// SONIC ROBO BLAST 2 //----------------------------------------------------------------------------- // Copyright (C) 1993-1996 by id Software, Inc. // Copyright (C) 1998-2000 by DooM Legacy Team. // Copyright (C) 1999-2021 by Sonic Team Junior. // // This program is free software distributed under the // terms of the GNU General Public License, version 2. // See the 'LICENSE' file for more details. //----------------------------------------------------------------------------- /// \file r_plane.c /// \brief Here is a core component: drawing the floors and ceilings, /// while maintaining a per column clipping list only. /// Moreover, the sky areas have to be determined. #include "doomdef.h" #include "console.h" #include "g_game.h" #include "p_setup.h" // levelflats #include "p_slopes.h" #include "r_data.h" #include "r_textures.h" #include "r_local.h" #include "r_state.h" #include "r_splats.h" // faB(21jan):testing #include "r_sky.h" #include "r_portal.h" #include "v_video.h" #include "w_wad.h" #include "z_zone.h" #include "p_tick.h" // // opening // // Quincunx antialiasing of flats! //#define QUINCUNX //SoM: 3/23/2000: Use Boom visplane hashing. visplane_t *visplanes[MAXVISPLANES]; static visplane_t *freetail; static visplane_t **freehead = &freetail; visplane_t *floorplane; visplane_t *ceilingplane; static visplane_t *currentplane; visffloor_t ffloor[MAXFFLOORS]; INT32 numffloors; //SoM: 3/23/2000: Boom visplane hashing routine. #define visplane_hash(picnum,lightlevel,height) \ ((unsigned)((picnum)*3+(lightlevel)+(height)*7) & VISPLANEHASHMASK) //SoM: 3/23/2000: Use boom opening limit removal size_t maxopenings; INT16 *openings, *lastopening; /// \todo free leak // // Clip values are the solid pixel bounding the range. // floorclip starts out SCREENHEIGHT // ceilingclip starts out -1 // INT16 floorclip[MAXVIDWIDTH], ceilingclip[MAXVIDWIDTH]; fixed_t frontscale[MAXVIDWIDTH]; // // spanstart holds the start of a plane span // initialized to 0 at start // static INT32 spanstart[MAXVIDHEIGHT]; // // texture mapping // lighttable_t **planezlight; static fixed_t planeheight; //added : 10-02-98: yslopetab is what yslope used to be, // yslope points somewhere into yslopetab, // now (viewheight/2) slopes are calculated above and // below the original viewheight for mouselook // (this is to calculate yslopes only when really needed) // (when mouselookin', yslope is moving into yslopetab) // Check R_SetupFrame, R_SetViewSize for more... fixed_t yslopetab[MAXVIDHEIGHT*16]; fixed_t *yslope; fixed_t basexscale, baseyscale; fixed_t cachedheight[MAXVIDHEIGHT]; fixed_t cacheddistance[MAXVIDHEIGHT]; fixed_t cachedxstep[MAXVIDHEIGHT]; fixed_t cachedystep[MAXVIDHEIGHT]; static fixed_t xoffs, yoffs; static floatv3_t ds_slope_origin, ds_slope_u, ds_slope_v; // // R_InitPlanes // Only at game startup. // void R_InitPlanes(void) { // FIXME: unused } // // Water ripple effect // Needs the height of the plane, and the vertical position of the span. // Sets planeripple.xfrac and planeripple.yfrac, added to ds_xfrac and ds_yfrac, if the span is not tilted. // struct { INT32 offset; fixed_t xfrac, yfrac; boolean active; } planeripple; // ripples da water texture static fixed_t R_CalculateRippleOffset(INT32 y) { fixed_t distance = FixedMul(planeheight, yslope[y]); const INT32 yay = (planeripple.offset + (distance>>9)) & 8191; return FixedDiv(FINESINE(yay), (1<<12) + (distance>>11)); } static void R_CalculatePlaneRipple(angle_t angle) { angle >>= ANGLETOFINESHIFT; angle = (angle + 2048) & 8191; // 90 degrees planeripple.xfrac = FixedMul(FINECOSINE(angle), ds_bgofs); planeripple.yfrac = FixedMul(FINESINE(angle), ds_bgofs); } static void