// SONIC ROBO BLAST 2 //----------------------------------------------------------------------------- // Copyright (C) 2000-2005 by Marc Alexander Lehmann // // This program is free software distributed under the // terms of the GNU General Public License, version 2. // See the 'LICENSE' file for more details. //----------------------------------------------------------------------------- /// \file lzf.c /// \brief LZF de/compression routines /* LZF decompression routines copied from lzf_d.c from liblzf 1.7 */ /* LZF compression routines copied from lzf_c.c from liblzf 1.7 */ /* * lzfP.h included here by Graue. */ #ifndef LZFP_h #define LZFP_h #include "lzf.h" #include "doomdef.h" /* * Size of hashtable is (1 << HLOG) * sizeof (char *) * decompression is independent of the hash table size * the difference between 15 and 14 is very small * for small blocks (and 14 is usually a bit faster). * For a low-memory/faster configuration, use HLOG == 13; * For best compression, use 15 or 16 (or more). */ #ifndef HLOG # define HLOG 15 #endif /* * Sacrifice very little compression quality in favour of compression speed. * This gives almost the same compression as the default code, and is * (very roughly) 15% faster. This is the preferable mode of operation. */ #ifndef VERY_FAST # define VERY_FAST 1 #endif /* * Sacrifice some more compression quality in favour of compression speed. * (roughly 1-2% worse compression for large blocks and * 9-10% for small, redundant, blocks and >>20% better speed in both cases) * In INT16: when in need for speed, enable this for binary data, * possibly disable this for text data. */ #ifndef ULTRA_FAST # define ULTRA_FAST 0 #endif /* * Unconditionally aligning does not cost very much, so do it if unsure */ #ifndef STRICT_ALIGN #if !(defined(__i386) || defined (__amd64)) || defined (__clang__) #define STRICT_ALIGN 1 #else #define STRICT_ALIGN 0 #endif #endif /* * Use string functions to copy memory. * this is usually a loss, even with glibc's optimized memcpy */ #ifndef USE_MEMCPY #ifdef _MSC_VER # define USE_MEMCPY 0 #else # define USE_MEMCPY 1 #endif #endif /* * You may choose to pre-set the hash table (might be faster on some * modern cpus and large (>>64k) blocks) */ #ifndef INIT_HTAB # define INIT_HTAB 1 #endif /* * Avoid assigning values to errno variable? for some embedding purposes * (linux kernel for example), this is neccessary. NOTE: this breaks * the documentation in lzf.h. */ #ifndef AVOID_ERRNO # define AVOID_ERRNO 0 #endif /* * Wether to pass the LZF_STATE variable as argument, or allocate it * on the stack. For small-stack environments, define this to 1. * NOTE: this breaks the prototype in lzf.h. */ #ifndef LZF_STATE_ARG # define LZF_STATE_ARG 0 #endif /* * Wether to add extra checks for input validity in lzf_decompress * and return EINVAL if the input stream has been corrupted. This * only shields against overflowing the input buffer and will not * detect most corrupted streams. * This check is not normally noticable on modern hardware * (<1% slowdown), but might slow down older cpus considerably. */ #ifndef CHECK_INPUT # define CHECK_INPUT 1 #endif /*****************************************************************************/ /* nothing should be changed below */ typedef unsigned char u8; typedef const u8 *LZF_STATE[1 << (HLOG)]; #if !STRICT_ALIGN /* for unaligned accesses we need a 16 bit datatype. */ # include # if USHRT_MAX == 65535 typedef unsigned short u16; # elif UINT_MAX == 65535 typedef unsigned int u16; # else # undef STRICT_ALIGN # define STRICT_ALIGN 1 # endif #endif #if ULTRA_FAST # if defined(VERY_FAST) # undef VERY_FAST # endif #endif #if USE_MEMCPY || INIT_HTAB # ifdef __cplusplus # include # else # include # endif #endif #endif /* * lzfP.h ends here. lzf_d.c follows. */ #if AVOID_ERRNO || defined(_WIN32_WCE) # define SET_ERRNO(n) #else # include # define SET_ERRNO(n) errno = (n) #endif size_t lzf_decompress (const void *const in_data, size_t in_len, void *out_data, size_t out_len) { u8 const *ip = (const u8 *)in_data; u8 *op = (u8 *)out_data; u8 const *const in_end = ip + in_len; u8 *const out_end = op + out_len; do { unsigned int ctrl = *ip++; if (ctrl < (1 << 5)) /* literal