#region ================== Copyright (c) 2007 Pascal vd Heiden
/*
* Copyright (c) 2007 Pascal vd Heiden, www.codeimp.com
* This program is released under GNU General Public License
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#endregion
#region ================== Namespaces
using System;
using System.Collections;
using System.Collections.Generic;
using System.Globalization;
using System.Text;
using CodeImp.DoomBuilder.Geometry;
using CodeImp.DoomBuilder.Rendering;
using SlimDX.Direct3D9;
using System.Drawing;
using CodeImp.DoomBuilder.Map;
using System.Collections.ObjectModel;
using CodeImp.DoomBuilder.IO;
#endregion
namespace CodeImp.DoomBuilder.Geometry
{
///
/// Responsible for creating sector polygons.
/// Performs triangulation of sectors by using ear clipping.
///
public sealed class Triangulation
{
#region ================== Delegates
#if DEBUG
// For debugging purpose only!
// These are not called in a release build
public delegate void ShowPolygon(LinkedList p);
public delegate void ShowEarClip(EarClipVertex[] found, LinkedList remaining);
public delegate void ShowRemaining(LinkedList remaining);
// For debugging purpose only!
// These are not called in a release build
public ShowPolygon OnShowPolygon;
public ShowEarClip OnShowEarClip;
public ShowRemaining OnShowRemaining;
#endif
#endregion
#region ================== Constants
#endregion
#region ================== Variables
// Number of vertices per island
private ReadOnlyCollection islandvertices;
// Vertices that result from the triangulation, 3 per triangle.
private ReadOnlyCollection vertices;
// These sidedefs match with the vertices. If a vertex is not the start
// along a sidedef, this list contains a null entry for that vertex.
private ReadOnlyCollection sidedefs;
// Temporary array for the sidedefs deserialization
private int[] sidedefindices;
#endregion
#region ================== Properties
public ReadOnlyCollection IslandVertices { get { return islandvertices; } }
public ReadOnlyCollection Vertices { get { return vertices; } }
public ReadOnlyCollection Sidedefs { get { return sidedefs; } }
#endregion
#region ================== Constructor / Disposer
// Constructor
public static Triangulation Create(Sector sector)
{
Triangulation t = new Triangulation();
t.Triangulate(sector);
return t;
}
// Constructor
public Triangulation()
{
}
// This performs the triangulation
public void Triangulate(Sector s)
{
// Initialize
List polys;
List islandslist = new List();
List verticeslist = new List();
List sidedefslist = new List();
// We have no destructor
GC.SuppressFinalize(this);
/*
* This process is divided into several steps:
*
* 1) Tracing the sector lines to find clockwise outer polygons
* and counter-clockwise inner polygons. These are arranged in a
* polygon tree for the next step.
*
* 2) Cutting the inner polygons to make a flat list of only
* outer polygons.
*
* 3) Ear-clipping the polygons to create triangles.
*
*/
// TRACING
polys = DoTrace(s);
// CUTTING
DoCutting(polys);
// EAR-CLIPPING
foreach(EarClipPolygon p in polys)
islandslist.Add(DoEarClip(p, verticeslist, sidedefslist));
// Make arrays
islandvertices = Array.AsReadOnly(islandslist.ToArray());
vertices = Array.AsReadOnly(verticeslist.ToArray());
sidedefs = Array.AsReadOnly(sidedefslist.ToArray());
}
#endregion
#region ================== Serialization
// Serialize / deserialize
internal void ReadWrite(IReadWriteStream s)
{
if(s.IsWriting)
{
s.wInt(islandvertices.Count);
for(int i = 0; i < islandvertices.Count; i++) s.wInt(islandvertices[i]);
s.wInt(vertices.Count);
for(int i = 0; i < vertices.Count; i++) s.wVector2D(vertices[i]);
s.wInt(sidedefs.Count);
for(int i = 0; i < sidedefs.Count; i++)
{
if(sidedefs[i] != null)
s.wInt(sidedefs[i].SerializedIndex);
else
s.wInt(-1);
}
}
else
{
int c;
s.rInt(out c);
int[] islandverticeslist = new int[c];
for(int i = 0; i < c; i++) s.rInt(out islandverticeslist[i]);
islandvertices = Array.AsReadOnly(islandverticeslist);
s.rInt(out c);
Vector2D[] verticeslist = new Vector2D[c];
for(int i = 0; i < c; i++) s.rVector2D(out verticeslist[i]);
vertices = Array.AsReadOnly(verticeslist);
