LIGHT_TRIS_DEFERRED ) {
sint->lightTris = R_CreateLightTris( vEntity->entityDef, sint->ambientTris, vLight->lightDef, sint->shader, sint->cullInfo );
R_FreeInteractionCullInfo( sint->cullInfo );
}
srfTriangles_t *lightTris = sint->lightTris;
if ( lightTris ) {
// try to cull before adding
// FIXME: this may not be worthwhile. We have already done culling on the ambient,
// but individual surfaces may still be cropped somewhat more
if ( !R_CullLocalBox( lightTris->bounds, vEntity->modelMatrix, 5, tr.viewDef->frustum ) ) {
// make sure the original surface has its ambient cache created
if ( !R_CreateAmbientCache( sint->ambientTris, sint->shader->ReceivesLighting() ) ) {
// skip if we were out of vertex memory
continue;
}
// reference the original surface's ambient cache
// GAB NOTE: we are in cache "reuse" mode
lightTris->ambientCache = sint->ambientTris->ambientCache;
// Even if we reuse the original surface ambient cache, we nevertheless need to compute a local index cache
if ( !R_CreateIndexCache( lightTris ) ) {
// skip if we were out of vertex memory
continue;
}
// touch the ambient surface so it won't get purged
vertexCache.Touch( lightTris->ambientCache );
vertexCache.Touch( lightTris->indexCache );
// add the surface to the light list
const idMaterial *shader = sint->shader;
R_GlobalShaderOverride( &shader );
// there will only be localSurfaces if the light casts shadows and
// there are surfaces with NOSELFSHADOW
if ( sint->shader->Coverage() == MC_TRANSLUCENT ) {
R_LinkLightSurf( &vLight->translucentInteractions, lightTris,
vEntity, lightDef, shader, lightScissor, false );
} else if ( !lightDef->parms.noShadows && sint->shader->TestMaterialFlag(MF_NOSELFSHADOW) ) {
R_LinkLightSurf( &vLight->localInteractions, lightTris,
vEntity, lightDef, shader, lightScissor, false );
} else {
R_LinkLightSurf( &vLight->globalInteractions, lightTris,
vEntity, lightDef, shader, lightScissor, false );
}
}
}
}
srfTriangles_t *shadowTris = sint->shadowTris;
// the shadows will always have to be added, unless we can tell they
// are from a surface in an unconnected area
if ( shadowTris ) {
// check for view specific shadow suppression (player shadows, etc)
if ( !r_skipSuppress.GetBool() ) {
if ( entityDef->parms.suppressShadowInViewID &&
entityDef->parms.suppressShadowInViewID == tr.viewDef->renderView.viewID ) {
continue;
}
if ( entityDef->parms.suppressShadowInLightID &&
entityDef->parms.suppressShadowInLightID == lightDef->parms.lightId ) {
continue;
}
}
// cull static shadows that have a non-empty bounds
// dynamic shadows that use the turboshadow code will not have valid
// bounds, because the perspective projection extends them to infinity
if ( r_useShadowCulling.GetBool() && !shadowTris->bounds.IsCleared() ) {
if ( R_CullLocalBox( shadowTris->bounds, vEntity->modelMatrix, 5, tr.viewDef->frustum ) ) {
continue;
}
}
// If the tri have shadowVertexes (eg. precomputed shadows)
if ( shadowTris->shadowVertexes ) {
// Create its shadow cache
if (!R_CreatePrivateShadowCache( shadowTris )) {
// skip if we were out of vertex memory
continue;
}
// And its index cache
if (!R_CreateIndexCache( shadowTris ) ) {
// skip if we were out of vertex memory
continue;
}
}
// Otherwise this is dynamic shadows
else {
// Make sure the original surface has its shadow cache created
if (!R_CreateVertexProgramShadowCache( sint->ambientTris )) {
// skip if we were out of vertex memory
continue;
}
// reference the original surface's shadow cache
// GAB NOTE: we are in cache "reuse" mode
shadowTris->shadowCache = sint->ambientTris->shadowCache;
// Even if we reuse the original surface shadow cache, we nevertheless need to compute a local index cache
if ( !R_CreateIndexCache( shadowTris ) ) {
// skip if we were out of vertex memory
continue;
}
}
// In the end, touch the shadow surface so it won't get purged
vertexCache.Touch( shadowTris->shadowCache );
vertexCache.Touch( shadowTris->indexCache );
// see if we can avoid using the shadow volume caps
bool inside = R_PotentiallyInsideInfiniteShadow( sint->ambientTris, localViewOrigin, localLightOrigin );
if ( sint->shader->TestMaterialFlag( MF_NOSELFSHADOW ) ) {
R_LinkLightSurf( &vLight->localShadows,
shadowTris, vEntity, lightDef, NULL, shadowScissor, inside );
} else {
R_LinkLightSurf( &vLight->globalShadows,
shadowTris, vEntity, lightDef, NULL, shadowScissor, inside );
}
}
}
}
/*
===================
R_ShowInteractionMemory_f
===================
*/
void R_ShowInteractionMemory_f( const idCmdArgs &args ) {
int total = 0;
int entities = 0;
int interactions = 0;
int deferredInteractions = 0;
int emptyInteractions = 0;
int lightTris = 0;
int lightTriVerts = 0;
int lightTriIndexes = 0;
int shadowTris = 0;
int shadowTriVerts = 0;
int shadowTriIndexes = 0;
for ( int i = 0; i < tr.primaryWorld->entityDefs.Num(); i++ ) {
idRenderEntityLocal *def = tr.primaryWorld->entityDefs[i];
if ( !def ) {
continue;
}
if ( def->firstInteraction == NULL ) {
continue;
}
entities++;
for ( idInteraction *inter = def->firstInteraction; inter != NULL; inter = inter->entityNext ) {
interactions++;
total += inter->MemoryUsed();
if ( inter->IsDeferred() ) {
deferredInteractions++;
continue;
}
if ( inter->IsEmpty() ) {
emptyInteractions++;
continue;
}
for ( int j = 0; j < inter->numSurfaces; j++ ) {
surfaceInteraction_t *srf = &inter->surfaces[j];
if ( srf->lightTris && srf->lightTris != LIGHT_TRIS_DEFERRED ) {
lightTris++;
lightTriVerts += srf->lightTris->numVerts;
lightTriIndexes += srf->lightTris->numIndexes;
}
if ( srf->shadowTris ) {
shadowTris++;
shadowTriVerts += srf->shadowTris->numVerts;
shadowTriIndexes += srf->shadowTris->numIndexes;
}
}
}
}
common->Printf( "%i entities with %i total interactions totalling %ik\n", entities, interactions, total / 1024 );
common->Printf( "%i deferred interactions, %i empty interactions\n", deferredInteractions, emptyInteractions );
common->Printf( "%5i indexes %5i verts in %5i light tris\n", lightTriIndexes, lightTriVerts, lightTris );
common->Printf( "%5i indexes %5i verts in %5i shadow tris\n", shadowTriIndexes, shadowTriVerts, shadowTris );
}