R_UpdatePlaneRipple(void) { ds_waterofs = (leveltime & 1)*16384; planeripple.offset = (leveltime * 140); } // // R_MapPlane // // Uses global vars: // planeheight // basexscale // baseyscale // centerx static void R_MapPlane(INT32 y, INT32 x1, INT32 x2) { angle_t angle, planecos, planesin; fixed_t distance = 0, span; size_t pindex; #ifdef RANGECHECK if (x2 < x1 || x1 < 0 || x2 >= viewwidth || y > viewheight) I_Error("R_MapPlane: %d, %d at %d", x1, x2, y); #endif if (x1 >= vid.width) x1 = vid.width - 1; angle = (currentplane->viewangle + currentplane->plangle)>>ANGLETOFINESHIFT; planecos = FINECOSINE(angle); planesin = FINESINE(angle); if (planeheight != cachedheight[y]) { cachedheight[y] = planeheight; cacheddistance[y] = distance = FixedMul(planeheight, yslope[y]); span = abs(centery - y); if (span) // don't divide by zero { ds_xstep = FixedMul(planesin, planeheight) / span; ds_ystep = FixedMul(planecos, planeheight) / span; } else { ds_xstep = FixedMul(distance, basexscale); ds_ystep = FixedMul(distance, baseyscale); } cachedxstep[y] = ds_xstep; cachedystep[y] = ds_ystep; } else { distance = cacheddistance[y]; ds_xstep = cachedxstep[y]; ds_ystep = cachedystep[y]; } ds_xfrac = xoffs + FixedMul(planecos, distance) + (x1 - centerx) * ds_xstep; ds_yfrac = yoffs - FixedMul(planesin, distance) + (x1 - centerx) * ds_ystep; // Water ripple effect if (planeripple.active) { ds_bgofs = R_CalculateRippleOffset(y); R_CalculatePlaneRipple(currentplane->viewangle + currentplane->plangle); ds_xfrac += planeripple.xfrac; ds_yfrac += planeripple.yfrac; ds_bgofs >>= FRACBITS; if ((y + ds_bgofs) >= viewheight) ds_bgofs = viewheight-y-1; if ((y + ds_bgofs) < 0) ds_bgofs = -y; } pindex = distance >> LIGHTZSHIFT; if (pindex >= MAXLIGHTZ) pindex = MAXLIGHTZ - 1; ds_colormap = planezlight[pindex]; if (currentplane->extra_colormap) ds_colormap = currentplane->extra_colormap->colormap + (ds_colormap - colormaps); ds_y = y; ds_x1 = x1; ds_x2 = x2; spanfunc(); } static void R_MapTiltedPlane(INT32 y, INT32 x1, INT32 x2) { #ifdef RANGECHECK if (x2 < x1 || x1 < 0 || x2 >= viewwidth || y > viewheight) I_Error("R_MapTiltedPlane: %d, %d at %d", x1, x2, y); #endif if (x1 >= vid.width) x1 = vid.width - 1; // Water ripple effect if (planeripple.active) { ds_bgofs = R_CalculateRippleOffset(y); ds_sup = &ds_su[y]; ds_svp = &ds_sv[y]; ds_szp = &ds_sz[y]; ds_bgofs >>= FRACBITS; if ((y + ds_bgofs) >= viewheight) ds_bgofs = viewheight-y-1; if ((y + ds_bgofs) < 0) ds_bgofs = -y; } if (currentplane->extra_colormap) ds_colormap = currentplane->extra_colormap->colormap; else ds_colormap = colormaps; ds_y = y; ds_x1 = x1; ds_x2 = x2; spanfunc(); } void R_ClearFFloorClips (void) { INT32 i, p; // opening / clipping determination for (i = 0; i < viewwidth; i++) { for (p = 0; p < MAXFFLOORS; p++) { ffloor[p].f_clip[i] = (INT16)viewheight; ffloor[p].c_clip[i] = -1; } } numffloors = 0; } // // R_ClearPlanes // At begining of frame. // void R_ClearPlanes(void) { INT32 i, p; angle_t angle; // opening / clipping determination for (i = 0; i < viewwidth; i++) { floorclip[i] = (INT16)viewheight; ceilingclip[i] = -1; frontscale[i] = INT32_MAX; for (p = 0; p < MAXFFLOORS; p++) { ffloor[p].f_clip[i] = (INT16)viewheight; ffloor[p].c_clip[i] = -1; } } for (i = 0; i < MAXVISPLANES; i++) for (*freehead = visplanes[i], visplanes[i] = NULL; freehead && *freehead ;) { freehead = &(*freehead)->next; } lastopening = openings; // texture calculation memset(cachedheight, 0, sizeof (cachedheight)); // left to right mapping angle = (viewangle-ANGLE_90)>>ANGLETOFINESHIFT; // scale will be unit scale at SCREENWIDTH/2 distance basexscale = FixedDiv (FINECOSINE(angle),centerxfrac); baseyscale = -FixedDiv (FINESINE(angle),centerxfrac); } static visplane_t *new_visplane(unsigned hash) { visplane_t *check = freetail; if (!check) { check = calloc(2, sizeof (*check)); if (check == NULL) I_Error("%s: Out of memory", "new_visplane"); // FIXME: ugly } else { freetail = freetail->next; if (!freetail) freehead = &freetail; } check->next = visplanes[hash]; visplanes[hash] = check; return check; } // // R_FindPlane: Seek a visplane having the identical values: // Same height, same flattexture, same lightlevel. // If not, allocates another of them. // visplane_t *R_FindPlane(fixed_t height, INT32 picnum, INT32 lightlevel, fixed_t xoff, fixed_t yoff, angle_t plangle, extracolormap_t *planecolormap, ffloor_t *pfloor, polyobj_t *polyobj, pslope_t *slope) { visplane_t *check; unsigned hash; if (!slope) // Don't mess with this right now if a slope is involved { xoff += viewx; yoff -= viewy; if (plangle != 0) { // Add the view offset, rotated by the plane angle. fixed_t cosinecomponent = FINECOSINE(plangle>>ANGLETOFINESHIFT); fixed_t sinecomponent = FINESINE(plangle>>ANGLETOFINESHIFT); fixed_t oldxoff = xoff; xoff = FixedMul(xoff,cosinecomponent)+FixedMul(yoff,sinecomponent); yoff = -FixedMul(oldxoff,sinecomponent)+FixedMul(yoff,cosinecomponent); } } if (polyobj) { if (polyobj->angle != 0) { angle_t fineshift = polyobj->angle >> ANGLETOFINESHIFT; xoff -= FixedMul(FINECOSINE(fineshift), polyobj->centerPt.x)+FixedMul(FINESINE(fineshift), polyobj->centerPt.y); yoff -= FixedMul(FINESINE(fineshift), polyobj->centerPt.x)-FixedMul(FINECOSINE(fineshift), polyobj->centerPt.y); } else { xoff -= polyobj->centerPt.x; yoff += polyobj->centerPt.y; } } // This appears to fix the Nimbus Ruins sky bug. if (picnum == skyflatnum && pfloor) { height = 0; // all skies map together lightlevel = 0; } if (!pfloor) { hash = visplane_hash(picnum, lightlevel, height); for (check = visplanes[hash]; check; check = check->next) { if (polyobj != check->polyobj) continue; if (height == check->height && picnum == check->picnum && lightlevel == check->lightlevel && xoff == check->xoffs && yoff == check->yoffs && planecolormap == check->extra_colormap && check->viewx == viewx && check->viewy == viewy && check->viewz == viewz && check->viewangle == viewangle && check->plangle == plangle && check->slope == slope) { return check; } } } else { hash = MAXVISPLANES - 1; } check = new_visplane(hash); check->height = height; check->picnum = picnum; check->lightlevel = lightlevel; check->minx = vid.width; check->maxx = -1; check->xoffs = xoff; check->yoffs = yoff; check->extra_colormap = planecolormap; check->ffloor = pfloor; check->viewx = viewx; check->viewy = viewy; check->viewz = viewz; check->viewangle = viewangle; check->plangle = plangle; check->polyobj = polyobj; check->slope = slope; memset(check->top, 0xff, sizeof (check->top)); memset(check->bottom, 0x00, sizeof (check->bottom)); return check; } // // R_CheckPlane: return same visplane or alloc a new one if needed // visplane_t *R_CheckPlane(visplane_t *pl, INT32 start, INT32 stop) { INT32 intrl, intrh; INT32 unionl, unionh; INT32 x; if (start < pl->minx) { intrl = pl->minx; unionl = start; } else { unionl = pl->minx; intrl = start; } if (stop > pl->maxx) { intrh = pl->maxx; unionh = stop; } else { unionh = pl->maxx; intrh = stop; } // 0xff is not equal to -1 with shorts... for (x = intrl; x <= intrh; x++) if (pl->top[x] != 0xffff || pl->bottom[x] != 0x0000) break; if (x > intrh) /* Can use existing plane; extend range */ { pl->minx = unionl; pl->maxx = unionh; } else /* Cannot use existing plane; create a new one */ { visplane_t *new_pl; if (pl->ffloor) { new_pl = new_visplane(MAXVISPLANES - 1); } else { unsigned hash = visplane_hash(pl->picnum, pl->lightlevel, pl->height); new_pl = new_visplane(hash); } new_pl->height = pl->height; new_pl->picnum = pl->picnum; new_pl->lightlevel = pl->lightlevel; new_pl->xoffs = pl->xoffs; new_pl->yoffs = pl->yoffs; new_pl->extra_colormap = pl->extra_colormap; new_pl->ffloor = pl->ffloor; new_pl->viewx = pl->viewx; new_pl->viewy = pl->viewy; new_pl->viewz = pl->viewz; new_pl->viewangle = pl->viewangle; new_pl->plangle = pl->plangle; new_pl->polyobj = pl->polyobj; new_pl->slope = pl->slope; pl = new_pl; pl->minx = start; pl->maxx = stop; memset(pl->top, 0xff, sizeof pl->top); memset(pl->bottom, 0x00, sizeof pl->bottom); } return pl; } // // R_ExpandPlane // // This function basically expands the visplane or I_Errors. // The reason for this is that when creating 3D floor planes, there is no // need to create new ones with R_CheckPlane, because 3D floor planes // are created by subsector and there is no way a subsector can graphically // overlap. void R_ExpandPlane(visplane_t *pl, INT32 start, INT32 stop) { // INT32 unionl, unionh; // INT32 x; // Don't expand polyobject planes here - we do that on our own. if (pl->polyobj) return; if (pl->minx > start) pl->minx = start; if (pl->maxx < stop) pl->maxx = stop; /* if (start < pl->minx) { unionl = start; } else { unionl = pl->minx; } if (stop > pl->maxx) { unionh = stop; } else { unionh = pl->maxx; } for (x = start; x <= stop; x++) if (pl->top[x] != 0xffff || pl->bottom[x] != 0x0000) break; if (x <= stop) I_Error("R_ExpandPlane: planes in same subsector overlap?!\nminx: %d, maxx: %d, start: %d, stop: %d\n", pl->minx, pl->maxx, start, stop); pl->minx = unionl, pl->maxx = unionh; */ } static void R_MakeSpans(INT32 x, INT32 t1, INT32 b1, INT32 t2, INT32 b2) { // Alam: from r_splats's R_RasterizeFloorSplat if (t1 >= vid.height) t1 = vid.height-1; if (b1 >= vid.height) b1 = vid.height-1; if (t2 >= vid.height) t2 = vid.height-1; if (b2 >= vid.height) b2 = vid.height-1; if (x-1 >= vid.width) x = vid.width; while (t1 < t2 && t1 <= b1) { R_MapPlane(t1, spanstart[t1], x - 1); t1++; } while (b1 > b2 && b1 >= t1) { R_MapPlane(b1, spanstart[b1], x - 1); b1--; } while (t2 < t1 && t2 <= b2) spanstart[t2++] = x; while (b2 > b1 && b2 >= t2) spanstart[b2--] = x; } static void R_MakeTiltedSpans(INT32 x, INT32 t1, INT32 b1, INT32 t2, INT32 b2) { // Alam: from r_splats's R_RasterizeFloorSplat if (t1 >= vid.height) t1 = vid.height-1; if (b1 >= vid.height) b1 = vid.height-1; if (t2 >= vid.height) t2 = vid.height-1; if (b2 >= vid.height) b2 = vid.height-1; if (x-1 >= vid.width) x = vid.width; while (t1 < t2 && t1 <= b1) { R_MapTiltedPlane(t1, spanstart[t1], x - 1); t1++; } while (b1 > b2 && b1 >= t1) { R_MapTiltedPlane(b1, spanstart[b1], x - 1); b1--; } while (t2 < t1 && t2 <= b2) spanstart[t2++] = x; while (b2 > b1 && b2 >= t2) spanstart[b2--] = x; } void R_DrawPlanes(void) { visplane_t *pl; INT32 i; R_UpdatePlaneRipple(); for (i = 0; i < MAXVISPLANES; i++, pl++) { for (pl = visplanes[i]; pl; pl = pl->next) { if (pl->ffloor != NULL || pl->polyobj != NULL) continue; R_DrawSinglePlane(pl); } } } // R_DrawSkyPlane // // Draws the sky within the plane's top/bottom bounds // Note: this uses column drawers instead of span drawers, since the sky is always a texture // static void R_DrawSkyPlane(visplane_t *pl) { INT32 x; INT32 angle; // Reset column drawer function (note: couldn't we just call walldrawerfunc directly?) // (that is, unless we'll need to switch drawers in future for some reason) colfunc = colfuncs[BASEDRAWFUNC]; // use correct aspect ratio scale dc_iscale = skyscale; // Sky is always drawn full bright, // i.e. colormaps[0] is