#region ================== Copyright (c) 2007 Pascal vd Heiden /* * Copyright (c) 2007 Pascal vd Heiden, www.codeimp.com * This program is released under GNU General Public License * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #endregion #region ================== Namespaces using System; #endregion namespace CodeImp.DoomBuilder.Geometry { public struct Angle2D { #region ================== Constants public const double PI = Math.PI; public const double PIHALF = Math.PI * 0.5; public const double PI2 = Math.PI * 2; public const double PIDEG = 57.295779513082320876798154814105; public const double SQRT2 = 1.4142135623730950488016887242097; #endregion #region ================== Methods // This converts doom angle to real angle public static double DoomToReal(int doomangle) { return Math.Round(Normalized(DegToRad((doomangle + 90))), 4); } // This converts real angle to doom angle public static int RealToDoom(double realangle) { return (int)Math.Round(RadToDeg(Normalized(realangle - PIHALF))); } // This converts degrees to radians public static double DegToRad(double deg) { return deg / PIDEG; } // This converts radians to degrees public static double RadToDeg(double rad) { return rad * PIDEG; } // This normalizes an angle public static double Normalized(double a) { while(a < 0f) a += PI2; while(a >= PI2) a -= PI2; return a; } // This returns the difference between two angles public static double Difference(double a, double b) { // Calculate delta angle double d = Normalized(a) - Normalized(b); // Make corrections for zero barrier if(d < 0f) d += PI2; if(d > PI) d = PI2 - d; // Return result return d; } //mxd. Slade 3 MathStuff::angle2DRad ripoff... //Returns the angle between the 2d points [p1], [p2] and [p3] public static double GetAngle(Vector2D p1, Vector2D p2, Vector2D p3) { // From: http://stackoverflow.com/questions/3486172/angle-between-3-points // modified not to bother converting to degrees Vector2D ab = new Vector2D(p2.x - p1.x, p2.y - p1.y); Vector2D cb = new Vector2D(p2.x - p3.x, p2.y - p3.y); // dot product double dot = (ab.x * cb.x + ab.y * cb.y); // length square of both vectors double abSqr = ab.x * ab.x + ab.y * ab.y; double cbSqr = cb.x * cb.x + cb.y * cb.y; // square of cosine of the needed angle double cosSqr = dot * dot / abSqr / cbSqr; // this is a known trigonometric equality: // cos(alpha * 2) = [ cos(alpha) ]^2 * 2 - 1 double cos2 = 2.0f * cosSqr - 1.0f; // Here's the only invocation of the heavy function. // It's a good idea to check explicitly if cos2 is within [-1 .. 1] range double alpha2 = (cos2 <= -1) ? PI : (cos2 >= 1) ? 0.0 : Math.Acos(cos2); double rs = alpha2 * 0.5; // Now revolve the ambiguities. // 1. If dot product of two vectors is negative - the angle is definitely // above 90 degrees. Still we have no information regarding the sign of the angle. // NOTE: This ambiguity is the consequence of our method: calculating the cosine // of the double angle. This allows us to get rid of calling sqrt. if(dot < 0) rs = PI - rs; // 2. Determine the sign. For this we'll use the Determinant of two vectors. double det = (ab.x * cb.y - ab.y * cb.x); if(det < 0) rs = (2.0 * PI) - rs; return rs; } #endregion } }