SRB2/src/r_plane.c
2024-06-26 16:27:58 +02:00

1148 lines
30 KiB
C

// SONIC ROBO BLAST 2
//-----------------------------------------------------------------------------
// Copyright (C) 1993-1996 by id Software, Inc.
// Copyright (C) 1998-2000 by DooM Legacy Team.
// Copyright (C) 1999-2023 by Sonic Team Junior.
//
// This program is free software distributed under the
// terms of the GNU General Public License, version 2.
// See the 'LICENSE' file for more details.
//-----------------------------------------------------------------------------
/// \file r_plane.c
/// \brief Here is a core component: drawing the floors and ceilings,
/// while maintaining a per column clipping list only.
/// Moreover, the sky areas have to be determined.
#include "doomdef.h"
#include "console.h"
#include "m_easing.h" // For Easing_InOutSine, used in R_UpdatePlaneRipple
#include "g_game.h"
#include "p_setup.h" // levelflats
#include "p_slopes.h"
#include "r_data.h"
#include "r_textures.h"
#include "r_local.h"
#include "r_state.h"
#include "r_splats.h" // faB(21jan):testing
#include "r_sky.h"
#include "r_portal.h"
#include "v_video.h"
#include "w_wad.h"
#include "z_zone.h"
#include "p_tick.h"
//
// opening
//
//SoM: 3/23/2000: Use Boom visplane hashing.
visplane_t *visplanes[MAXVISPLANES];
static visplane_t *freetail;
static visplane_t **freehead = &freetail;
visplane_t *floorplane;
visplane_t *ceilingplane;
static visplane_t *currentplane;
visffloor_t ffloor[MAXFFLOORS];
INT32 numffloors;
//SoM: 3/23/2000: Boom visplane hashing routine.
#define visplane_hash(picnum,lightlevel,height) \
((unsigned)((picnum)*3+(lightlevel)+(height)*7) & VISPLANEHASHMASK)
//
// Clip values are the solid pixel bounding the range.
// floorclip starts out SCREENHEIGHT
// ceilingclip starts out -1
//
INT16 floorclip[MAXVIDWIDTH], ceilingclip[MAXVIDWIDTH];
fixed_t frontscale[MAXVIDWIDTH];
//
// spanstart holds the start of a plane span
// initialized to 0 at start
//
static INT32 spanstart[MAXVIDHEIGHT];
//
// texture mapping
//
lighttable_t **planezlight;
static fixed_t planeheight;
//added : 10-02-98: yslopetab is what yslope used to be,
// yslope points somewhere into yslopetab,
// now (viewheight/2) slopes are calculated above and
// below the original viewheight for mouselook
// (this is to calculate yslopes only when really needed)
// (when mouselookin', yslope is moving into yslopetab)
// Check R_SetupFrame, R_SetViewSize for more...
fixed_t yslopetab[MAXVIDHEIGHT*16];
fixed_t *yslope;
static fixed_t xoffs, yoffs;
static dvector3_t slope_origin, slope_u, slope_v;
static dvector3_t slope_lightu, slope_lightv;
static void CalcSlopePlaneVectors(visplane_t *pl, fixed_t xoff, fixed_t yoff);
static void CalcSlopeLightVectors(pslope_t *slope, fixed_t xpos, fixed_t ypos, double height, float ang, angle_t plangle);
static void DoSlopeCrossProducts(void);
static void DoSlopeLightCrossProduct(void);
//
// Water ripple effect
// Needs the height of the plane, and the vertical position of the span.
// Sets planeripple.xfrac and planeripple.yfrac, added to ds_xfrac and ds_yfrac, if the span is not tilted.
//
static struct
{
INT32 offset;
fixed_t xfrac, yfrac;
boolean active;
} planeripple;
// ripples da water texture
static fixed_t R_CalculateRippleOffset(INT32 y)
{
fixed_t distance = FixedMul(planeheight, yslope[y]);
const INT32 yay = (planeripple.offset + (distance>>9)) & 8191;
return FixedDiv(FINESINE(yay), (1<<12) + (distance>>11));
}
static void R_CalculatePlaneRipple(angle_t angle)
{
angle >>= ANGLETOFINESHIFT;
angle = (angle + 2048) & 8191; // 90 degrees
planeripple.xfrac = FixedMul(FINECOSINE(angle), ds_bgofs);
planeripple.yfrac = FixedMul(FINESINE(angle), ds_bgofs);
}
static void R_UpdatePlaneRipple(void)
{
// ds_waterofs oscillates between 0 and 16384 every other tic
// Now that frame interpolation is a thing, HOW does it oscillate?
