// Emacs style mode select -*- C++ -*- //----------------------------------------------------------------------------- // // Copyright(C) 2004 Stephen McGranahan // // This program is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 2 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // //-------------------------------------------------------------------------- // // DESCRIPTION: // Slopes // SoM created 05/10/09 // ZDoom + Eternity Engine Slopes, ported and enhanced by Kalaron // //----------------------------------------------------------------------------- #include "doomdef.h" #include "r_defs.h" #include "r_state.h" #include "m_bbox.h" #include "z_zone.h" #include "p_spec.h" #include "p_slopes.h" #include "r_main.h" #include "p_maputl.h" #include "w_wad.h" #ifdef ESLOPE static pslope_t *dynslopes = NULL; // Calculate line normal void P_CalculateSlopeNormal(pslope_t *slope) { slope->normal.z = FINECOSINE(slope->zangle>>ANGLETOFINESHIFT); slope->normal.x = -FixedMul(FINESINE(slope->zangle>>ANGLETOFINESHIFT), slope->d.x); slope->normal.y = -FixedMul(FINESINE(slope->zangle>>ANGLETOFINESHIFT), slope->d.y); } // Recalculate dynamic slopes void P_RunDynamicSlopes(void) { pslope_t *slope; for (slope = dynslopes; slope; slope = slope->next) { fixed_t zdelta; switch(slope->refpos) { case 1: // front floor zdelta = slope->sourceline->backsector->floorheight - slope->sourceline->frontsector->floorheight; slope->o.z = slope->sourceline->frontsector->floorheight; break; case 2: // front ceiling zdelta = slope->sourceline->backsector->ceilingheight - slope->sourceline->frontsector->ceilingheight; slope->o.z = slope->sourceline->frontsector->ceilingheight; break; case 3: // back floor zdelta = slope->sourceline->frontsector->floorheight - slope->sourceline->backsector->floorheight; slope->o.z = slope->sourceline->backsector->floorheight; break; case 4: // back ceiling zdelta = slope->sourceline->frontsector->ceilingheight - slope->sourceline->backsector->ceilingheight; slope->o.z = slope->sourceline->backsector->ceilingheight; break; default: I_Error("P_RunDynamicSlopes: slope has invalid type!"); } if (slope->zdelta != FixedDiv(zdelta, slope->extent)) { slope->zdelta = FixedDiv(zdelta, slope->extent); slope->zangle = R_PointToAngle2(0, 0, slope->extent, -zdelta); P_CalculateSlopeNormal(slope); } } } // // P_MakeSlope // // Alocates and fill the contents of a slope structure. // static pslope_t *P_MakeSlope(const vector3_t *o, const vector2_t *d, const fixed_t zdelta, boolean dynamic) { pslope_t *ret = Z_Malloc(sizeof(pslope_t), PU_LEVEL, NULL); memset(ret, 0, sizeof(*ret)); ret->o.x = o->x; ret->o.y = o->y; ret->o.z = o->z; ret->d.x = d->x; ret->d.y = d->y; ret->zdelta = zdelta; if (dynamic) { // Add to the dynamic slopes list ret->next = dynslopes; dynslopes = ret; } return ret; } // // P_GetExtent // // Returns the distance to the first line within the sector that // is intersected by a line parallel to the plane normal with the point (ox, oy) // static fixed_t P_GetExtent(sector_t *sector, line_t *line) { // ZDoom code reference: v3float_t = vertex_t fixed_t fardist = -FRACUNIT; size_t i; // Find furthest vertex from the reference line. It, along with the two ends // of the line, will define the plane. // SRB2CBTODO: Use a formula to get the slope to slide objects depending on how steep for(i = 0; i < sector->linecount; i++) { line_t *li = sector->lines[i]; vertex_t tempv; fixed_t dist; // Don't compare to the slope line. if(li == line) continue; P_ClosestPointOnLine(li->v1->x, li->v1->y, line, &tempv); dist = R_PointToDist2(tempv.x, tempv.y, li->v1->x, li->v1->y); if(dist > fardist) fardist = dist; // Okay, maybe do it for v2 as well? P_ClosestPointOnLine(li->v2->x, li->v2->y, line, &tempv); dist = R_PointToDist2(tempv.x, tempv.y, li->v2->x, li->v2->y); if(dist > fardist) fardist = dist; } return fardist; } // // P_SpawnSlope_Line // // Creates one or more slopes based on the given line type and front/back // sectors. // Kalaron: Check if dynamic slopes need recalculation // void P_SpawnSlope_Line(int linenum) { // With dynamic slopes, it's fine to just leave this function as normal, // because checking to see if a slope had changed will waste more memory than // if the slope was just updated when called line_t *line = lines + linenum; INT16 special = line->special; pslope_t *fslope = NULL, *cslope = NULL; vector3_t origin, point; vector2_t direction; fixed_t nx, ny, dz, extent; boolean frontfloor = (special == 386 || special == 388 || special == 393); boolean backfloor = (special == 389 || special == 391 || special == 392); boolean frontceil = (special == 387 || special == 388 || special == 392); boolean backceil = (special == 390 || special == 391 || special == 393); if(!frontfloor && !backfloor && !frontceil && !backceil) { CONS_Printf("P_SpawnSlope_Line called with non-slope line special.\n"); return; } if(!line->frontsector || !line->backsector) { CONS_Printf("P_SpawnSlope_Line used on a line without two sides.\n"); return; } { fixed_t len = R_PointToDist2(0, 0, line->dx, line->dy); nx = FixedDiv(line->dy, len); ny = -FixedDiv(line->dx, len); } // SRB2CBTODO: Transform origin relative to the bounds of an individual FOF origin.x = line->v1->x + (line->v2->x - line->v1->x)/2; origin.y = line->v1->y + (line->v2->y - line->v1->y)/2; // For FOF slopes, make a special function to copy to the xy origin & direction relative to the position of the FOF on the map! if(frontfloor || frontceil) { line->frontsector->hasslope = true; // Tell the software renderer that we're sloped origin.z = line->backsector->floorheight; direction.x = nx; direction.y = ny; extent = P_GetExtent(line->frontsector, line); if(extent < 0) { CONS_Printf("P_SpawnSlope_Line failed to get frontsector extent on line number %i\n", linenum); return; } // reposition the origin according to the extent point.x = origin.x + FixedMul(direction.x, extent); point.y = origin.y + FixedMul(direction.y, extent); direction.x = -direction.x; direction.y = -direction.y; // TODO: We take origin and point 's xy values and translate them to the center of an FOF! if(frontfloor) { point.z = line->frontsector->floorheight; // Startz dz = FixedDiv(origin.z - point.z, extent); // Destinationz // In P_SpawnSlopeLine the origin is the centerpoint of the sourcelinedef fslope = line->frontsector->f_slope = P_MakeSlope(&point, &direction, dz, !