s.rInt(out c);
sidedefindices = new int[c];
for(int i = 0; i < c; i++) s.rInt(out sidedefindices[i]);
}
}
// After deserialization we need to find the actual sidedefs back
internal void PostDeserialize(MapSet map)
{
// Find our sidedefs
List sides = new List(sidedefindices.Length);
for(int i = 0; i < sidedefindices.Length; i++)
{
if(sidedefindices[i] >= 0)
sides.Add(map.SidedefIndices[sidedefindices[i]]);
else
sides.Add(null);
}
// We don't need this array any longer
sidedefindices = null;
// Keep readonly array
sidedefs = Array.AsReadOnly(sides.ToArray());
}
#endregion
#region ================== Tracing
// This traces sector lines to create a polygon tree
private List DoTrace(Sector s)
{
Dictionary todosides = new Dictionary(s.Sidedefs.Count);
Dictionary ignores = new Dictionary();
List root = new List();
SidedefsTracePath path;
EarClipPolygon newpoly;
Vertex start;
// Fill the dictionary
// The bool value is used to indicate lines which has been visited in the trace
foreach(Sidedef sd in s.Sidedefs) todosides.Add(sd, false);
// First remove all sides that refer to the same sector on both sides of the line
RemoveDoubleSidedefReferences(todosides, s.Sidedefs);
// Continue until all sidedefs have been processed
while(todosides.Count > 0)
{
// Reset all visited indicators
foreach(Sidedef sd in s.Sidedefs) if(todosides.ContainsKey(sd)) todosides[sd] = false;
// Find the right-most vertex to start a trace with.
// This guarantees that we start out with an outer polygon and we just
// have to check if it is inside a previously found polygon.
start = FindRightMostVertex(todosides, ignores);
// No more possible start vertex found?
// Then leave with what we have up till now.
if(start == null) break;
// Trace to find a polygon
path = DoTracePath(new SidedefsTracePath(), start, null, s, todosides);
// If tracing is not possible (sector not closed?)
// then add the start to the ignore list and try again later
if(path == null)
{
// Ignore vertex as start
ignores.Add(start, start);
}
else
{
// Remove the sides found in the path
foreach(Sidedef sd in path) todosides.Remove(sd);
// Create the polygon
newpoly = path.MakePolygon();
// Determine where this polygon goes in our tree
foreach(EarClipPolygon p in root)
{
// Insert if it belongs as a child
if(p.InsertChild(newpoly))
{
// Done
newpoly = null;
break;
}
}
// Still not inserted in our tree?
if(newpoly != null)
{
// Then add it at root level as outer polygon
newpoly.Inner = false;
root.Add(newpoly);
}
}
}
// Return result
return root;
}
// This recursively traces a path
// Returns the resulting TracePath when the search is complete
// or returns null when no path found.
private SidedefsTracePath DoTracePath(SidedefsTracePath history, Vertex fromhere, Vertex findme, Sector sector, Dictionary sides)
{
SidedefsTracePath nextpath;
SidedefsTracePath result;
Vertex nextvertex;
List allsides;
// Found the vertex we are tracing to?
if(fromhere == findme) return history;
// On the first run, findme is null (otherwise the trace would end
// immeditely when it starts) so set findme here on the first run.
if(findme == null) findme = fromhere;
// Make a list of sides referring to the same sector
allsides = new List(fromhere.Linedefs.Count * 2);
foreach(Linedef l in fromhere.Linedefs)
{
// Should we go along the front or back side?
// This is very important for clockwise polygon orientation!
if(l.Start == fromhere)
{
// Front side of line connected to sector?
if((l.Front != null) && (l.Front.Sector == sector))
{
// Visit here when not visited yet
if(sides.ContainsKey(l.Front) && !sides[l.Front]) allsides.Add(l.Front);
}
}
else
{
// Back side of line connected to sector?
if((l.Back != null) && (l.Back.Sector == sector))
{
// Visit here when not visited yet
if(sides.ContainsKey(l.Back) && !sides[l.Back]) allsides.Add(l.Back);
}
}
}
// Previous line available?
if(history.Count > 0)
{
// This is done to ensure the tracing works along vertices that are shared by
// more than 2 lines/sides of the same sector. We must continue tracing along
// the first next smallest delta angle! This sorts the smallest delta angle to
// the top of the list.