// The difference between linear interpolation and a sine wave is miniscule here,
// but a sine wave is ever so slightly smoother and sleeker
ds_waterofs = Easing_InOutSine(((leveltime & 1)*FRACUNIT) + rendertimefrac,16384,0);
// Meanwhile, planeripple.offset just counts up, so it gets simple linear interpolation
planeripple.offset = ((leveltime-1)*140) + ((rendertimefrac*140) / FRACUNIT);
}
static void R_MapPlane(INT32 y, INT32 x1, INT32 x2)
{
angle_t angle, planecos, planesin;
fixed_t distance = 0, span;
size_t pindex;
#ifdef RANGECHECK
if (x2 < x1 || x1 < 0 || x2 >= viewwidth || y > viewheight)
I_Error("R_MapPlane: %d, %d at %d", x1, x2, y);
#endif
if (x1 >= vid.width)
x1 = vid.width - 1;
angle = (currentplane->viewangle + currentplane->plangle)>>ANGLETOFINESHIFT;
planecos = FINECOSINE(angle);
planesin = FINESINE(angle);
// [RH] Notice that I dumped the caching scheme used by Doom.
// It did not offer any appreciable speedup.
distance = FixedMul(planeheight, yslope[y]);
span = abs(centery - y);
if (span) // Don't divide by zero
{
ds_xstep = FixedMul(planesin, planeheight) / span;
ds_ystep = FixedMul(planecos, planeheight) / span;
ds_xstep = FixedMul(currentplane->xscale, ds_xstep);
ds_ystep = FixedMul(currentplane->yscale, ds_ystep);
}
else
ds_xstep = ds_ystep = FRACUNIT;
// [RH] Instead of using the xtoviewangle array, I calculated the fractional values
// at the middle of the screen, then used the calculated ds_xstep and ds_ystep
// to step from those to the proper texture coordinate to start drawing at.
// That way, the texture coordinate is always calculated by its position
// on the screen and not by its position relative to the edge of the visplane.
ds_xfrac = xoffs + FixedMul(currentplane->xscale, FixedMul(planecos, distance)) + (x1 - centerx) * ds_xstep;
ds_yfrac = yoffs - FixedMul(currentplane->yscale, FixedMul(planesin, distance)) + (x1 - centerx) * ds_ystep;
// Water ripple effect
if (planeripple.active)
{
ds_bgofs = R_CalculateRippleOffset(y);
R_CalculatePlaneRipple(currentplane->viewangle + currentplane->plangle);
ds_xfrac += planeripple.xfrac;
ds_yfrac += planeripple.yfrac;
ds_bgofs >>= FRACBITS;
if ((y + ds_bgofs) >= viewheight)
ds_bgofs = viewheight-y-1;
if ((y + ds_bgofs) < 0)
ds_bgofs = -y;
}
pindex = distance >> LIGHTZSHIFT;
if (pindex >= MAXLIGHTZ)
pindex = MAXLIGHTZ - 1;
ds_colormap = planezlight[pindex];
if (currentplane->extra_colormap)
ds_colormap = currentplane->extra_colormap->colormap + (ds_colormap - colormaps);
ds_y = y;
ds_x1 = x1;
ds_x2 = x2;
spanfunc();
}
static void R_MapTiltedPlane(INT32 y, INT32 x1, INT32 x2)
{
#ifdef RANGECHECK
if (x2 < x1 || x1 < 0 || x2 >= viewwidth || y > viewheight)
I_Error("R_MapTiltedPlane: %d, %d at %d", x1, x2, y);
#endif
if (x1 >= vid.width)
x1 = vid.width - 1;
// Water ripple effect
if (planeripple.active)
{
ds_bgofs = R_CalculateRippleOffset(y);
R_CalculatePlaneRipple(currentplane->viewangle + currentplane->plangle);
CalcSlopePlaneVectors(currentplane, (xoffs + planeripple.xfrac), (yoffs + planeripple.yfrac));
ds_bgofs >>= FRACBITS;
if ((y + ds_bgofs) >= viewheight)
ds_bgofs = viewheight-y-1;
if ((y + ds_bgofs) < 0)
ds_bgofs = -y;
}
if (currentplane->extra_colormap)
ds_colormap = currentplane->extra_colormap->colormap;
else
ds_colormap = colormaps;
ds_y = y;
ds_x1 = x1;
ds_x2 = x2;
spanfunc();
}
static void R_MapFogPlane(INT32 y, INT32 x1, INT32 x2)
{
fixed_t distance;
size_t pindex;
#ifdef RANGECHECK
if (x2 < x1 || x1 < 0 || x2 >= viewwidth || y > viewheight)
I_Error("R_MapFogPlane: %d, %d at %d", x1, x2, y);
#endif
if (x1 >= vid.width)
x1 = vid.width - 1;
distance = FixedMul(planeheight, yslope[y]);
pindex = distance >> LIGHTZSHIFT;
if (pindex >= MAXLIGHTZ)
pindex = MAXLIGHTZ - 1;
ds_colormap = planezlight[pindex];
if (currentplane->extra_colormap)
ds_colormap = currentplane->extra_colormap->colormap + (ds_colormap - colormaps);
ds_y = y;
ds_x1 = x1;
ds_x2 = x2;
spanfunc();
}
static void R_MapTiltedFogPlane(INT32 y, INT32 x1, INT32 x2)
{
#ifdef RANGECHECK
if (x2 < x1 || x1 < 0 || x2 >= viewwidth || y > viewheight)
I_Error("R_MapTiltedFogPlane: %d, %d at %d", x1, x2, y);
#endif
if (x1 >= vid.width)
x1 = vid.width - 1;
if (currentplane->extra_colormap)
ds_colormap = currentplane->extra_colormap->colormap;
else
ds_colormap = colormaps;
ds_y = y;
ds_x1 = x1;
ds_x2 = x2;
spanfunc();
}
void R_ClearFFloorClips (void)
{
INT32 i, p;
// opening / clipping determination
for (i = 0; i < viewwidth; i++)
{
for (p = 0; p < MAXFFLOORS; p++)
{
ffloor[p].f_clip[i] = (INT16)viewheight;
ffloor[p].c_clip[i] = -1;
}
}
numffloors = 0;
}
//
// R_ClearPlanes
// At begining of frame.