(line->flags & ML_NOTAILS)); // Set up some shit fslope->extent = extent; fslope->refpos = 1; // Now remember that f_slope IS a vector // fslope->o = origin 3D point 1 of the vector // fslope->d = destination 3D point 2 of the vector // fslope->normal is a 3D line perpendicular to the 3D vector // Sync the linedata of the line that started this slope // SRB2CBTODO: Anything special for remote(control sector)-based slopes later? fslope->sourceline = line; // To find the real highz/lowz of a slope, you need to check all the vertexes // in the slope's sector with P_GetZAt to get the REAL lowz & highz // Although these slopes are set by floorheights the ANGLE is what a slope is, // so technically any slope can extend on forever (they are just bound by sectors) // *You can use sourceline as a reference to see if two slopes really are the same // Default points for high and low fixed_t highest = point.z > origin.z ? point.z : origin.z; fixed_t lowest = point.z < origin.z ? point.z : origin.z; // Now check to see what the REAL high and low points of the slope inside the sector // TODO: Is this really needed outside of FOFs? -Red size_t l; for (l = 0; l < line->frontsector->linecount; l++) { fixed_t height = P_GetZAt(line->frontsector->f_slope, line->frontsector->lines[l]->v1->x, line->frontsector->lines[l]->v1->y); if (height > highest) highest = height; if (height < lowest) lowest = height; } // Sets extra clipping data for the frontsector's slope fslope->highz = highest; fslope->lowz = lowest; fslope->zangle = R_PointToAngle2(0, origin.z, extent, point.z); fslope->xydirection = R_PointToAngle2(origin.x, origin.y, point.x, point.y); P_CalculateSlopeNormal(fslope); } if(frontceil) { origin.z = line->backsector->ceilingheight; point.z = line->frontsector->ceilingheight; dz = FixedDiv(origin.z - point.z, extent); cslope = line->frontsector->c_slope = P_MakeSlope(&point, &direction, dz, !(line->flags & ML_NOTAILS)); // Set up some shit cslope->extent = extent; cslope->refpos = 2; // Sync the linedata of the line that started this slope // SRB2CBTODO: Anything special for remote(control sector)-based slopes later? cslope->sourceline = line; // Remember the way the slope is formed fixed_t highest = point.z > origin.z ? point.z : origin.z; fixed_t lowest = point.z < origin.z ? point.z : origin.z; size_t l; for (l = 0; l < line->frontsector->linecount; l++) { fixed_t height = P_GetZAt(line->frontsector->c_slope, line->frontsector->lines[l]->v1->x, line->frontsector->lines[l]->v1->y); if (height > highest) highest = height; if (height < lowest) lowest = height; } // This line special sets extra clipping data for the frontsector's slope cslope->highz = highest; cslope->lowz = lowest; cslope->zangle = R_PointToAngle2(0, origin.z, extent, point.z); cslope->xydirection = R_PointToAngle2(origin.x, origin.y, point.x, point.y); P_CalculateSlopeNormal(cslope); } } if(backfloor || backceil) { line->backsector->hasslope = true; // Tell the software renderer that we're sloped origin.z = line->frontsector->floorheight; // Backsector direction.x = -nx; direction.y = -ny; extent = P_GetExtent(line->backsector, line); if(extent < 0) { CONS_Printf("P_SpawnSlope_Line failed to get backsector extent on line number %i\n", linenum); return; } // reposition the origin according to the extent point.x = origin.x + FixedMul(direction.x, extent); point.y = origin.y + FixedMul(direction.y, extent); direction.x = -direction.x; direction.y = -direction.y; if(backfloor) { point.z = line->backsector->floorheight; dz = FixedDiv(origin.z - point.z, extent); fslope = line->backsector->f_slope = P_MakeSlope(&point, &direction, dz, !