used. // Because of this hack, sky is not affected // by sector colormaps (INVUL inverse mapping is not implemented in SRB2 so is irrelevant). dc_colormap = colormaps; dc_texturemid = skytexturemid; dc_texheight = textureheight[skytexture] >>FRACBITS; for (x = pl->minx; x <= pl->maxx; x++) { dc_yl = pl->top[x]; dc_yh = pl->bottom[x]; if (dc_yl <= dc_yh) { angle = (pl->viewangle + xtoviewangle[x])>>ANGLETOSKYSHIFT; dc_iscale = FixedMul(skyscale, FINECOSINE(xtoviewangle[x]>>ANGLETOFINESHIFT)); dc_x = x; dc_source = R_GetColumn(texturetranslation[skytexture], -angle); // get negative of angle for each column to display sky correct way round! --Monster Iestyn 27/01/18 colfunc(); } } } // Sets the texture origin vector of the sloped plane. static void R_SetSlopePlaneOrigin(pslope_t *slope, fixed_t xpos, fixed_t ypos, fixed_t zpos, fixed_t xoff, fixed_t yoff, fixed_t angle) { floatv3_t *p = &ds_slope_origin; float vx = FixedToFloat(xpos + xoff); float vy = FixedToFloat(ypos - yoff); float ang = ANG2RAD(ANGLE_270 - angle); // p is the texture origin in view space // Don't add in the offsets at this stage, because doing so can result in // errors if the flat is rotated. p->x = vx * cos(ang) - vy * sin(ang); p->z = vx * sin(ang) + vy * cos(ang); p->y = FixedToFloat(P_GetSlopeZAt(slope, -xoff, yoff) - zpos); } // This function calculates all of the vectors necessary for drawing a sloped plane. void R_SetSlopePlane(pslope_t *slope, fixed_t xpos, fixed_t ypos, fixed_t zpos, fixed_t xoff, fixed_t yoff, angle_t angle, angle_t plangle) { // Potentially override other stuff for now cus we're mean. :< But draw a slope plane! // I copied ZDoom's code and adapted it to SRB2... -Red floatv3_t *m = &ds_slope_v, *n = &ds_slope_u; fixed_t height, temp; float ang; R_SetSlopePlaneOrigin(slope, xpos, ypos, zpos, xoff, yoff, angle); height = P_GetSlopeZAt(slope, xpos, ypos); zeroheight = FixedToFloat(height - zpos); // m is the v direction vector in view space ang = ANG2RAD(ANGLE_180 - (angle + plangle)); m->x = cos(ang); m->z = sin(ang); // n is the u direction vector in view space n->x = sin(ang); n->z = -cos(ang); plangle >>= ANGLETOFINESHIFT; temp = P_GetSlopeZAt(slope, xpos + FINESINE(plangle), ypos + FINECOSINE(plangle)); m->y = FixedToFloat(temp - height); temp = P_GetSlopeZAt(slope, xpos + FINECOSINE(plangle), ypos - FINESINE(plangle)); n->y = FixedToFloat(temp - height); } // This function calculates all of the vectors necessary for drawing a sloped and scaled plane. void R_SetScaledSlopePlane(pslope_t *slope, fixed_t xpos, fixed_t ypos, fixed_t zpos, fixed_t xs, fixed_t ys, fixed_t xoff, fixed_t yoff, angle_t angle, angle_t plangle) { floatv3_t *m = &ds_slope_v, *n = &ds_slope_u; fixed_t height, temp; float xscale = FixedToFloat(xs); float yscale = FixedToFloat(ys); float ang; R_SetSlopePlaneOrigin(slope, xpos, ypos, zpos, xoff, yoff, angle); height = P_GetSlopeZAt(slope, xpos, ypos); zeroheight = FixedToFloat(height - zpos); // m is the v direction vector in view space ang = ANG2RAD(ANGLE_180 - (angle + plangle)); m->x = yscale * cos(ang); m->z = yscale * sin(ang); // n is the u direction vector in view space n->x = xscale * sin(ang); n->z = -xscale * cos(ang); ang = ANG2RAD(plangle); temp = P_GetSlopeZAt(slope, xpos + FloatToFixed(yscale * sin(ang)), ypos + FloatToFixed(yscale * cos(ang))); m->y = FixedToFloat(temp - height); temp = P_GetSlopeZAt(slope, xpos + FloatToFixed(xscale * cos(ang)), ypos - FloatToFixed(xscale * sin(ang))); n->y = FixedToFloat(temp - height); } void R_CalculateSlopeVectors(void) { float sfmult = 65536.f; // Eh. I tried making this stuff fixed-point and it exploded on me. Here's a macro for the