//
void R_ClearPlanes(void)
{
INT32 i, p;
// opening / clipping determination
for (i = 0; i < viewwidth; i++)
{
floorclip[i] = (INT16)viewheight;
ceilingclip[i] = -1;
frontscale[i] = INT32_MAX;
for (p = 0; p < MAXFFLOORS; p++)
{
ffloor[p].f_clip[i] = (INT16)viewheight;
ffloor[p].c_clip[i] = -1;
}
}
for (i = 0; i < MAXVISPLANES; i++)
for (*freehead = visplanes[i], visplanes[i] = NULL;
freehead && *freehead ;)
{
freehead = &(*freehead)->next;
}
}
static visplane_t *new_visplane(unsigned hash)
{
visplane_t *check = freetail;
if (!check)
{
check = malloc(sizeof (*check));
if (check == NULL) I_Error("%s: Out of memory", "new_visplane"); // FIXME: ugly
}
else
{
freetail = freetail->next;
if (!freetail)
freehead = &freetail;
}
check->next = visplanes[hash];
visplanes[hash] = check;
return check;
}
//
// R_FindPlane: Seek a visplane having the identical values:
// Same height, same flattexture, same lightlevel.
// If not, allocates another of them.
//
visplane_t *R_FindPlane(sector_t *sector, fixed_t height, INT32 picnum, INT32 lightlevel,
fixed_t xoff, fixed_t yoff, fixed_t xscale, fixed_t yscale,
angle_t plangle, extracolormap_t *planecolormap,
ffloor_t *pfloor, polyobj_t *polyobj, pslope_t *slope, sectorportal_t *portalsector)
{
visplane_t *check;
unsigned hash;
if (!slope) // Don't mess with this right now if a slope is involved
{
xoff += FixedMul(viewx, xscale);
yoff -= FixedMul(viewy, yscale);
if (plangle != 0)
{
// Add the view offset, rotated by the plane angle.
float ang = ANG2RAD(plangle);
float x = FixedToFloat(xoff);
float y = FixedToFloat(yoff);
xoff = FloatToFixed(x * cos(ang) + y * sin(ang));
yoff = FloatToFixed(-x * sin(ang) + y * cos(ang));
}
}
if (polyobj)
{
if (polyobj->angle != 0)
{
float ang = ANG2RAD(polyobj->angle);
float x = FixedToFloat(polyobj->centerPt.x);
float y = FixedToFloat(polyobj->centerPt.y);
xoff -= FloatToFixed(x * cos(ang) + y * sin(ang));
yoff -= FloatToFixed(x * sin(ang) - y * cos(ang));
}
else
{
xoff -= polyobj->centerPt.x;
yoff += polyobj->centerPt.y;
}
}
// This appears to fix the Nimbus Ruins sky bug.