SidedefAngleSorter sorter = new SidedefAngleSorter(history[history.Count - 1], fromhere);
allsides.Sort(sorter);
}
// Go for all lines connected to this vertex
foreach(Sidedef s in allsides)
{
// Mark sidedef as visited and move to next vertex
sides[s] = true;
nextpath = new SidedefsTracePath(history, s);
if(s.Line.Start == fromhere) nextvertex = s.Line.End; else nextvertex = s.Line.Start;
result = DoTracePath(nextpath, nextvertex, findme, sector, sides);
if(result != null) return result;
}
// Nothing found
return null;
}
// This removes all sidedefs which has a sidedefs on the other side
// of the same line that refers to the same sector. These are removed
// because they are useless and make the triangulation inefficient.
private void RemoveDoubleSidedefReferences(Dictionary todosides, ICollection sides)
{
// Go for all sides
foreach(Sidedef sd in sides)
{
// Double sided?
if(sd.Other != null)
{
// Referring to the same sector on both sides?
if(sd.Sector == sd.Other.Sector)
{
// Remove this one
todosides.Remove(sd);
}
}
}
}
// This finds the right-most vertex to start tracing with
private Vertex FindRightMostVertex(Dictionary sides, Dictionary ignores)
{
Vertex found = null;
// Go for all sides to find the right-most side
foreach(KeyValuePair sd in sides)
{
// First found?
if((found == null) && !ignores.ContainsKey(sd.Key.Line.Start)) found = sd.Key.Line.Start;
if((found == null) && !ignores.ContainsKey(sd.Key.Line.End)) found = sd.Key.Line.End;
// Compare?
if(found != null)
{
// Check if more to the right than the previous found
if((sd.Key.Line.Start.Position.x > found.Position.x) && !ignores.ContainsKey(sd.Key.Line.Start)) found = sd.Key.Line.Start;
if((sd.Key.Line.End.Position.x > found.Position.x) && !ignores.ContainsKey(sd.Key.Line.End)) found = sd.Key.Line.End;
}
}
// Return result
return found;
}
#endregion
#region ================== Cutting
// This cuts into outer polygons to solve inner polygons and make the polygon tree flat
private void DoCutting(List polys)
{
Queue todo = new Queue(polys);
// Begin processing outer polygons
while(todo.Count > 0)
{
// Get outer polygon to process
EarClipPolygon p = todo.Dequeue();
// Any inner polygons to work with?
if(p.Children.Count > 0)
{
// Go for all the children
foreach(EarClipPolygon c in p.Children)
{
// The children of the children are outer polygons again,
// so move them to the root and add for processing
polys.AddRange(c.Children);
foreach(EarClipPolygon sc in c.Children) todo.Enqueue(sc);
// Remove from inner polygon
c.Children.Clear();
}
// Now do some cutting on this polygon to merge the inner polygons
MergeInnerPolys(p);
}
}
}
// This takes an outer polygon and a set of inner polygons to start cutting on
private void MergeInnerPolys(EarClipPolygon p)
{
LinkedList todo = new LinkedList(p.Children);
LinkedListNode start;
LinkedListNode ip;
LinkedListNode found;
LinkedListNode foundstart;
// Continue until no more inner polygons to process
while(todo.Count > 0)
{
// Find the inner polygon with the highest x vertex
found = null;
foundstart = null;
ip = todo.First;
while(ip != null)
{
start = FindRightMostVertex(ip.Value);
if((foundstart == null) || (start.Value.Position.x > foundstart.Value.Position.x))
{
// Found a better start
found = ip;
foundstart = start;
}
// Next!
ip = ip.Next;
}
// Remove from todo list
todo.Remove(found);
// Get cut start and end
SplitOuterWithInner(foundstart, p, found.Value);
}
// Remove the children, they should be merged in the polygon by now
p.Children.Clear();
}
// This finds the right-most vertex in an inner polygon to use for cut startpoint.