only floating-point vector function I recall using. #define CROSS(d, v1, v2) \ d->x = (v1.y * v2.z) - (v1.z * v2.y);\ d->y = (v1.z * v2.x) - (v1.x * v2.z);\ d->z = (v1.x * v2.y) - (v1.y * v2.x) CROSS(ds_sup, ds_slope_origin, ds_slope_v); CROSS(ds_svp, ds_slope_origin, ds_slope_u); CROSS(ds_szp, ds_slope_v, ds_slope_u); #undef CROSS ds_sup->z *= focallengthf; ds_svp->z *= focallengthf; ds_szp->z *= focallengthf; // Premultiply the texture vectors with the scale factors if (ds_powersoftwo) sfmult *= (1 << nflatshiftup); ds_sup->x *= sfmult; ds_sup->y *= sfmult; ds_sup->z *= sfmult; ds_svp->x *= sfmult; ds_svp->y *= sfmult; ds_svp->z *= sfmult; } void R_SetTiltedSpan(INT32 span) { if (ds_su == NULL) ds_su = Z_Malloc(sizeof(*ds_su) * vid.height, PU_STATIC, NULL); if (ds_sv == NULL) ds_sv = Z_Malloc(sizeof(*ds_sv) * vid.height, PU_STATIC, NULL); if (ds_sz == NULL) ds_sz = Z_Malloc(sizeof(*ds_sz) * vid.height, PU_STATIC, NULL); ds_sup = &ds_su[span]; ds_svp = &ds_sv[span]; ds_szp = &ds_sz[span]; } static void R_SetSlopePlaneVectors(visplane_t *pl, INT32 y, fixed_t xoff, fixed_t yoff) { R_SetTiltedSpan(y); R_SetSlopePlane(pl->slope, pl->viewx, pl->viewy, pl->viewz, xoff, yoff, pl->viewangle, pl->plangle); R_CalculateSlopeVectors(); } /* Essentially: We can't & the components along the regular axes when the plane is rotated. This is because the distance on each regular axis in order to loop is different. We rotate them, & the components, add them together, & them again, and then rotate them back. These three seperate & operations are done per axis in order to prevent overflows. toast 10/04/17 */ static inline void R_AdjustSlopeCoordinates(visplane_t *pl) { const fixed_t modmask = ((1 << (32-nflatshiftup)) - 1); const fixed_t cosinecomponent = FINECOSINE(pl->plangle>>ANGLETOFINESHIFT); const fixed_t sinecomponent = FINESINE(pl->plangle>>ANGLETOFINESHIFT); fixed_t temp = xoffs; xoffs = (FixedMul(temp,cosinecomponent) & modmask) + (FixedMul(yoffs,sinecomponent) & modmask); yoffs = (-FixedMul(temp,sinecomponent) & modmask) + (FixedMul(yoffs,cosinecomponent) & modmask); temp = xoffs & modmask; yoffs &= modmask; xoffs = FixedMul(temp,cosinecomponent)+FixedMul(yoffs,-sinecomponent); // negative sine for opposite direction yoffs = -FixedMul(temp,-sinecomponent)+FixedMul(yoffs,cosinecomponent); } static inline void R_AdjustSlopeCoordinatesNPO2(visplane_t *pl) { const fixed_t modmaskw = (ds_flatwidth << FRACBITS); const fixed_t modmaskh = (ds_flatheight << FRACBITS); const fixed_t cosinecomponent = FINECOSINE(pl->plangle>>ANGLETOFINESHIFT); const fixed_t sinecomponent = FINESINE(pl->plangle>>ANGLETOFINESHIFT); fixed_t temp = xoffs; xoffs = (FixedMul(temp,cosinecomponent) % modmaskw) + (FixedMul(yoffs,sinecomponent) % modmaskh); yoffs = (-FixedMul(temp,sinecomponent) % modmaskw) + (FixedMul(yoffs,cosinecomponent) % modmaskh); temp = xoffs % modmaskw; yoffs %= modmaskh; xoffs = FixedMul(temp,cosinecomponent)+FixedMul(yoffs,-sinecomponent); // ditto yoffs = -FixedMul(temp,-sinecomponent)+FixedMul(yoffs,cosinecomponent); } void R_DrawSinglePlane(visplane_t *pl) { levelflat_t *levelflat; INT32 light = 0; INT32 x; INT32 stop, angle; ffloor_t *rover; INT32 type; INT32 spanfunctype = BASEDRAWFUNC; if (!