(line->flags & ML_NOTAILS)); // Set up some shit fslope->extent = extent; fslope->refpos = 3; // Sync the linedata of the line that started this slope // SRB2CBTODO: Anything special for remote(control sector)-based slopes later? fslope->sourceline = line; // Remember the way the slope is formed fixed_t highest = point.z > origin.z ? point.z : origin.z; fixed_t lowest = point.z < origin.z ? point.z : origin.z; size_t l; for (l = 0; l < line->backsector->linecount; l++) { fixed_t height = P_GetZAt(line->backsector->f_slope, line->backsector->lines[l]->v1->x, line->backsector->lines[l]->v1->y); if (height > highest) highest = height; if (height < lowest) lowest = height; } // This line special sets extra clipping data for the frontsector's slope fslope->highz = highest; fslope->lowz = lowest; fslope->zangle = R_PointToAngle2(0, origin.z, extent, point.z); fslope->xydirection = R_PointToAngle2(origin.x, origin.y, point.x, point.y); P_CalculateSlopeNormal(fslope); } if(backceil) { origin.z = line->frontsector->ceilingheight; point.z = line->backsector->ceilingheight; dz = FixedDiv(origin.z - point.z, extent); cslope = line->backsector->c_slope = P_MakeSlope(&point, &direction, dz, !(line->flags & ML_NOTAILS)); // Set up some shit cslope->extent = extent; cslope->refpos = 4; // Sync the linedata of the line that started this slope // SRB2CBTODO: Anything special for remote(control sector)-based slopes later? cslope->sourceline = line; // Remember the way the slope is formed fixed_t highest = point.z > origin.z ? point.z : origin.z; fixed_t lowest = point.z < origin.z ? point.z : origin.z; size_t l; for (l = 0; l < line->backsector->linecount; l++) { fixed_t height = P_GetZAt(line->backsector->c_slope, line->backsector->lines[l]->v1->x, line->backsector->lines[l]->v1->y); if (height > highest) highest = height; if (height < lowest) lowest = height; } // This line special sets extra clipping data for the backsector's slope cslope->highz = highest; cslope->lowz = lowest; cslope->zangle = R_PointToAngle2(0, origin.z, extent, point.z); cslope->xydirection = R_PointToAngle2(origin.x, origin.y, point.x, point.y); P_CalculateSlopeNormal(cslope); } } if(!line->tag) return; } // // P_CopySectorSlope // // Searches through tagged sectors and copies // void P_CopySectorSlope(line_t *line) { sector_t *fsec = line->frontsector; int i, special = line->special; // Check for copy linedefs for(i = -1; (i = P_FindSectorFromLineTag(line, i)) >= 0;) { sector_t *srcsec = sectors + i; if((special - 393) & 1 && !fsec->f_slope && srcsec->f_slope) fsec->f_slope = srcsec->f_slope; //P_CopySlope(srcsec->f_slope); if((special - 393) & 2 && !fsec->c_slope && srcsec->c_slope) fsec->c_slope = srcsec->c_slope; //P_CopySlope(srcsec->c_slope); } fsec->hasslope = true; line->special = 0; // Linedef was use to set slopes, it finished its job, so now make it a normal linedef } #ifdef SPRINGCLEAN #include "byteptr.h" #include "p_setup.h" #include "p_local.h" //========================================================================== // // P_SetSlopesFromVertexHeights // //========================================================================== void P_SetSlopesFromVertexHeights(lumpnum_t lumpnum) { mapthing_t *mt; boolean vt_found = false; size_t i, j, k, l, q; //size_t i; //mapthing_t *mt; char *data; char *datastart; // SRB2CBTODO: WHAT IS (5 * sizeof (short))?! It = 10 // anything else seems to make a map not load properly, // but this hard-coded value MUST have some reason for being what it is size_t snummapthings = W_LumpLength(lumpnum) / (5 * sizeof (short)); mapthing_t *smapthings = Z_Calloc(snummapthings * sizeof (*smapthings), PU_LEVEL, NULL); fixed_t x, y; sector_t *sector; // Spawn axis points first so they are // at the front of the list for fast searching. data = datastart = W_CacheLumpNum(lumpnum, PU_LEVEL); mt = smapthings; for (i = 0; i < snummapthings; i++, mt++) { mt->x = READINT16(data); mt->y = READINT16(data); mt->angle = READINT16(data); mt->type = READINT16(data); mt->options = READINT16(data); // mt->z hasn't been set yet! //mt->extrainfo = (byte)(mt->type >> 12); // slope things are special, they have a bigger range of types //mt->type &= 4095; // SRB2CBTODO: WHAT IS THIS???? Mobj type limits?!!!! x = mt->x*FRACUNIT; y = mt->y*FRACUNIT; sector = R_PointInSubsector(x, y)->sector; // Z for objects #ifdef ESLOPE if (sector->f_slope) mt->z = (short)(P_GetZAt(sector->f_slope, x, y)>>FRACBITS); else #endif mt->z = (short)(sector->floorheight>>FRACBITS); mt->z = mt->z + (mt->options >> ZSHIFT); if (mt->type == THING_VertexFloorZ || mt->type == THING_VertexCeilingZ) // THING_VertexFloorZ { for(l = 0; l < numvertexes; l++) { if (vertexes[l].x == mt->x*FRACUNIT && vertexes[l].y == mt->y*FRACUNIT) { if (mt->type == THING_VertexFloorZ) { vertexes[l].z = mt->z*FRACUNIT; //I_Error("Z value: %i", vertexes[l].z/FRACUNIT); } else { vertexes[l].z = mt->z*FRACUNIT; // celing floor } vt_found = true; } } //mt->type = 0; // VPHYSICS: Dynamic slopes if (vt_found) { for (k = 0; k < numsectors; k++) { sector_t *sec = §ors[k]; if (sec->linecount != 3) continue; // only works with triangular sectors v3float_t vt1, vt2, vt3; // cross = ret->normalf v3float_t vec1, vec2; int vi1, vi2, vi3; vi1 = (int)(sec->lines[0]->v1 - vertexes); vi2 = (int)(sec->lines[0]->v2 - vertexes); vi3 = (sec->lines[1]->v1 == sec->lines[0]->v1 || sec->lines[1]->v1 == sec->lines[0]->v2)? (int)(sec->lines[1]->v2 - vertexes) : (int)(sec->lines[1]->v1 - vertexes); //if (vertexes[vi1].z) // I_Error("OSNAP %i", vertexes[vi1].z/FRACUNIT); //if (vertexes[vi2].z) // I_Error("OSNAP %i", vertexes[vi2].z/FRACUNIT); //if (vertexes[vi3].z) // I_Error("OSNAP %i", vertexes[vi3].z/FRACUNIT); //I_Error("%i, %i", mt->z*FRACUNIT, vertexes[vi1].z); //I_Error("%i, %i, %i", mt->x, mt->y, mt->z); //P_SpawnMobj(mt->x*FRACUNIT, mt->y*FRACUNIT, mt->z*FRACUNIT, MT_RING); // TODO: Make sure not to spawn in the same place 2x! (we need an object in every vertex of the // triangle sector to setup the real vertex slopes // Check for the vertexes of all sectors for(q = 0; q < numvertexes; q++) { if (vertexes[q].x == mt->x*FRACUNIT && vertexes[q].y == mt->y*FRACUNIT) { //I_Error("yeah %i", vertexes[q].z); P_SpawnMobj(vertexes[q].x, vertexes[q].y, vertexes[q].z, MT_RING); #if 0 if ((mt->y*FRACUNIT == vertexes[vi1].y && mt->x*FRACUNIT == vertexes[vi1].x && mt->z*FRACUNIT == vertexes[vi1].z) && !(mt->y*FRACUNIT == vertexes[vi2].y && mt->x*FRACUNIT == vertexes[vi2].x && mt->z*FRACUNIT == vertexes[vi2].z) && !(mt->y*FRACUNIT == vertexes[vi3].y && mt->x*FRACUNIT == vertexes[vi3].x && mt->z*FRACUNIT == vertexes[vi3].z)) P_SpawnMobj(vertexes[vi1].x, vertexes[vi1].y, vertexes[vi1].z, MT_RING); else if ((mt->y*FRACUNIT == vertexes[vi2].y && mt->x*FRACUNIT == vertexes[vi2].x && mt->z*FRACUNIT == vertexes[vi2].z) && !(mt->y*FRACUNIT == vertexes[vi1].y && mt->x*FRACUNIT == vertexes[vi1].x && mt->z*FRACUNIT == vertexes[vi1].z) && !