private LinkedListNode FindRightMostVertex(EarClipPolygon p)
{
LinkedListNode found = p.First;
LinkedListNode v = found.Next;
// Go for all vertices to find the on with the biggest x value
while(v != null)
{
if(v.Value.Position.x > found.Value.Position.x) found = v;
v = v.Next;
}
// Return result
return found;
}
// This finds the cut coordinates and splits the other poly with inner vertices
private void SplitOuterWithInner(LinkedListNode start, EarClipPolygon p, EarClipPolygon inner)
{
LinkedListNode v1, v2;
LinkedListNode insertbefore = null;
float u, ul, bonus, foundu = float.MaxValue;
EarClipVertex split;
// Create a line from start that goes beyond the right most vertex of p
LinkedListNode pr = FindRightMostVertex(p);
float startx = start.Value.Position.x;
float endx = pr.Value.Position.x + 10.0f;
Line2D starttoright = new Line2D(start.Value.Position, new Vector2D(endx, start.Value.Position.y));
// Calculate a small bonus (half mappixel)
bonus = starttoright.GetNearestOnLine(new Vector2D(start.Value.Position.x + 0.5f, start.Value.Position.y));
// Go for all lines in the outer polygon
v1 = p.Last;
v2 = p.First;
while(v2 != null)
{
// Check if the line goes between startx and endx
if(((v1.Value.Position.x > startx) ||
(v2.Value.Position.x > startx)) &&
((v1.Value.Position.x < endx) ||
(v2.Value.Position.x < endx)))
{
// Find intersection
Line2D pl = new Line2D(v1.Value.Position, v2.Value.Position);
pl.GetIntersection(starttoright, out u, out ul);
if(float.IsNaN(u))
{
// We have found a line that is perfectly horizontal
// (parallel to the cut scan line) Check if the line
// is overlapping the cut scan line.
if(v1.Value.Position.y == start.Value.Position.y)
{
// This is an exceptional situation which causes a bit of a problem, because
// this could be a previously made cut, which overlaps another line from the
// same cut and we have to determine which of the two we will join with. If we
// pick the wrong one, the polygon is no longer valid and triangulation will fail.
// Calculate distance of each vertex in units
u = starttoright.GetNearestOnLine(v1.Value.Position);
ul = starttoright.GetNearestOnLine(v2.Value.Position);
// Rule out vertices before the scan line
if(u < 0.0f) u = float.MaxValue;
if(ul < 0.0f) ul = float.MaxValue;
// v2 must be closer, because we must cut in so that it stays a clockwise polygon
// We give a small bonus to ensure this choice is preferred over the other lines
// that end in the same location
if((ul < u) && ((ul - bonus) < foundu))
{
insertbefore = v2.Next ?? v2.List.First;
foundu = (ul - bonus);
}
}
}
// Found a closer match?
else if((ul >= 0.0f) && (ul <= 1.0f) && (u > 0.0f) && (u <= foundu))
{
// Found a closer intersection
insertbefore = v2;
foundu = u;
}
}
// Next
v1 = v2;
v2 = v2.Next;
}
// Found anything?
if(insertbefore != null)
{
Sidedef sd = (insertbefore.Previous == null) ? insertbefore.List.Last.Value.Sidedef : insertbefore.Previous.Value.Sidedef;
// Find the position where we have to split the outer polygon
split = new EarClipVertex(starttoright.GetCoordinatesAt(foundu), null);
// Insert manual split vertices
p.AddBefore(insertbefore, new EarClipVertex(split, sd));
// Start inserting from the start (do I make sense this time?)
v1 = start;
do
{
// Insert inner polygon vertex
p.AddBefore(insertbefore, new EarClipVertex(v1.Value));
if(v1.Next != null) v1 = v1.Next; else v1 = v1.List.First;
}
while(v1 != start);
// Insert manual split vertices
p.AddBefore(insertbefore, new EarClipVertex(start.Value, sd));
if(split.Position != insertbefore.Value.Position)
p.AddBefore(insertbefore, new EarClipVertex(split, sd));
}
}
#endregion
#region ================== Ear Clipping
// This clips a polygon and returns the triangles
// The polygon may not have any holes or islands
/// See: http://www.geometrictools.com/Documentation/TriangulationByEarClipping.pdf
private int DoEarClip(EarClipPolygon poly, List verticeslist, List sidedefslist)
{
LinkedList verts = new LinkedList();
List convexes = new List(poly.Count);
LinkedList reflexes = new LinkedList();
LinkedList eartips = new LinkedList();
LinkedListNode n1, n2;
EarClipVertex v, v1, v2;
EarClipVertex[] t, t1, t2;
int countvertices = 0;
// Go for all vertices to fill list
foreach(EarClipVertex vec in poly)
vec.SetVertsLink(verts.AddLast(vec));
// Remove any zero-length lines, these will give problems
n1 = verts.First;
do
{
// Continue until adjacent zero-length lines are removed
n2 = n1.Next ?? verts.First;
Vector2D d = n1.Value.Position - n2.Value.Position;
while((Math.Abs(d.x) < 0.00001f) && (Math.Abs(d.y) < 0.00001f))
{
n2.Value.Remove();
n2 = n1.Next ?? verts.First;
if(n2 != null) d = n1.Value.Position - n2.Value.Position; else break;
}
// Next!