if (picnum == skyflatnum && pfloor)
{
height = 0; // all skies map together
lightlevel = 0;
}
if (!pfloor)
{
hash = visplane_hash(picnum, lightlevel, height);
for (check = visplanes[hash]; check; check = check->next)
{
if (height == check->height && picnum == check->picnum
&& lightlevel == check->lightlevel
&& xoff == check->xoffs && yoff == check->yoffs
&& xscale == check->xscale && yscale == check->yscale
&& planecolormap == check->extra_colormap
&& check->viewx == viewx && check->viewy == viewy && check->viewz == viewz
&& check->viewangle == viewangle
&& check->plangle == plangle
&& check->slope == slope
&& check->polyobj == polyobj
&& P_CompareSectorPortals(check->portalsector, portalsector))
{
return check;
}
}
}
else
{
hash = MAXVISPLANES - 1;
}
check = new_visplane(hash);
check->height = height;
check->picnum = picnum;
check->lightlevel = lightlevel;
check->minx = vid.width;
check->maxx = -1;
check->xoffs = xoff;
check->yoffs = yoff;
check->xscale = xscale;
check->yscale = yscale;
check->extra_colormap = planecolormap;
check->ffloor = pfloor;
check->viewx = viewx;
check->viewy = viewy;
check->viewz = viewz;
check->viewangle = viewangle;
check->plangle = plangle;
check->sector = sector;
check->portalsector = portalsector;
check->polyobj = polyobj;
check->slope = slope;
memset(check->top, 0xff, sizeof (check->top));
memset(check->bottom, 0x00, sizeof (check->bottom));
return check;
}
//
// R_CheckPlane: return same visplane or alloc a new one if needed
//
visplane_t *R_CheckPlane(visplane_t *pl, INT32 start, INT32 stop)
{
INT32 intrl, intrh;
INT32 unionl, unionh;
INT32 x;
if (start < pl->minx)
{
intrl = pl->minx;
unionl = start;
}
else
{
unionl = pl->minx;
intrl = start;
}
if (stop > pl->maxx)
{
intrh = pl->maxx;
unionh = stop;
}
else
{
unionh = pl->maxx;
intrh = stop;
}
// 0xff is not equal to -1 with shorts...
for (x = intrl; x <= intrh; x++)
if (pl->top[x] != 0xffff || pl->bottom[x] != 0x0000)
break;
if (x > intrh) /* Can use existing plane; extend range */
{
pl->minx = unionl;
pl->maxx = unionh;
}
else /* Cannot use existing plane; create a new one */
{
visplane_t *new_pl;
if (pl->ffloor)
{
new_pl = new_visplane(MAXVISPLANES - 1);
}
else
{
unsigned hash =
visplane_hash(pl->picnum, pl->lightlevel, pl->height);
new_pl = new_visplane(hash);
}
new_pl->height = pl->height;
new_pl->picnum = pl->picnum;
new_pl->lightlevel = pl->lightlevel;
new_pl->xoffs = pl->xoffs;
new_pl->yoffs = pl->yoffs;
new_pl->xscale = pl->xscale;
new_pl->yscale = pl->yscale;
new_pl->extra_colormap = pl->extra_colormap;
new_pl->ffloor = pl->ffloor;
new_pl->viewx = pl->viewx;
new_pl->viewy = pl->viewy;
new_pl->viewz = pl->viewz;
new_pl->viewangle = pl->viewangle;
new_pl->plangle = pl->plangle;
new_pl->sector = pl->sector;
new_pl->polyobj = pl->polyobj;
new_pl->slope = pl->slope;
new_pl->portalsector = pl->portalsector;
pl = new_pl;
pl->minx = start;
pl->maxx = stop;
memset(pl->top, 0xff, sizeof pl->top);
memset(pl->bottom, 0x00, sizeof pl->bottom);
}
return pl;
}
//
// R_ExpandPlane
//
// This function basically expands the visplane.
// The reason for this is that when creating 3D floor planes, there is no
// need to create new ones with R_CheckPlane, because 3D floor planes
// are created by subsector and there is no way a subsector can graphically
// overlap.
void R_ExpandPlane(visplane_t *pl, INT32 start, INT32 stop)
{
// Don't expand polyobject planes here - we do that on our own.
if (pl->polyobj)
return;
if (pl->minx > start) pl->minx = start;
if (pl->maxx < stop) pl->maxx = stop;
}
static void R_MakeSpans(void (*mapfunc)(INT32, INT32, INT32), INT32 x, INT32 t1, INT32 b1, INT32 t2, INT32 b2)
{
// Alam: from r_splats's R_RasterizeFloorSplat
if (t1 >= vid.height) t1 = vid.height-1;
if (b1 >= vid.height) b1 = vid.height-1;
if (t2 >= vid.height) t2 = vid.height-1;
if (b2 >= vid.height) b2 = vid.height-1;
if (x-1 >= vid.width) x = vid.width;
while (t1 < t2 && t1 <= b1)
{
mapfunc(t1, spanstart[t1], x - 1);
t1++;
}
while (b1 > b2 && b1 >= t1)
{
mapfunc(b1, spanstart[b1], x - 1);
b1--;
}
while (t2 < t1 && t2 <= b2)
spanstart[t2++] = x;
while (b2 > b1 && b2 >= t2)
spanstart[b2--] = x;
}
void R_DrawPlanes(void)
{
visplane_t *pl;
INT32 i;
if (!r_renderfloors)
return;
R_UpdatePlaneRipple();
for (i = 0; i < MAXVISPLANES; i++, pl++)
{
for (pl = visplanes[i]; pl; pl = pl->next)
{
if (pl->ffloor != NULL || pl->polyobj != NULL)
continue;
R_DrawSinglePlane(pl);
}
}
}
// R_DrawSkyPlane
//
// Draws the sky within the plane's top/bottom bounds
// Note: this uses column drawers instead of span drawers, since the sky is always a texture
//
static void R_DrawSkyPlane(visplane_t *pl)
{
INT32 texture = texturetranslation[skytexture];
// Reset column drawer function (note: couldn't we just call colfuncs[BASEDRAWFUNC] directly?)
