#region ================== Copyright (c) 2007 Pascal vd Heiden
/*
* Copyright (c) 2007 Pascal vd Heiden, www.codeimp.com
* This program is released under GNU General Public License
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#endregion
#region ================== Namespaces
using System;
#endregion
namespace CodeImp.DoomBuilder.Geometry
{
public struct Plane
{
#region ================== Constants
#endregion
#region ================== Variables
//
// Plane definition:
// A * x + B * y + C * z + D = 0
//
// A, B, C is the normal
// D is the offset along the normal (negative)
//
private Vector3D normal;
private float offset;
#endregion
#region ================== Properties
public Vector3D Normal { get { return normal; } }
public float Offset { get { return offset; } set { offset = value; } }
public float a { get { return normal.x; } }
public float b { get { return normal.y; } }
public float c { get { return normal.z; } }
public float d { get { return offset; } set { offset = value; } }
#endregion
#region ================== Constructors
///
public Plane(Vector3D normal, float offset)
{
#if DEBUG
if(!normal.IsNormalized())
throw new NotSupportedException("Attempt to create a plane with a vector that is not normalized!"); // General.Fail("Attempt to create a plane with a vector that is not normalized!");
#endif
this.normal = normal;
this.offset = offset;
}
///
public Plane(Vector3D normal, Vector3D position)
{
#if DEBUG
if(!normal.IsNormalized())
throw new NotSupportedException("Attempt to create a plane with a vector that is not normalized!"); //General.Fail("Attempt to create a plane with a vector that is not normalized!");
#endif
this.normal = normal;
this.offset = -Vector3D.DotProduct(normal, position);
}
///
public Plane(Vector3D p1, Vector3D p2, Vector3D p3, bool up)
{
this.normal = Vector3D.CrossProduct(p2 - p1, p3 - p1).GetNormal();
if((up && (this.normal.z < 0.0f)) || (!up && (this.normal.z > 0.0f)))
this.normal = -this.normal;
this.offset = -Vector3D.DotProduct(normal, p3);
}
///
public Plane(Vector3D center, float anglexy, float anglez, bool up) //mxd
{
Vector2D point = new Vector2D(center.x + (float)Math.Cos(anglexy) * (float)Math.Sin(anglez), center.y + (float)Math.Sin(anglexy) * (float)Math.Sin(anglez));
Vector2D perpendicular = new Line2D(center, point).GetPerpendicular();
Vector3D p2 = new Vector3D(point.x + perpendicular.x, point.y + perpendicular.y, center.z + (float)Math.Cos(anglez));
Vector3D p3 = new Vector3D(point.x - perpendicular.x, point.y - perpendicular.y, center.z + (float)Math.Cos(anglez));
this.normal = Vector3D.CrossProduct(p2 - center, p3 - center).GetNormal();
if((up && (this.normal.z < 0.0f)) || (!up && (this.normal.z > 0.0f)))
this.normal = -this.normal;
this.offset = -Vector3D.DotProduct(normal, p3);
}
#endregion
#region ================== Methods
///
/// This tests for intersection with a line.
/// See http://local.wasp.uwa.edu.au/~pbourke/geometry/planeline/
///
public bool GetIntersection(Vector3D from, Vector3D to, ref float u_ray)
{
float w = Vector3D.DotProduct(normal, from - to);
if(w != 0.0f)
{
float v = Vector3D.DotProduct(normal, from);
u_ray = (offset + v) / w;
return true;
}
else
{
return false;
}
}
///
/// This returns the smallest distance to the plane and the side on which the point lies.
/// Greater than 0 means the point lies on the front of the plane
/// Less than 0 means the point lies behind the plane
/// See http://mathworld.wolfram.com/Point-PlaneDistance.html
///
public float Distance(Vector3D p)
{
return Vector3D.DotProduct(normal, p) + offset;
}
///
/// This returns a point on the plane closest to the given point
///
public Vector3D ClosestOnPlane(Vector3D p)
{
float d = this.Distance(p);
return p - normal * d;
}
///
/// This returns Z on the plane at X, Y
///
public float GetZ(Vector2D pos)
{
return (-offset - Vector2D.DotProduct(normal, pos)) / normal.z;
}
///
/// This returns Z on the plane at X, Y
///
public float GetZ(float x, float y)
{
return (-offset - (normal.x * x + normal.y * y)) / normal.z;
}
///
/// This inverts the plane
///
public Plane GetInverted()
{
return new Plane(-normal, -offset);
}
#endregion
}
}