#region ================== Copyright (c) 2007 Pascal vd Heiden /* * Copyright (c) 2007 Pascal vd Heiden, www.codeimp.com * This program is released under GNU General Public License * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #endregion #region ================== Namespaces using System; #endregion namespace CodeImp.DoomBuilder.Geometry { public struct Angle2D { #region ================== Constants public const float PI = (float)Math.PI; public const float PIHALF = (float)Math.PI * 0.5f; public const float PI2 = (float)Math.PI * 2f; public const float PIDEG = 57.295779513082320876798154814105f; public const float SQRT2 = 1.4142135623730950488016887242097f; #endregion #region ================== Methods // This converts doom angle to real angle public static float DoomToReal(int doomangle) { return (float)Math.Round(Normalized(DegToRad((doomangle + 90))), 4); } // This converts real angle to doom angle public static int RealToDoom(float realangle) { return (int)Math.Round(RadToDeg(Normalized(realangle - PIHALF))); } // This converts degrees to radians public static float DegToRad(float deg) { return deg / PIDEG; } // This converts radians to degrees public static float RadToDeg(float rad) { return rad * PIDEG; } // This normalizes an angle public static float Normalized(float a) { while(a < 0f) a += PI2; while(a >= PI2) a -= PI2; return a; } // This returns the difference between two angles public static float Difference(float a, float b) { // Calculate delta angle float d = Normalized(a) - Normalized(b); // Make corrections for zero barrier if(d < 0f) d += PI2; if(d > PI) d = PI2 - d; // Return result return d; } //mxd. Slade 3 MathStuff::angle2DRad ripoff... //Returns the angle between the 2d points [p1], [p2] and [p3] public static float GetAngle(Vector2D p1, Vector2D p2, Vector2D p3) { // From: http://stackoverflow.com/questions/3486172/angle-between-3-points // modified not to bother converting to degrees Vector2D ab = new Vector2D(p2.x - p1.x, p2.y - p1.y); Vector2D cb = new Vector2D(p2.x - p3.x, p2.y - p3.y); // dot product float dot = (ab.x * cb.x + ab.y * cb.y); // length square of both vectors float abSqr = ab.x * ab.x + ab.y * ab.y; float cbSqr = cb.x * cb.x + cb.y * cb.y; // square of cosine of the needed angle float cosSqr = dot * dot / abSqr / cbSqr; // this is a known trigonometric equality: // cos(alpha * 2) = [ cos(alpha) ]^2 * 2 - 1 float cos2 = 2.0f * cosSqr - 1.0f; // Here's the only invocation of the heavy function. // It's a good idea to check explicitly if cos2 is within [-1 .. 1] range float alpha2 = (cos2 <= -1) ? PI : (cos2 >= 1) ? 0.0f : (float)Math.Acos(cos2); float rs = alpha2 * 0.5f; // Now revolve the ambiguities. // 1. If dot product of two vectors is negative - the angle is definitely // above 90 degrees. Still we have no information regarding the sign of the angle. // NOTE: This ambiguity is the consequence of our method: calculating the cosine // of the double angle. This allows us to get rid of calling sqrt. if(dot < 0) rs = PI - rs; // 2. Determine the sign. For this we'll use the Determinant of two vectors. float det = (ab.x * cb.y - ab.y * cb.x); if(det < 0) rs = (2.0f * PI) - rs; return rs; } #endregion } }