/* mathlib.c - internal mathlib Copyright (C) 2010 Uncle Mike This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. */ #include "mathlib.h" unsigned short FloatToHalf( float v ) { unsigned int i = *((unsigned int *)&v); unsigned int e = (i >> 23) & 0x00ff; unsigned int m = i & 0x007fffff; unsigned short h; if( e <= 127 - 15 ) h = ((m | 0x00800000) >> (127 - 14 - e)) >> 13; else h = (i >> 13) & 0x3fff; h |= (i >> 16) & 0xc000; return h; } float HalfToFloat( unsigned short h ) { unsigned int f = (h << 16) & 0x80000000; unsigned int em = h & 0x7fff; if( em > 0x03ff ) { f |= (em << 13) + ((127 - 15) << 23); } else { unsigned int m = em & 0x03ff; if( m != 0 ) { unsigned int e = (em >> 10) & 0x1f; while(( m & 0x0400 ) == 0 ) { m <<= 1; e--; } m &= 0x3ff; f |= ((e + (127 - 14)) << 23) | (m << 13); } } return *((float *)&f); } /* ================= NearestPOW ================= */ int NearestPOW( int value, bool roundDown ) { int n = 1; if( value <= 0 ) return 1; while( n < value ) n <<= 1; if( roundDown ) { if( n > value ) n >>= 1; } return n; } // remap a value in the range [A,B] to [C,D]. float RemapVal( float val, float A, float B, float C, float D ) { return C + (D - C) * (val - A) / (B - A); } float ApproachVal( float target, float value, float speed ) { float delta = target - value; if( delta > speed ) value += speed; else if( delta < -speed ) value -= speed; else value = target; return value; } /* ================= rsqrt ================= */ float rsqrt( float number ) { int i; float x, y; if( number == 0.0f ) return 0.0f; x = number * 0.5f; i = *(int *)&number; // evil floating point bit level hacking i = 0x5f3759df - (i >> 1); // what the fuck? y = *(float *)&i; y = y * (1.5f - (x * y * y)); // first iteration return y; } /* ================= SinCos ================= */ void SinCos( float radians, float *sine, float *cosine ) { #if _MSC_VER == 1200 _asm { fld dword ptr [radians] fsincos mov edx, dword ptr [cosine] mov eax, dword ptr [sine] fstp dword ptr [edx] fstp dword ptr [eax] } #else // I think, better use math.h function, instead of ^ #if defined (__linux__) && !defined (__ANDROID__) sincosf(radians, sine, cosine); #else *sine = sinf(radians); *cosine = cosf(radians); #endif #endif } #ifdef XASH_VECTORIZE_SINCOS void SinCosFastVector4(float r1, float r2, float r3, float r4, float *s0, float *s1, float *s2, float *s3, float *c0, float *c1, float *c2, float *c3) { v4sf rad_vector = {r1, r2, r3, r4}; v4sf sin_vector, cos_vector; sincos_ps(rad_vector, &sin_vector, &cos_vector); *s0 = s4f_x(sin_vector); *s1 = s4f_y(sin_vector); *s2 = s4f_z(sin_vector); *s3 = s4f_w(sin_vector); *c0 = s4f_x(cos_vector); *c1 = s4f_y(cos_vector); *c2 = s4f_z(cos_vector); *c3 = s4f_w(cos_vector); } void SinCosFastVector3(float r1, float r2, float r3, float *s0, float *s1, float *s2, float *c0, float *c1, float *c2) { v4sf rad_vector = {r1, r2, r3, 0}; v4sf sin_vector, cos_vector; sincos_ps(rad_vector, &sin_vector, &cos_vector); *s0 = s4f_x(sin_vector); *s1 = s4f_y(sin_vector); *s2 = s4f_z(sin_vector); *c0 = s4f_x(cos_vector); *c1 = s4f_y(cos_vector); *c2 = s4f_z(cos_vector); } void SinCosFastVector2(float r1, float r2, float *s0, float *s1, float *c0, float *c1) { v4sf rad_vector = {r1, r2, 0, 0}; v4sf sin_vector, cos_vector; sincos_ps(rad_vector, &sin_vector, &cos_vector); *s0 = s4f_x(sin_vector); *s1 = s4f_y(sin_vector); *c0 = s4f_x(cos_vector); *c1 = s4f_y(cos_vector); } void SinFastVector3(float r1, float r2, float r3, float *s0, float *s1, float *s2) { v4sf rad_vector = {r1, r2, r3, 0}; v4sf sin_vector; sin_vector = sin_ps(rad_vector); *s0 = s4f_x(sin_vector); *s1 = s4f_y(sin_vector); *s2 = s4f_z(sin_vector); } #endif float VectorNormalizeLength2( const vec3_t v, vec3_t out ) { float length, ilength; length = v[0] * v[0] + v[1] * v[1] + v[2] * v[2]; length = sqrt( length ); if( length ) { ilength = 1.0f / length; out[0] = v[0] * ilength; out[1] = v[1] * ilength; out[2] = v[2] * ilength; } return length; } void VectorVectors( const vec3_t forward, vec3_t right, vec3_t up ) { float d; right[0] = forward[2]; right[1] = -forward[0]; right[2] = forward[1]; d = DotProduct( forward, right ); VectorMA( right, -d, forward, right ); VectorNormalize( right ); CrossProduct( right, forward, up ); } /* ================= AngleVectors ================= */ void AngleVectors( const vec3_t angles, vec3_t forward, vec3_t right, vec3_t up ) { static float sr, sp, sy, cr, cp, cy; #ifdef XASH_VECTORIZE_SINCOS SinCosFastVector3( DEG2RAD(angles[YAW]), DEG2RAD(angles[PITCH]), DEG2RAD(angles[ROLL]), &sy, &sp, &sr, &cy, &cp, &cr); #else SinCos( DEG2RAD( angles[YAW] ), &sy, &cy ); SinCos( DEG2RAD( angles[PITCH] ), &sp, &cp ); SinCos( DEG2RAD( angles[ROLL] ), &sr, &cr ); #endif if( forward ) { forward[0] = cp * cy; forward[1] = cp * sy; forward[2] = -sp; } if( right ) { right[0] = (-1.0f * sr * sp * cy + -1.0f * cr * -sy ); right[1] = (-1.0f * sr * sp * sy + -1.0f * cr * cy ); right[2] = (-1.0f * sr * cp); } if( up ) { up[0] = (cr * sp * cy + -sr * -sy ); up[1] = (cr * sp * sy + -sr * cy ); up[2] = (cr * cp); } } /* ================= VectorAngles ================= */ void VectorAngles( const float *forward, float *angles ) { float tmp, yaw, pitch; if( !forward || !angles ) { if( angles ) VectorClear( angles ); return; } if( forward[1] == 0 && forward[0] == 0 ) { // fast case yaw = 0; if( forward[2] > 0 ) pitch = 90.0f; else pitch = 270.0f; } else { yaw = ( atan2( forward[1], forward[0] ) * 180 / M_PI ); if( yaw < 0 ) yaw += 360; tmp = sqrt( forward[0] * forward[0] + forward[1] * forward[1] ); pitch = ( atan2( forward[2], tmp ) * 180 / M_PI ); if( pitch < 0 ) pitch += 360; } VectorSet( angles, pitch, yaw, 0 ); } /* ================= VectorsAngles ================= */ void VectorsAngles( const vec3_t forward, const vec3_t right, const vec3_t up, vec3_t angles ) { float pitch, cpitch, yaw, roll; pitch = -asin( forward[2] ); cpitch = cos( pitch ); if( fabs( cpitch ) > EQUAL_EPSILON ) // gimball lock? { cpitch = 1.0f / cpitch; pitch = RAD2DEG( pitch ); yaw = RAD2DEG( atan2( forward[1] * cpitch, forward[0] * cpitch )); roll = RAD2DEG( atan2( -right[2] * cpitch, up[2] * cpitch )); } else { pitch = forward[2] > 0 ? -90.0f : 90.0f; yaw = RAD2DEG( atan2( right[0], -right[1] )); roll = 180.0f; } angles[PITCH] = pitch; angles[YAW] = yaw; angles[ROLL] = roll; } /* ================= InterpolateAngles ================= */ void InterpolateAngles( vec3_t start, vec3_t end, vec3_t out, float frac ) { float d, ang1, ang2; int i; for( i = 0; i < 3; i++ ) { ang1 = start[i]; ang2 = end[i]; d = ang1 - ang2; if( d > 180.0f ) d -= 360.0f; else if( d < -180.0f ) d += 360.0f; out[i] = ang2 + d * frac; } } /* ================= BoundsIntersect ================= */ bool BoundsIntersect( const vec3_t mins1, const vec3_t maxs1, const vec3_t mins2, const vec3_t maxs2 ) { if( mins1[0] > maxs2[0] || mins1[1] > maxs2[1] || mins1[2] > maxs2[2] ) return false; if( maxs1[0] < mins2[0] || maxs1[1] < mins2[1] || maxs1[2] < mins2[2] ) return false; return true; } /* ================= BoundsAndSphereIntersect ================= */ bool BoundsAndSphereIntersect( const vec3_t mins, const vec3_t maxs, const vec3_t origin, float radius ) { if( mins[0] > origin[0] + radius || mins[1] > origin[1] + radius || mins[2] > origin[2] + radius ) return false; if( maxs[0] < origin[0] - radius || maxs[1] < origin[1] - radius || maxs[2] < origin[2] - radius ) return false; return true; } // // studio utils // /* ==================== AngleQuaternion ==================== */ void AngleQuaternion( const vec3_t angles, vec4_t q ) { float sr, sp, sy, cr, cp, cy; #ifdef XASH_VECTORIZE_SINCOS SinCosFastVector3( angles[2] * 0.5f, angles[1] * 0.5f, angles[0] * 0.5f, &sy, &sp, &sr, &cy, &cp, &cr); #else float angle; angle = angles[2] * 0.5f; SinCos( angle, &sy, &cy ); angle = angles[1] * 0.5f; SinCos( angle, &sp, &cp ); angle = angles[0] * 0.5f; SinCos( angle, &sr, &cr ); #endif q[0] = sr * cp * cy - cr * sp * sy; // X q[1] = cr * sp * cy + sr * cp * sy; // Y q[2] = cr * cp * sy - sr * sp * cy; // Z q[3] = cr * cp * cy + sr * sp * sy; // W } /* ==================== QuaternionSlerp ==================== */ void QuaternionSlerp( const vec4_t p, vec4_t q, float t, vec4_t qt ) { float omega, sclp, sclq; float cosom, sinom; float a = 0.0f; float b = 0.0f; int i; // decide if one of the quaternions is backwards for( i = 0; i < 4; i++ ) { a += (p[i] - q[i]) * (p[i] - q[i]); b += (p[i] + q[i]) * (p[i] + q[i]); } if( a > b ) { for( i = 0; i < 4; i++ ) { q[i] = -q[i]; } } cosom = p[0] * q[0] + p[1] * q[1] + p[2] * q[2] + p[3] * q[3]; if(( 1.0 + cosom ) > 0.000001f ) { if(( 1.0f - cosom ) > 0.000001f ) { omega = acos( cosom ); #ifdef XASH_VECTORIZE_SINCOS SinFastVector3( omega, ( 1.0f - t ) * omega, t * omega, &sinom, &sclp, &sclq ); sclp /= sinom; sclq /= sinom; #else sinom = sin( omega ); sclp = sin(( 1.0f - t ) * omega ) / sinom; sclq = sin( t * omega ) / sinom; #endif } else { sclp = 1.0f - t; sclq = t; } for( i = 0; i < 4; i++ ) qt[i] = sclp * p[i] + sclq * q[i]; } else { qt[0] = -q[1]; qt[1] = q[0]; qt[2] = -q[3]; qt[3] = q[2]; sclp = sin(( 1.0f - t ) * ( 0.5f * M_PI )); sclq = sin( t * ( 0.5f * M_PI )); for( i = 0; i < 3; i++ ) qt[i] = sclp * p[i] + sclq * qt[i]; } }