n1 = n2;
}
while(n1 != verts.First);
// Optimization: Vertices which have lines with the
// same angle are useless. Remove them!
n1 = verts.First;
while(n1 != null)
{
// Get the next vertex
n2 = n1.Next;
// Get triangle for v
t = GetTriangle(n1.Value);
// Check if both lines have the same angle
Line2D a = new Line2D(t[0].Position, t[1].Position);
Line2D b = new Line2D(t[1].Position, t[2].Position);
if(Math.Abs(Angle2D.Difference(a.GetAngle(), b.GetAngle())) < 0.00001f)
{
// Same angles, remove vertex
n1.Value.Remove();
}
// Next!
n1 = n2;
}
// Go for all vertices to determine reflex or convex
foreach(EarClipVertex vv in verts)
{
// Add to reflex or convex list
if(IsReflex(GetTriangle(vv))) vv.AddReflex(reflexes); else convexes.Add(vv);
}
// Go for all convex vertices to see if they are ear tips
foreach(EarClipVertex cv in convexes)
{
// Add when this is a valid ear
t = GetTriangle(cv);
if(CheckValidEar(t, reflexes)) cv.AddEarTip(eartips);
}
#if DEBUG
if(OnShowPolygon != null) OnShowPolygon(verts);
#endif
// Process ears until done
while((eartips.Count > 0) && (verts.Count > 2))
{
// Get next ear
v = eartips.First.Value;
t = GetTriangle(v);
// Only save this triangle when it has an area
if(TriangleHasArea(t))
{
// Add ear as triangle
AddTriangleToList(t, verticeslist, sidedefslist, (verts.Count == 3));
countvertices += 3;
}
// Remove this ear from all lists
v.Remove();
v1 = t[0];
v2 = t[2];
#if DEBUG
if(TriangleHasArea(t))
{
if(OnShowEarClip != null) OnShowEarClip(t, verts);
}
#endif
// Test first neighbour
t1 = GetTriangle(v1);
if(IsReflex(t1))
{
// List as reflex if not listed yet
if(!v1.IsReflex) v1.AddReflex(reflexes);
v1.RemoveEarTip();
}
else
{
// Remove from reflexes
v1.RemoveReflex();
}
// Test second neighbour
t2 = GetTriangle(v2);
if(IsReflex(t2))
{
// List as reflex if not listed yet
if(!v2.IsReflex) v2.AddReflex(reflexes);
v2.RemoveEarTip();
}
else
{
// Remove from reflexes
v2.RemoveReflex();
}
// Check if any neightbour have become a valid or invalid ear
if(!v1.IsReflex && CheckValidEar(t1, reflexes)) v1.AddEarTip(eartips); else v1.RemoveEarTip();
if(!v2.IsReflex && CheckValidEar(t2, reflexes)) v2.AddEarTip(eartips); else v2.RemoveEarTip();
}
#if DEBUG
if(OnShowRemaining != null) OnShowRemaining(verts);
#endif
// Dispose remaining vertices
foreach(EarClipVertex ecv in verts) ecv.Dispose();
// Return the number of vertices in the result
return countvertices;
}
// This checks if a given ear is a valid (no intersections from reflex vertices)
private bool CheckValidEar(EarClipVertex[] t, LinkedList reflexes)
{
// Go for all reflex vertices
foreach(EarClipVertex rv in reflexes)
{
// Not one of the triangle corners?
if((rv.Position != t[0].Position) && (rv.Position != t[1].Position) && (rv.Position != t[2].Position))
{
// Return false on intersection
if(PointInsideTriangle(t, rv.MainListNode)) return false;
}
}
// Valid ear!
return true;
}
// This returns the 3-vertex array triangle for an ear
private EarClipVertex[] GetTriangle(EarClipVertex v)
{
EarClipVertex[] t = new EarClipVertex[3];
t[0] = (v.MainListNode.Previous == null) ? v.MainListNode.List.Last.Value : v.MainListNode.Previous.Value;
t[1] = v;
t[2] = (v.MainListNode.Next == null) ? v.MainListNode.List.First.Value : v.MainListNode.Next.Value;
return t;
}
// This checks if a vertex is reflex (corner > 180 deg) or convex (corner < 180 deg)
private bool IsReflex(EarClipVertex[] t)
{
// Return true when corner is > 180 deg
return (Line2D.GetSideOfLine(t[0].Position, t[2].Position, t[1].Position) < 0.0f);
}
// This checks if a point is inside a triangle
// When the point is on an edge of the triangle, it depends on the lines
// adjacent to the point if it is considered inside or not
// NOTE: vertices in t must be in clockwise order!