(pl->minx <= pl->maxx)) return; // sky flat if (pl->picnum == skyflatnum) { R_DrawSkyPlane(pl); return; } planeripple.active = false; spanfunc = spanfuncs[BASEDRAWFUNC]; if (pl->polyobj) { // Hacked up support for alpha value in software mode Tails 09-24-2002 (sidenote: ported to polys 10-15-2014, there was no time travel involved -Red) if (pl->polyobj->translucency >= 10) return; // Don't even draw it else if (pl->polyobj->translucency > 0) { spanfunctype = (pl->polyobj->flags & POF_SPLAT) ? SPANDRAWFUNC_TRANSSPLAT : SPANDRAWFUNC_TRANS; ds_transmap = R_GetTranslucencyTable(pl->polyobj->translucency); } else if (pl->polyobj->flags & POF_SPLAT) // Opaque, but allow transparent flat pixels spanfunctype = SPANDRAWFUNC_SPLAT; if (pl->polyobj->translucency == 0 || (pl->extra_colormap && (pl->extra_colormap->flags & CMF_FOG))) light = (pl->lightlevel >> LIGHTSEGSHIFT); else light = LIGHTLEVELS-1; } else { if (pl->ffloor) { // Don't draw planes that shouldn't be drawn. for (rover = pl->ffloor->target->ffloors; rover; rover = rover->next) { if ((pl->ffloor->flags & FF_CUTEXTRA) && (rover->flags & FF_EXTRA)) { if (pl->ffloor->flags & FF_EXTRA) { // The plane is from an extra 3D floor... Check the flags so // there are no undesired cuts. if (((pl->ffloor->flags & (FF_FOG|FF_SWIMMABLE)) == (rover->flags & (FF_FOG|FF_SWIMMABLE))) && pl->height < *rover->topheight && pl->height > *rover->bottomheight) return; } } } if (pl->ffloor->flags & FF_TRANSLUCENT) { spanfunctype = (pl->ffloor->master->flags & ML_EFFECT6) ? SPANDRAWFUNC_TRANSSPLAT : SPANDRAWFUNC_TRANS; // Hacked up support for alpha value in software mode Tails 09-24-2002 if (pl->ffloor->alpha < 12) return; // Don't even draw it else if (pl->ffloor->alpha < 38) ds_transmap = R_GetTranslucencyTable(tr_trans90); else if (pl->ffloor->alpha < 64) ds_transmap = R_GetTranslucencyTable(tr_trans80); else if (pl->ffloor->alpha < 89) ds_transmap = R_GetTranslucencyTable(tr_trans70); else if (pl->ffloor->alpha < 115) ds_transmap = R_GetTranslucencyTable(tr_trans60); else if (pl->ffloor->alpha < 140) ds_transmap = R_GetTranslucencyTable(tr_trans50); else if (pl->ffloor->alpha < 166) ds_transmap = R_GetTranslucencyTable(tr_trans40); else if (pl->ffloor->alpha < 192) ds_transmap = R_GetTranslucencyTable(tr_trans30); else if (pl->ffloor->alpha < 217) ds_transmap = R_GetTranslucencyTable(tr_trans20); else if (pl->ffloor->alpha < 243) ds_transmap = R_GetTranslucencyTable(tr_trans10); else // Opaque, but allow transparent flat pixels spanfunctype = SPANDRAWFUNC_SPLAT; if ((spanfunctype == SPANDRAWFUNC_SPLAT) || (pl->extra_colormap && (pl->extra_colormap->flags & CMF_FOG))) light = (pl->lightlevel >> LIGHTSEGSHIFT); else light = LIGHTLEVELS-1; } else if (pl->ffloor->flags & FF_FOG) { spanfunctype = SPANDRAWFUNC_FOG; light = (pl->lightlevel >> LIGHTSEGSHIFT); } else light = (pl->lightlevel >> LIGHTSEGSHIFT); if (pl->ffloor->flags & FF_RIPPLE) { INT32 top, bottom; planeripple.active = true; if (spanfunctype == SPANDRAWFUNC_TRANS) { spanfunctype = SPANDRAWFUNC_WATER; // Copy the current scene, ugh top = pl->high-8; bottom = pl->low+8; if (top < 0) top = 0; if (bottom > vid.height) bottom = vid.height; // Only copy the part of the screen we need VID_BlitLinearScreen((splitscreen && viewplayer == &players[secondarydisplayplayer]) ? screens[0] + (top+(vid.height>>1))*vid.width : screens[0]+((top)*vid.width), screens[1]+((top)*vid.width), vid.width, bottom-top, vid.width, vid.width); } } } else light = (pl->lightlevel >> LIGHTSEGSHIFT); } currentplane = pl; levelflat = &levelflats[pl->picnum]; /* :james: */ type = levelflat->type; switch (type) { case LEVELFLAT_NONE: return; case LEVELFLAT_FLAT: ds_source = (UINT8 *)R_GetFlat(levelflat->u.flat.lumpnum); R_CheckFlatLength(W_LumpLength(levelflat->u.flat.lumpnum)); // Raw flats always have dimensions that are powers-of-two numbers. ds_powersoftwo = true; break; default: ds_source = (UINT8 *)R_GetLevelFlat(levelflat); if (!ds_source) return; // Check if this texture or patch has power-of-two dimensions. if (R_CheckPowersOfTwo()) R_CheckFlatLength(ds_flatwidth * ds_flatheight); } if (!pl->slope // Don't mess with angle on slopes! We'll handle this ourselves later && viewangle != pl->viewangle+pl->plangle) { memset(cachedheight, 0, sizeof (cachedheight)); angle = (pl->viewangle+pl->plangle-ANGLE_90)>>ANGLETOFINESHIFT; basexscale = FixedDiv(FINECOSINE(angle),centerxfrac); baseyscale = -FixedDiv(FINESINE(angle),centerxfrac); viewangle = pl->viewangle+pl->plangle; } xoffs = pl->xoffs; yoffs = pl->yoffs; if (light >= LIGHTLEVELS) light = LIGHTLEVELS-1; if (light < 0) light = 0; if (pl->slope) { if (xoffs || yoffs) { if (ds_powersoftwo) R_AdjustSlopeCoordinates(pl); else R_AdjustSlopeCoordinatesNPO2(pl); } if (planeripple.active) { planeheight = abs(P_GetSlopeZAt(pl->slope, pl->viewx, pl->viewy) - pl->viewz); R_PlaneBounds(pl); for (x = pl->high; x < pl->low; x++) { ds_bgofs = R_CalculateRippleOffset(x); R_CalculatePlaneRipple(pl->viewangle + pl->plangle); R_SetSlopePlaneVectors(pl, x, (xoffs + planeripple.xfrac), (yoffs + planeripple.yfrac)); } } else R_SetSlopePlaneVectors(pl, 0, xoffs, yoffs); switch (spanfunctype) { case SPANDRAWFUNC_WATER: spanfunctype = SPANDRAWFUNC_TILTEDWATER; break; case SPANDRAWFUNC_TRANS: spanfunctype = SPANDRAWFUNC_TILTEDTRANS; break; case SPANDRAWFUNC_SPLAT: spanfunctype = SPANDRAWFUNC_TILTEDSPLAT; break; default: spanfunctype = SPANDRAWFUNC_TILTED; break; } planezlight = scalelight[light]; } else { planeheight = abs(pl->height - pl->viewz); planezlight = zlight[light]; } // Use the correct span drawer depending on the powers-of-twoness if (!ds_powersoftwo) { if (spanfuncs_npo2[spanfunctype]) spanfunc = spanfuncs_npo2[spanfunctype]; else spanfunc = spanfuncs[spanfunctype]; } else spanfunc = spanfuncs[spanfunctype]; // set the maximum value for unsigned pl->top[pl->maxx+1] = 0xffff; pl->top[pl->minx-1] = 0xffff; pl->bottom[pl->maxx+1] = 0x0000; pl->bottom[pl->minx-1] = 0x0000; stop = pl->maxx + 1; if (pl->slope) { for (x = pl->minx; x <= stop; x++) R_MakeTiltedSpans(x, pl->top[x-1], pl->bottom[x-1], pl->top[x], pl->bottom[x]); } else { for (x = pl->minx; x <= stop; x++) R_MakeSpans(x, pl->top[x-1], pl->bottom[x-1], pl->top[x], pl->bottom[x]); } /* QUINCUNX anti-aliasing technique (sort of) Normally, Quincunx antialiasing staggers pixels in a 5-die pattern like so: o o o o o To simulate this, we offset the plane by FRACUNIT/4 in each direction, and draw at 50% translucency. The result is a 'smoothing' of the texture while using the palette colors. */ #ifdef QUINCUNX if (spanfunc == spanfuncs[BASEDRAWFUNC]) { INT32 i; ds_transmap = R_GetTranslucencyTable(tr_trans50); spanfunc = spanfuncs[SPANDRAWFUNC_TRANS]; for (i=0; i<4; i++) { xoffs = pl->xoffs; yoffs = pl->yoffs; switch(i) { case 0: xoffs -= FRACUNIT/4; yoffs -= FRACUNIT/4; break; case 1: xoffs -= FRACUNIT/4; yoffs += FRACUNIT/4; break; case 2: xoffs += FRACUNIT/4; yoffs -= FRACUNIT/4; break; case 3: xoffs += FRACUNIT/4; yoffs += FRACUNIT/4; break; } planeheight = abs(pl->height - pl->viewz); if (light >= LIGHTLEVELS) light = LIGHTLEVELS-1; if (light < 0) light = 0; planezlight = zlight[light]; // set the maximum value for unsigned pl->top[pl->maxx+1] = 0xffff; pl->top[pl->minx-1] = 0xffff; pl->bottom[pl->maxx+1] = 0x0000; pl->bottom[pl->minx-1] = 0x0000; stop = pl->maxx + 1; for (x = pl->minx; x <= stop; x++) R_MakeSpans(x, pl->top[x-1], pl->bottom[x-1], pl->top[x], pl->bottom[x]); } } #endif } void R_PlaneBounds(visplane_t *plane) { INT32 i; INT32 hi, low; hi = plane->top[plane->minx]; low = plane->bottom[plane->minx]; for (i = plane->minx + 1; i <= plane->maxx; i++) { if (plane->top[i] < hi) hi = plane->top[i]; if (plane->bottom[i] > low) low = plane->bottom[i]; } plane->high = hi; plane->low = low; }