// (that is, unless we'll need to switch drawers in future for some reason)
colfunc = colfuncs[BASEDRAWFUNC];
dc_iscale = skyscale;
dc_colormap = colormaps;
dc_texturemid = skytexturemid;
dc_texheight = textureheight[texture]>>FRACBITS;
R_CheckTextureCache(texture);
for (INT32 x = pl->minx; x <= pl->maxx; x++)
{
dc_yl = pl->top[x];
dc_yh = pl->bottom[x];
if (dc_yl <= dc_yh)
{
INT32 angle = (pl->viewangle + xtoviewangle[x])>>ANGLETOSKYSHIFT;
dc_iscale = FixedMul(skyscale, FINECOSINE(xtoviewangle[x]>>ANGLETOFINESHIFT));
dc_x = x;
dc_source = R_GetColumn(texture, -angle)->pixels; // get negative of angle for each column to display sky correct way round! --Monster Iestyn 27/01/18
colfunc();
}
}
}
// Returns the height of the sloped plane at (x, y) as a double
static double R_GetSlopeZAt(const pslope_t *slope, fixed_t x, fixed_t y)
{
// If you want to reimplement this using just the equation constants, use this instead:
// (d + a*x + b*y) * -(1.0 / c)
double px = FixedToDouble(x) - slope->dorigin.x;
double py = FixedToDouble(y) - slope->dorigin.y;
double dist = (px * slope->dnormdir.x) + (py * slope->dnormdir.y);
return slope->dorigin.z + (dist * slope->dzdelta);
}
// Sets the texture origin vector of the sloped plane.
static void R_SetSlopePlaneOrigin(pslope_t *slope, fixed_t xpos, fixed_t ypos, fixed_t zpos, fixed_t xoff, fixed_t yoff, fixed_t angle)
{
INT64 vx = (INT64)xpos + (INT64)xoff;
INT64 vy = (INT64)ypos - (INT64)yoff;
float vxf = vx / (float)FRACUNIT;
float vyf = vy / (float)FRACUNIT;
float ang = ANG2RAD(ANGLE_270 - angle);
// slope_origin is the texture origin in view space
// Don't add in the offsets at this stage, because doing so can result in
// errors if the flat is rotated.
slope_origin.x = vxf * cos(ang) - vyf * sin(ang);
slope_origin.z = vxf * sin(ang) + vyf * cos(ang);
slope_origin.y = R_GetSlopeZAt(slope, -xoff, yoff) - FixedToDouble(zpos);
}
// This function calculates all of the vectors necessary for drawing a sloped plane.
void R_SetSlopePlane(pslope_t *slope, fixed_t xpos, fixed_t ypos, fixed_t zpos, fixed_t xoff, fixed_t yoff, angle_t angle, angle_t plangle)
{
// I copied ZDoom's code and adapted it to SRB2... -Red
double height, z_at_xy;
float ang;
if (slope->moved)
{
P_CalculateSlopeVectors(slope);
slope->moved = false;
}
R_SetSlopePlaneOrigin(slope, xpos, ypos, zpos, xoff, yoff, angle);
height = R_GetSlopeZAt(slope, xpos, ypos);
zeroheight = height - FixedToDouble(zpos);
ang = ANG2RAD(ANGLE_180 - (angle + plangle));
CalcSlopeLightVectors(slope, xpos, ypos, height, ang, plangle);
if (ds_solidcolor || ds_fog)
{
DoSlopeLightCrossProduct();
return;
}
// the v direction vector in view space
slope_v.x = cos(ang);
slope_v.z = sin(ang);
// the u direction vector in view space
slope_u.x = sin(ang);
slope_u.z = -cos(ang);
plangle >>= ANGLETOFINESHIFT;
z_at_xy = R_GetSlopeZAt(slope, xpos + FINESINE(plangle), ypos + FINECOSINE(plangle));
slope_v.y = z_at_xy - height;
z_at_xy = R_GetSlopeZAt(slope, xpos + FINECOSINE(plangle), ypos - FINESINE(plangle));
slope_u.y = z_at_xy - height;
DoSlopeCrossProducts();
DoSlopeLightCrossProduct();
}
// This function calculates all of the vectors necessary for drawing a sloped and scaled plane.