private bool PointInsideTriangle(EarClipVertex[] t, LinkedListNode p)
{
// If the triangle has no area, there can never be a point inside
if(TriangleHasArea(t))
{
float lineside01 = Line2D.GetSideOfLine(t[0].Position, t[1].Position, p.Value.Position);
float lineside12 = Line2D.GetSideOfLine(t[1].Position, t[2].Position, p.Value.Position);
float lineside20 = Line2D.GetSideOfLine(t[2].Position, t[0].Position, p.Value.Position);
// If any of the lineside results are 0 then that means the point lies on that edge and we
// need to test if the lines adjacent to the point are in the triangle or not.
// If the lines are intersecting the triangle, we also consider the point inside.
if((lineside01 == 0.0f) || (lineside12 == 0.0f) || (lineside20 == 0.0f))
{
LinkedListNode p1 = p.Previous ?? p.List.Last;
LinkedListNode p2 = p.Next ?? p.List.First;
if(LineInsideTriangle(t, p.Value.Position, p1.Value.Position)) return true;
if(LineInsideTriangle(t, p.Value.Position, p2.Value.Position)) return true;
return false;
}
else
{
return (lineside01 < 0.0f) && (lineside12 < 0.0f) && (lineside20 < 0.0f);
}
}
else
{
return false;
}
}
// This checks if a line is inside a triangle (touching the triangle is allowed)
// NOTE: Does NOT check if p1 is inside the triangle, because we only use the
// method when point-in-triangle is already tested for p1
private bool LineInsideTriangle(EarClipVertex[] t, Vector2D p1, Vector2D p2)
{
// Test if p2 is inside the triangle
if((Line2D.GetSideOfLine(t[0].Position, t[1].Position, p2) < 0.0f) &&
(Line2D.GetSideOfLine(t[1].Position, t[2].Position, p2) < 0.0f) &&
(Line2D.GetSideOfLine(t[2].Position, t[0].Position, p2) < 0.0f))
{
// Line is inside triangle, because p2 is
return true;
}
else
{
// Test for line intersections
Line2D p = new Line2D(p1, p2);
Line2D t01 = new Line2D(t[0].Position, t[1].Position);
Line2D t12 = new Line2D(t[1].Position, t[2].Position);
Line2D t20 = new Line2D(t[2].Position, t[0].Position);
float pu, pt;
// Test intersections
t01.GetIntersection(p, out pu, out pt);
if(!float.IsNaN(pu) && (pu > 0.0f) && (pu < 1.0f) && (pt > 0.0f) && (pt < 1.0f)) return true;
t12.GetIntersection(p, out pu, out pt);
if(!float.IsNaN(pu) && (pu > 0.0f) && (pu < 1.0f) && (pt > 0.0f) && (pt < 1.0f)) return true;
t20.GetIntersection(p, out pu, out pt);
return !float.IsNaN(pu) && (pu > 0.0f) && (pu < 1.0f) && (pt > 0.0f) && (pt < 1.0f);
}
}
// This checks if the triangle has an area greater than 0
private bool TriangleHasArea(EarClipVertex[] t)
{
return ((t[0].Position.x * (t[1].Position.y - t[2].Position.y) +
t[1].Position.x * (t[2].Position.y - t[0].Position.y) +
t[2].Position.x * (t[0].Position.y - t[1].Position.y)) != 0.0f);
}
// This adds an array of vertices
private void AddTriangleToList(EarClipVertex[] triangle, List verticeslist, List sidedefslist, bool last)
{
// Create triangle
verticeslist.Add(triangle[0].Position);
sidedefslist.Add(triangle[0].Sidedef);
verticeslist.Add(triangle[1].Position);
sidedefslist.Add(triangle[1].Sidedef);
verticeslist.Add(triangle[2].Position);
if(!last) sidedefslist.Add(null); else sidedefslist.Add(triangle[2].Sidedef);
// Modify the first earclipvertex of this triangle, it no longer lies along a sidedef
triangle[0].Sidedef = null;
}
#endregion
}
}