#region ================== Copyright (c) 2007 Pascal vd Heiden /* * Copyright (c) 2007 Pascal vd Heiden, www.codeimp.com * This program is released under GNU General Public License * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #endregion #region ================== Namespaces using System; #endregion namespace CodeImp.DoomBuilder.Geometry { public struct Plane { #region ================== Constants #endregion #region ================== Variables // // Plane definition: // A * x + B * y + C * z + D = 0 // // A, B, C is the normal // D is the offset along the normal (negative) // private Vector3D normal; private float offset; #endregion #region ================== Properties public Vector3D Normal { get { return normal; } } public float Offset { get { return offset; } set { offset = value; } } public float a { get { return normal.x; } } public float b { get { return normal.y; } } public float c { get { return normal.z; } } public float d { get { return offset; } set { offset = value; } } #endregion #region ================== Constructors /// public Plane(Vector3D normal, float offset) { #if DEBUG if(!normal.IsNormalized()) throw new NotSupportedException("Attempt to create a plane with a vector that is not normalized!"); // General.Fail("Attempt to create a plane with a vector that is not normalized!"); #endif this.normal = normal; this.offset = offset; } /// public Plane(Vector3D normal, Vector3D position) { #if DEBUG if(!normal.IsNormalized()) throw new NotSupportedException("Attempt to create a plane with a vector that is not normalized!"); //General.Fail("Attempt to create a plane with a vector that is not normalized!"); #endif this.normal = normal; this.offset = -Vector3D.DotProduct(normal, position); } /// public Plane(Vector3D p1, Vector3D p2, Vector3D p3, bool up) { this.normal = Vector3D.CrossProduct(p2 - p1, p3 - p1).GetNormal(); if((up && (this.normal.z < 0.0f)) || (!up && (this.normal.z > 0.0f))) this.normal = -this.normal; this.offset = -Vector3D.DotProduct(normal, p3); } /// public Plane(Vector3D center, float anglexy, float anglez, bool up) //mxd { Vector2D point = new Vector2D(center.x + (float)Math.Cos(anglexy) * (float)Math.Sin(anglez), center.y + (float)Math.Sin(anglexy) * (float)Math.Sin(anglez)); Vector2D perpendicular = new Line2D(center, point).GetPerpendicular(); Vector3D p2 = new Vector3D(point.x + perpendicular.x, point.y + perpendicular.y, center.z + (float)Math.Cos(anglez)); Vector3D p3 = new Vector3D(point.x - perpendicular.x, point.y - perpendicular.y, center.z + (float)Math.Cos(anglez)); this.normal = Vector3D.CrossProduct(p2 - center, p3 - center).GetNormal(); if((up && (this.normal.z < 0.0f)) || (!up && (this.normal.z > 0.0f))) this.normal = -this.normal; this.offset = -Vector3D.DotProduct(normal, p3); } #endregion #region ================== Methods /// /// This tests for intersection with a line. /// See http://local.wasp.uwa.edu.au/~pbourke/geometry/planeline/ /// public bool GetIntersection(Vector3D from, Vector3D to, ref float u_ray) { float w = Vector3D.DotProduct(normal, from - to); if(w != 0.0f) { float v = Vector3D.DotProduct(normal, from); u_ray = (offset + v) / w; return true; } else { return false; } } /// /// This returns the smallest distance to the plane and the side on which the point lies. /// Greater than 0 means the point lies on the front of the plane /// Less than 0 means the point lies behind the plane /// See http://mathworld.wolfram.com/Point-PlaneDistance.html /// public float Distance(Vector3D p) { return Vector3D.DotProduct(normal, p) + offset; } /// /// This returns a point on the plane closest to the given point /// public Vector3D ClosestOnPlane(Vector3D p) { float d = this.Distance(p); return p - normal * d; } /// /// This returns Z on the plane at X, Y /// public float GetZ(Vector2D pos) { return (-offset - Vector2D.DotProduct(normal, pos)) / normal.z; } /// /// This returns Z on the plane at X, Y /// public float GetZ(float x, float y) { return (-offset - (normal.x * x + normal.y * y)) / normal.z; } /// /// This inverts the plane /// public Plane GetInverted() { return new Plane(-normal, -offset); } #endregion } }