void R_SetScaledSlopePlane(pslope_t *slope, fixed_t xpos, fixed_t ypos, fixed_t zpos, fixed_t xs, fixed_t ys, fixed_t xoff, fixed_t yoff, angle_t angle, angle_t plangle)
{
double height, z_at_xy;
float ang;
if (slope->moved)
{
P_CalculateSlopeVectors(slope);
slope->moved = false;
}
R_SetSlopePlaneOrigin(slope, xpos, ypos, zpos, xoff, yoff, angle);
height = R_GetSlopeZAt(slope, xpos, ypos);
zeroheight = height - FixedToDouble(zpos);
ang = ANG2RAD(ANGLE_180 - (angle + plangle));
CalcSlopeLightVectors(slope, xpos, ypos, height, ang, plangle);
if (ds_solidcolor || ds_fog)
{
DoSlopeLightCrossProduct();
return;
}
float xscale = FixedToFloat(xs);
float yscale = FixedToFloat(ys);
// the v direction vector in view space
slope_v.x = yscale * cos(ang);
slope_v.z = yscale * sin(ang);
// the u direction vector in view space
slope_u.x = xscale * sin(ang);
slope_u.z = -xscale * cos(ang);
ang = ANG2RAD(plangle);
z_at_xy = R_GetSlopeZAt(slope, xpos + FloatToFixed(yscale * sin(ang)), ypos + FloatToFixed(yscale * cos(ang)));
slope_v.y = z_at_xy - height;
z_at_xy = R_GetSlopeZAt(slope, xpos + FloatToFixed(xscale * cos(ang)), ypos - FloatToFixed(xscale * sin(ang)));
slope_u.y = z_at_xy - height;
DoSlopeCrossProducts();
DoSlopeLightCrossProduct();
}
static void CalcSlopeLightVectors(pslope_t *slope, fixed_t xpos, fixed_t ypos, double height, float ang, angle_t plangle)
{
double z_at_xy;
slope_lightv.x = cos(ang);
slope_lightv.z = sin(ang);
slope_lightu.x = sin(ang);
slope_lightu.z = -cos(ang);
plangle >>= ANGLETOFINESHIFT;
z_at_xy = R_GetSlopeZAt(slope, xpos + FINESINE(plangle), ypos + FINECOSINE(plangle));
slope_lightv.y = z_at_xy - height;
z_at_xy = R_GetSlopeZAt(slope, xpos + FINECOSINE(plangle), ypos - FINESINE(plangle));
slope_lightu.y = z_at_xy - height;
}
static void DoSlopeCrossProducts(void)
{
DVector3_Cross(&slope_origin, &slope_v, &ds_su);
DVector3_Cross(&slope_origin, &slope_u, &ds_sv);
DVector3_Cross(&slope_v, &slope_u, &ds_sz);
ds_su.z *= focallengthf;
ds_sv.z *= focallengthf;
ds_sz.z *= focallengthf;
if (ds_solidcolor)
return;
// Premultiply the texture vectors with the scale factors
float sfmult = 65536.f;
if (ds_powersoftwo)
sfmult *= 1 << nflatshiftup;
ds_su.x *= sfmult;
ds_su.y *= sfmult;
ds_su.z *= sfmult;
ds_sv.x *= sfmult;
ds_sv.y *= sfmult;
ds_sv.z *= sfmult;
}
static void DoSlopeLightCrossProduct(void)
{
DVector3_Cross(&slope_lightv, &slope_lightu, &ds_slopelight);
ds_slopelight.z *= focallengthf;
}
static void CalcSlopePlaneVectors(visplane_t *pl, fixed_t xoff, fixed_t yoff)
{
if (!ds_fog && (pl->xscale != FRACUNIT || pl->yscale != FRACUNIT))
{
R_SetScaledSlopePlane(pl->slope, pl->viewx, pl->viewy, pl->viewz,
FixedDiv(FRACUNIT, pl->xscale), FixedDiv(FRACUNIT, pl->yscale),
FixedDiv(xoff, pl->xscale), FixedDiv(yoff, pl->yscale), pl->viewangle, pl->plangle);
}
else
R_SetSlopePlane(pl->slope, pl->viewx, pl->viewy, pl->viewz, xoff, yoff, pl->viewangle, pl->plangle);
}
static inline void R_AdjustSlopeCoordinates(vector3_t *origin)
{
const fixed_t modmask = ((1 << (32-nflatshiftup)) - 1);
fixed_t ox = (origin->x & modmask);
fixed_t oy = -(origin->y & modmask);
xoffs &= modmask;
yoffs &= modmask;
xoffs -= (origin->x - ox);
yoffs += (origin->y + oy);
}
static inline void R_AdjustSlopeCoordinatesNPO2(vector3_t *origin)
{
const fixed_t modmaskw = (ds_flatwidth << FRACBITS);
const fixed_t modmaskh = (ds_flatheight << FRACBITS);
fixed_t ox = (origin->x % modmaskw);
fixed_t oy = -(origin->y % modmaskh);
xoffs %= modmaskw;
yoffs %= modmaskh;
xoffs -= (origin->x - ox);
yoffs += (origin->y + oy);
}
void R_DrawSinglePlane(visplane_t *pl)
