/* ** fastsin.h ** a table/linear interpolation-based sine function that is both ** precise and fast enough for most purposes. ** **--------------------------------------------------------------------------- ** Copyright 2015 Christoph Oelckers ** All rights reserved. ** ** Redistribution and use in source and binary forms, with or without ** modification, are permitted provided that the following conditions ** are met: ** ** 1. Redistributions of source code must retain the above copyright ** notice, this list of conditions and the following disclaimer. ** 2. Redistributions in binary form must reproduce the above copyright ** notice, this list of conditions and the following disclaimer in the ** documentation and/or other materials provided with the distribution. ** 3. The name of the author may not be used to endorse or promote products ** derived from this software without specific prior written permission. ** ** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR ** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES ** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, ** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT ** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, ** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY ** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF ** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. **--------------------------------------------------------------------------- ** */ #pragma once #ifndef M_PI #define M_PI 3.14159265358979323846 #endif #ifndef FORCEINLINE #if defined (_MSC_VER) #define FORCEINLINE __forceinline //#elif defined (__MINGW32__) //#define FORCEINLINE inline #elif defined (__GNUC__) #define FORCEINLINE inline __attribute__((always_inline)) #else #define FORCEINLINE inline #endif #endif // This uses a sine table with linear interpolation // For in-game calculations this is precise enough // and this code is more than 10x faster than the // Cephes sin and cos function. struct FFastTrig { static const int TBLPERIOD = 8192; static const int BITSHIFT = 19; static const int REMAINDER = (1 << BITSHIFT) - 1; float sinetable[2049]; FORCEINLINE double sinq1(uint32_t bangle) { unsigned int index = bangle >> BITSHIFT; if ((bangle &= (REMAINDER)) == 0) // This is to avoid precision problems at 180 degrees { return double(sinetable[index]); } else { return (double(sinetable[index]) * (REMAINDER - bangle) + double(sinetable[index + 1]) * bangle) * (1. / REMAINDER); } } public: FFastTrig() { const double pimul = M_PI * 2 / TBLPERIOD; for (int i = 0; i < 2049; i++) { sinetable[i] = (float)std::sin(i * pimul); } } double sin(uint32_t bangle) { switch (bangle & 0xc0000000) { default: return sinq1(bangle); case 0x40000000: return sinq1(0x80000000 - bangle); case 0x80000000: return -sinq1(bangle - 0x80000000); case 0xc0000000: return -sinq1(0 - bangle); } } double cos(uint32_t bangle) { switch (bangle & 0xc0000000) { default: return sinq1(0x40000000 - bangle); case 0x40000000: return -sinq1(bangle - 0x40000000); case 0x80000000: return -sinq1(0xc0000000 - bangle); case 0xc0000000: return sinq1(bangle - 0xc0000000); } } }; static FFastTrig fasttrig; // This must use xs_Float to guarantee proper integer wraparound. #define DEG2BAM(f) ((uint32_t)std::round((f) * (0x40000000/90.))) #define RAD2BAM(f) ((uint32_t)std::round((f) * (0x80000000/3.14159265358979323846))) inline double fastcosdeg(double v) { return fasttrig.cos(DEG2BAM(v)); } inline double fastsindeg(double v) { return fasttrig.sin(DEG2BAM(v)); } inline double fastcos(double v) { return fasttrig.cos(RAD2BAM(v)); } inline double fastsin(double v) { return fasttrig.sin(RAD2BAM(v)); }