run */ { ctrl++; if (op + ctrl > out_end) { SET_ERRNO (E2BIG); return 0; } #if CHECK_INPUT if (ip + ctrl > in_end) { SET_ERRNO (EINVAL); return 0; } #endif #if USE_MEMCPY M_Memcpy (op, ip, ctrl); op += ctrl; ip += ctrl; #else do *op++ = *ip++; while (--ctrl); #endif } else /* back reference */ { unsigned int len = ctrl >> 5; u8 *ref = op - ((ctrl & 0x1f) << 8) - 1; #if CHECK_INPUT if (ip >= in_end) { SET_ERRNO (EINVAL); return 0; } #endif if (len == 7) { len += *ip++; #if CHECK_INPUT if (ip >= in_end) { SET_ERRNO (EINVAL); return 0; } #endif } ref -= *ip++; if (op + len + 2 > out_end) { SET_ERRNO (E2BIG); return 0; } if (ref < (u8 *)out_data) { SET_ERRNO (EINVAL); return 0; } *op++ = *ref++; *op++ = *ref++; do *op++ = *ref++; while (--len); } } while (ip < in_end); return op - (u8 *)out_data; } /* * lzf_d.c ends here. lzf_c.c follows. */ #define HSIZE (1 << (HLOG)) /* * don't play with this unless you benchmark! * decompression is not dependent on the hash function * the hashing function might seem strange, just believe me * it works ;) */ #ifndef FRST # define FRST(p) (((p[0]) << 8) | p[1]) # define NEXT(v,p) (((v) << 8) | p[2]) # define IDX(h) ((((h ^ (h << 5)) >> (3*8 - HLOG)) - h*5) & (HSIZE - 1)) #endif /* * IDX works because it is very similar to a multiplicative hash, e.g. * ((h * 57321 >> (3*8 - HLOG)) & (HSIZE - 1)) * the latter is also quite fast on newer CPUs, and sligthly better * * the next one is also quite good, albeit slow ;) * (int)(cos(h & 0xffffff) * 1e6) */ #if 0 /* original lzv-like hash function, much worse and thus slower */ # define FRST(p) (p[0] << 5) ^ p[1] # define NEXT(v,p) ((v) << 5) ^ p[2] # define IDX(h) ((h) & (HSIZE - 1)) #endif #define MAX_LIT (1 << 5) #define MAX_OFF (1 << 13) #define MAX_REF ((1 << 8) + (1 << 3)) /* * compressed format * * 000LLLLL ; literal * LLLooooo oooooooo ; backref L * 111ooooo LLLLLLLL oooooooo ; backref L+7 * */ size_t lzf_compress (const void *const in_data,size_t in_len, void *out_data, size_t out_len #if LZF_STATE_ARG , LZF_STATE *htab #endif ) { #if !LZF_STATE_ARG LZF_STATE htab; #endif const u8 **hslot; const u8 *ip = (const u8 *)in_data; u8 *op = (u8 *)out_data; const u8 *in_end = ip + in_len; u8 *out_end = op + out_len; const u8 *ref = NULL; unsigned int hval = FRST (ip); size_t off; int lit = 0; #if INIT_HTAB # if USE_MEMCPY memset (htab, 0, sizeof (htab)); # else for (hslot = htab; hslot < htab + HSIZE; hslot++) *hslot++ = ip; # endif #endif for (;;) { if (ip < in_end - 2) { hval = NEXT (hval, ip); hslot = htab + IDX (hval); ref = *hslot; *hslot = ip; if ( #if INIT_HTAB && !USE_MEMCPY ref < ip /* the next test will actually take care of this, but this is faster */ && #endif (off = ip - ref - 1) < MAX_OFF && ip + 4 < in_end && ref > (const u8 *)in_data #if STRICT_ALIGN && ref[0] == ip[0] && ref[1] == ip[1] && ref[2] == ip[2] #else && *(const u16 *)ref == *(const u16 *)ip && ref[2] == ip[2] #endif ) { /* match found at *ref++ */ unsigned int len = 2; size_t maxlen = in_end - ip - len; maxlen = maxlen > MAX_REF ? MAX_REF : maxlen; if (op + lit + 1 + 3 >= out_end) return 0; do len++; while (len < maxlen && ref[len] == ip[len]); if (lit) { *op++ = (u8)(lit - 1); lit = -lit; do *op++ = ip[lit]; while (++lit); } len -= 2; ip++; if (len < 7) { *op++ = (u8)((off >> 8) + (len << 5)); } else { *op++ = (u8)((off >> 8) + ( 7 << 5)); *op++ = (u8)(len - 7); } *op++ = (u8)off; #if ULTRA_FAST || VERY_FAST ip += len; #if VERY_FAST && !ULTRA_FAST --ip; #endif hval = FRST (ip); hval = NEXT (hval, ip); htab[IDX (hval)] = ip; ip++; #if VERY_FAST && !ULTRA_FAST hval = NEXT (hval, ip); htab[IDX (hval)] = ip; ip++; #endif #else do { hval = NEXT (hval, ip); htab[IDX (hval)] = ip; ip++; } while (len--); #endif continue; } } else if (ip == in_end) break; /* one more literal byte we must copy */ lit++; ip++; if (lit == MAX_LIT) { if (op + 1 + MAX_LIT >= out_end) return 0; *op++ = MAX_LIT - 1; #if USE_MEMCPY M_Memcpy (op, ip - MAX_LIT, MAX_LIT); op += MAX_LIT; lit = 0; #else lit = -lit; do *op++ = ip[lit]; while (++lit); #endif } } if (lit) { if (op + lit + 1 >= out_end) return 0; *op++ = (u8)(lit - 1); lit = -lit; do *op++ = ip[lit]; while (++lit); } return op - (u8 *) out_data; }