{
INT32 light = 0;
INT32 x, stop;
ffloor_t *rover;
INT32 spanfunctype = BASEDRAWFUNC;
void (*mapfunc)(INT32, INT32, INT32);
if (!(pl->minx <= pl->maxx))
return;
// sky flat
if (pl->picnum == skyflatnum)
{
R_DrawSkyPlane(pl);
return;
}
ds_powersoftwo = ds_solidcolor = ds_fog = false;
planeripple.active = false;
if (pl->polyobj)
{
// Hacked up support for alpha value in software mode Tails 09-24-2002 (sidenote: ported to polys 10-15-2014, there was no time travel involved -Red)
if (pl->polyobj->translucency >= 10)
return; // Don't even draw it
else if (pl->polyobj->translucency > 0)
{
spanfunctype = (pl->polyobj->flags & POF_SPLAT) ? SPANDRAWFUNC_TRANSSPLAT : SPANDRAWFUNC_TRANS;
ds_transmap = R_GetTranslucencyTable(pl->polyobj->translucency);
}
else if (pl->polyobj->flags & POF_SPLAT) // Opaque, but allow transparent flat pixels
spanfunctype = SPANDRAWFUNC_SPLAT;
if (pl->polyobj->translucency == 0 || (pl->extra_colormap && (pl->extra_colormap->flags & CMF_FOG)))
light = (pl->lightlevel >> LIGHTSEGSHIFT);
else // TODO: 2.3: Make transparent polyobject planes always use light level
light = LIGHTLEVELS-1;
}
else
{
if (pl->ffloor)
{
// Don't draw planes that shouldn't be drawn.
for (rover = pl->ffloor->target->ffloors; rover; rover = rover->next)
{
if ((pl->ffloor->fofflags & FOF_CUTEXTRA) && (rover->fofflags & FOF_EXTRA))
{
if (pl->ffloor->fofflags & FOF_EXTRA)
{
// The plane is from an extra 3D floor... Check the flags so
// there are no undesired cuts.
if (((pl->ffloor->fofflags & (FOF_FOG|FOF_SWIMMABLE)) == (rover->fofflags & (FOF_FOG|FOF_SWIMMABLE)))
&& pl->height < *rover->topheight
&& pl->height > *rover->bottomheight)
return;
}
}
}
if (pl->ffloor->fofflags & FOF_TRANSLUCENT)
{
spanfunctype = (pl->ffloor->fofflags & FOF_SPLAT) ? SPANDRAWFUNC_TRANSSPLAT : SPANDRAWFUNC_TRANS;
// Hacked up support for alpha value in software mode Tails 09-24-2002
// ...unhacked by toaster 04-01-2021, re-hacked a little by sphere 19-11-2021
{
INT32 trans = (10*((256+12) - pl->ffloor->alpha))/255;
if (trans >= 10)
return; // Don't even draw it
if (pl->ffloor->blend) // additive, (reverse) subtractive, modulative
ds_transmap = R_GetBlendTable(pl->ffloor->blend, trans);
else if (!(ds_transmap = R_GetTranslucencyTable(trans)) || trans == 0)
spanfunctype = SPANDRAWFUNC_SPLAT; // Opaque, but allow transparent flat pixels
}
if ((spanfunctype == SPANDRAWFUNC_SPLAT) || (pl->extra_colormap && (pl->extra_colormap->flags & CMF_FOG)))
light = (pl->lightlevel >> LIGHTSEGSHIFT);
else // TODO: 2.3: Make transparent FOF planes use light level instead of always being fullbright
light = LIGHTLEVELS-1;
}
else if (pl->ffloor->fofflags & FOF_FOG)
{
ds_fog = true;
spanfunctype = SPANDRAWFUNC_FOG;
light = (pl->lightlevel >> LIGHTSEGSHIFT);
}
else light = (pl->lightlevel >> LIGHTSEGSHIFT);
if (pl->ffloor->fofflags & FOF_RIPPLE && !ds_fog)
{
planeripple.active = true;
if (spanfunctype == SPANDRAWFUNC_TRANS)
{
// Copy the current scene, ugh
INT32 top = pl->high-8;
INT32 bottom = pl->low+8;
if (top < 0)
top = 0;
if (bottom > vid.height)
bottom = vid.height;
spanfunctype = SPANDRAWFUNC_WATER;
// Only copy the part of the screen we need
VID_BlitLinearScreen((splitscreen && viewplayer == &players[secondarydisplayplayer]) ? screens[0] + (top+(vid.height>>1))*vid.width : screens[0]+((top)*vid.width), screens[1]+((top)*vid.width),
vid.width, bottom-top,
vid.width, vid.width);
}
}
}
else
light = (pl->lightlevel >> LIGHTSEGSHIFT);
}
if (ds_fog)
{
// Since all fog planes do is apply a colormap, it's not required
// to know any information about their textures.