(mt->y*FRACUNIT == vertexes[vi3].y && mt->x*FRACUNIT == vertexes[vi3].x && mt->z*FRACUNIT == vertexes[vi3].z)) P_SpawnMobj(vertexes[vi2].x, vertexes[vi2].y, vertexes[vi2].z, MT_BOUNCETV); else if ((mt->y*FRACUNIT == vertexes[vi3].y && mt->x*FRACUNIT == vertexes[vi3].x && mt->z*FRACUNIT == vertexes[vi3].z) && !(mt->y*FRACUNIT == vertexes[vi2].y && mt->x*FRACUNIT == vertexes[vi2].x && mt->z*FRACUNIT == vertexes[vi2].z) && !(mt->y*FRACUNIT == vertexes[vi1].y && mt->x*FRACUNIT == vertexes[vi1].x && mt->z*FRACUNIT == vertexes[vi1].z)) P_SpawnMobj(vertexes[vi3].x, vertexes[vi3].y, vertexes[vi3].z, MT_GFZFLOWER1); else #endif continue; } } vt1.x = FIXED_TO_FLOAT(vertexes[vi1].x); vt1.y = FIXED_TO_FLOAT(vertexes[vi1].y); vt2.x = FIXED_TO_FLOAT(vertexes[vi2].x); vt2.y = FIXED_TO_FLOAT(vertexes[vi2].y); vt3.x = FIXED_TO_FLOAT(vertexes[vi3].x); vt3.y = FIXED_TO_FLOAT(vertexes[vi3].y); for(j = 0; j < 2; j++) { fixed_t z3; //I_Error("Lo hicimos"); vt1.z = mt->z;//FIXED_TO_FLOAT(j==0 ? sec->floorheight : sec->ceilingheight); vt2.z = mt->z;//FIXED_TO_FLOAT(j==0? sec->floorheight : sec->ceilingheight); z3 = mt->z;//j==0? sec->floorheight : sec->ceilingheight; // Destination height vt3.z = FIXED_TO_FLOAT(z3); if (P_PointOnLineSide(vertexes[vi3].x, vertexes[vi3].y, sec->lines[0]) == 0) { vec1.x = vt2.x - vt3.x; vec1.y = vt2.y - vt3.y; vec1.z = vt2.z - vt3.z; vec2.x = vt1.x - vt3.x; vec2.y = vt1.y - vt3.y; vec2.z = vt1.z - vt3.z; } else { vec1.x = vt1.x - vt3.x; vec1.y = vt1.y - vt3.y; vec1.z = vt1.z - vt3.z; vec2.x = vt2.x - vt3.x; vec2.y = vt2.y - vt3.y; vec2.z = vt2.z - vt3.z; } pslope_t *ret = Z_Malloc(sizeof(pslope_t), PU_LEVEL, NULL); memset(ret, 0, sizeof(*ret)); { M_CrossProduct3f(&ret->normalf, &vec1, &vec2); // Cross product length float len = (float)sqrt(ret->normalf.x * ret->normalf.x + ret->normalf.y * ret->normalf.y + ret->normalf.z * ret->normalf.z); if (len == 0) { // Only happens when all vertices in this sector are on the same line. // Let's just ignore this case. //CONS_Printf("Slope thing at (%d,%d) lies directly on its target line.\n", (int)(x>>16), (int)(y>>16)); return; } // cross/len ret->normalf.x /= len; ret->normalf.y /= len; ret->normalf.z /= len; // ZDoom cross = ret->normalf // Fix backward normals if ((ret->normalf.z < 0 && j == 0) || (ret->normalf.z > 0 && j == 1)) { // cross = -cross ret->normalf.x = -ret->normalf.x; ret->normalf.y = -ret->normalf.x; ret->normalf.z = -ret->normalf.x; } } secplane_t *srcplane = Z_Calloc(sizeof(*srcplane), PU_LEVEL, NULL); srcplane->a = FLOAT_TO_FIXED (ret->normalf.x); srcplane->b = FLOAT_TO_FIXED (ret->normalf.y); srcplane->c = FLOAT_TO_FIXED (ret->normalf.z); //srcplane->ic = FixedDiv(FRACUNIT, srcplane->c); srcplane->d = -TMulScale16 (srcplane->a, vertexes[vi3].x, srcplane->b, vertexes[vi3].y, srcplane->c, z3); if (j == 0) { sec->f_slope = ret; sec->f_slope->secplane = *srcplane; } else if (j == 1) { sec->c_slope = ret; sec->c_slope->secplane = *srcplane; } } } } } } Z_Free(datastart); } #endif // Reset the dynamic slopes pointer, and read all of the fancy schmancy slopes void P_ResetDynamicSlopes(void) { size_t i; dynslopes = NULL; // We'll handle copy slopes later, after all the tag lists have been made. // Yes, this means copied slopes won't affect things' spawning heights. Too bad for you. for (i = 0; i < numlines; i++) { switch (lines[i].special) { case 386: case 387: case 388: case 389: case 390: case 391: case 392: case 393: P_SpawnSlope_Line(i); break; default: break; } } } // ============================================================================ // // Various utilities related to slopes // // // P_GetZAt // // Returns the height of the sloped plane at (x, y) as a fixed_t // fixed_t P_GetZAt(pslope_t *slope, fixed_t x, fixed_t y) { fixed_t dist = FixedMul(x - slope->o.x, slope->d.x) + FixedMul(y - slope->o.y, slope->d.y); return slope->o.z + FixedMul(dist, slope->zdelta); } // // P_QuantizeMomentumToSlope // // When given a vector, rotates it and aligns it to a slope void P_QuantizeMomentumToSlope(vector3_t *momentum, pslope_t *slope) { vector3_t axis; axis.x = -slope->d.y; axis.y = slope->d.x; axis.z = 0; FV3_Rotate(momentum, &axis, slope->zangle >> ANGLETOFINESHIFT); } // // P_SlopeLaunch // // Handles slope ejection for objects void P_SlopeLaunch(mobj_t *mo) { // Double the pre-rotation Z, then halve the post-rotation Z. This reduces the // vertical launch given from slopes while increasing the horizontal launch // given. Good for SRB2's gravity and horizontal speeds. vector3_t slopemom; slopemom.x = mo->momx; slopemom.y = mo->momy; slopemom.z = mo->momz*2; P_QuantizeMomentumToSlope(&slopemom, mo->standingslope); mo->momx = slopemom.x; mo->momy = slopemom.y; mo->momz = slopemom.z/2; //CONS_Printf("Launched off of slope.\n"); mo->standingslope = NULL; } // Function to help handle landing on slopes void P_HandleSlopeLanding(mobj_t *thing, pslope_t *slope) { vector3_t mom; mom.x = thing->momx; mom.y = thing->momy; mom.z = thing->momz*2; //CONS_Printf("langing on slope\n"); // Reverse quantizing might could use its own function later slope->zangle = ANGLE_MAX-slope->zangle; P_QuantizeMomentumToSlope(&mom, slope); slope->zangle = ANGLE_MAX-slope->zangle; if (P_MobjFlip(thing)*mom.z < 0) { // falling, land on slope thing->momx = mom.x; thing->momy = mom.y; thing->momz = -P_MobjFlip(thing); thing->standingslope = slope; } } // https://yourlogicalfallacyis.com/slippery-slope // Handles sliding down slopes, like if they were made of butter :) void P_ButteredSlope(mobj_t *mo) { fixed_t thrust; if (!mo->standingslope) return; if (mo->player) { if (abs(mo->standingslope->zdelta) < FRACUNIT/4 && !(mo->player->pflags & PF_SPINNING)) return; // Don't slide on non-steep slopes unless spinning if (abs(mo->standingslope->zdelta) < FRACUNIT/2 && !(mo->player->rmomx || mo->player->rmomy)) return; // Allow the player to stand still on slopes below a certain steepness } thrust = FINESINE(mo->standingslope->zangle>>ANGLETOFINESHIFT) * 3 / 2 * (mo->eflags & MFE_VERTICALFLIP ? 1 : -1); if (mo->player && (mo->player->pflags & PF_SPINNING)) { fixed_t mult = 0; if (mo->momx || mo->momy) { angle_t angle = R_PointToAngle2(0, 0, mo->momx, mo->momy) - mo->standingslope->xydirection; if (P_MobjFlip(mo) * mo->standingslope->zdelta < 0) angle ^= ANGLE_180; mult = FINECOSINE(angle >> ANGLETOFINESHIFT); } //CONS_Printf("%d\n", mult); thrust = FixedMul(thrust, FRACUNIT*2/3 + mult/8); } if (mo->momx || mo->momy) // Slightly increase thrust based on the object's speed thrust = FixedMul(thrust, FRACUNIT+P_AproxDistance(mo->momx, mo->momy)/16); // This makes it harder to zigzag up steep slopes, as well as allows greater top speed when rolling down // Multiply by gravity thrust = FixedMul(thrust, FRACUNIT/2); // TODO actually get this P_Thrust(mo, mo->standingslope->xydirection, thrust); } // EOF #endif // #ifdef ESLOPE