mapfunc = R_MapFogPlane;
}
else
{
levelflat_t *levelflat = &levelflats[pl->picnum];
// Get the texture
ds_source = (UINT8 *)R_GetFlat(levelflat);
if (ds_source == NULL)
return;
texture_t *texture = textures[R_GetTextureNumForFlat(levelflat)];
ds_flatwidth = texture->width;
ds_flatheight = texture->height;
if (R_CheckSolidColorFlat())
ds_solidcolor = true;
else if (R_CheckPowersOfTwo())
{
R_SetFlatVars(ds_flatwidth * ds_flatheight);
ds_powersoftwo = true;
}
mapfunc = R_MapPlane;
if (ds_solidcolor)
{
switch (spanfunctype)
{
case SPANDRAWFUNC_WATER:
spanfunctype = SPANDRAWFUNC_WATERSOLID;
break;
case SPANDRAWFUNC_TRANS:
spanfunctype = SPANDRAWFUNC_TRANSSOLID;
break;
default:
spanfunctype = SPANDRAWFUNC_SOLID;
break;
}
}
}
xoffs = pl->xoffs;
yoffs = pl->yoffs;
if (light >= LIGHTLEVELS)
light = LIGHTLEVELS-1;
if (light < 0)
light = 0;
if (pl->slope)
{
if (ds_fog)
mapfunc = R_MapTiltedFogPlane;
else
{
mapfunc = R_MapTiltedPlane;
if (!pl->plangle && !ds_solidcolor && pl->xscale == FRACUNIT && pl->yscale == FRACUNIT)
{
if (ds_powersoftwo)
R_AdjustSlopeCoordinates(&pl->slope->o);
else
R_AdjustSlopeCoordinatesNPO2(&pl->slope->o);
}
}
if (!ds_fog && planeripple.active)
planeheight = abs(P_GetSlopeZAt(pl->slope, pl->viewx, pl->viewy) - pl->viewz);
else
CalcSlopePlaneVectors(pl, xoffs, yoffs);
switch (spanfunctype)
{
case SPANDRAWFUNC_WATER:
spanfunctype = SPANDRAWFUNC_TILTEDWATER;
break;
case SPANDRAWFUNC_TRANS:
spanfunctype = SPANDRAWFUNC_TILTEDTRANS;
break;
case SPANDRAWFUNC_SPLAT:
spanfunctype = SPANDRAWFUNC_TILTEDSPLAT;
break;
case SPANDRAWFUNC_SOLID:
spanfunctype = SPANDRAWFUNC_TILTEDSOLID;
break;
case SPANDRAWFUNC_TRANSSOLID:
spanfunctype = SPANDRAWFUNC_TILTEDTRANSSOLID;
break;
case SPANDRAWFUNC_WATERSOLID:
spanfunctype = SPANDRAWFUNC_TILTEDWATERSOLID;
break;
case SPANDRAWFUNC_FOG:
spanfunctype = SPANDRAWFUNC_TILTEDFOG;
break;
default:
spanfunctype = SPANDRAWFUNC_TILTED;
break;
}
planezlight = scalelight[light];
}
else
{
planeheight = abs(pl->height - pl->viewz);
planezlight = zlight[light];
}
// Set the span drawer
if (!ds_powersoftwo)
{
if (spanfuncs_npo2[spanfunctype])
spanfunc = spanfuncs_npo2[spanfunctype];
else
spanfunc = spanfuncs[spanfunctype];
}
else
spanfunc = spanfuncs[spanfunctype];
// set the maximum value for unsigned
pl->top[pl->maxx+1] = 0xffff;
pl->top[pl->minx-1] = 0xffff;
pl->bottom[pl->maxx+1] = 0x0000;
pl->bottom[pl->minx-1] = 0x0000;
currentplane = pl;
stop = pl->maxx + 1;
for (x = pl->minx; x <= stop; x++)
R_MakeSpans(mapfunc, x, pl->top[x-1], pl->bottom[x-1], pl->top[x], pl->bottom[x]);
}
void R_PlaneBounds(visplane_t *plane)
{
INT32 i;
INT32 hi, low;
hi = plane->top[plane->minx];
low = plane->bottom[plane->minx];
for (i = plane->minx + 1; i <= plane->maxx; i++)
{
if (plane->top[i] < hi)
hi = plane->top[i];
if (plane->bottom[i] > low)
low = plane->bottom[i];
}
plane->high = hi;
plane->low = low;
}