// SONIC ROBO BLAST 2 //----------------------------------------------------------------------------- // Copyright (C) 1993-1996 by id Software, Inc. // Copyright (C) 1998-2000 by DooM Legacy Team. // Copyright (C) 1999-2019 by Sonic Team Junior. // // This program is free software distributed under the // terms of the GNU General Public License, version 2. // See the 'LICENSE' file for more details. //----------------------------------------------------------------------------- /// \file p_sight.c /// \brief Line of sight/visibility checks, uses REJECT lookup table #include "doomdef.h" #include "doomstat.h" #include "p_local.h" #include "p_slopes.h" #include "r_main.h" #include "r_state.h" // // P_CheckSight // // killough 4/19/98: // Convert LOS info to struct for reentrancy and efficiency of data locality typedef struct { fixed_t sightzstart, t2x, t2y; // eye z of looker divline_t strace; // from t1 to t2 fixed_t topslope, bottomslope; // slopes to top and bottom of target fixed_t bbox[4]; } los_t; static INT32 sightcounts[2]; // // P_DivlineSide // // Returns side 0 (front), 1 (back), or 2 (on). // static INT32 P_DivlineSide(fixed_t x, fixed_t y, divline_t *node) { fixed_t dx, dy, left, right; if (!node->dx) { if (x == node->x) return 2; if (x <= node->x) return (node->dy > 0); return (node->dy < 0); } if (!node->dy) { if (y == node->y) return 2; if (y <= node->y) return (node->dx < 0); return (node->dx > 0); } dx = x - node->x; dy = y - node->y; left = (node->dy>>FRACBITS) * (dx>>FRACBITS); right = (dy>>FRACBITS) * (node->dx>>FRACBITS); if (right < left) return 0; // front side if (left == right) return 2; return 1; // back side } // // P_InterceptVector2 // // Returns the fractional intercept point along the first divline. // This is only called by the addthings and addlines traversers. // static fixed_t P_InterceptVector2(divline_t *v2, divline_t *v1) { fixed_t frac, num, den; den = FixedMul(v1->dy>>8, v2->dx) - FixedMul(v1->dx>>8, v2->dy); if (!den) return 0; num = FixedMul((v1->x - v2->x)>>8, v1->dy) + FixedMul((v2->y - v1->y)>>8, v1->dx); frac = FixedDiv(num, den); return frac; } #ifdef POLYOBJECTS static boolean P_CrossSubsecPolyObj(polyobj_t *po, register los_t *los) { size_t i; sector_t *polysec; if (!(po->flags & POF_RENDERALL)) return true; // the polyobject isn't visible, so we can ignore it polysec = po->lines[0]->backsector; for (i = 0; i < po->numLines; ++i) { line_t *line = po->lines[i]; divline_t divl; const vertex_t *v1,*v2; fixed_t frac; fixed_t topslope, bottomslope; // already checked other side? if (line->validcount == validcount) continue; line->validcount = validcount; // OPTIMIZE: killough 4/20/98: Added quick bounding-box rejection test if (line->bbox[BOXLEFT ] > los->bbox[BOXRIGHT ] || line->bbox[BOXRIGHT ] < los->bbox[BOXLEFT ] || line->bbox[BOXBOTTOM] > los->bbox[BOXTOP ] || line->bbox[BOXTOP] < los->bbox[BOXBOTTOM]) continue; v1 = line->v1; v2 = line->v2; // line isn't crossed? if (P_DivlineSide(v1->x, v1->y, &los->strace) == P_DivlineSide(v2->x, v2->y, &los->strace)) continue; divl.dx = v2->x - (divl.x = v1->x); divl.dy = v2->y - (divl.y = v1->y); // line isn't crossed? if (P_DivlineSide(los->strace.x, los->strace.y, &divl) == P_DivlineSide(los->t2x, los->t2y, &divl)) continue; // stop because it is not two sided //if (!(po->flags & POF_TESTHEIGHT)) //return false; frac = P_InterceptVector2(&los->strace, &divl); // get slopes of top and bottom of this polyobject line topslope = FixedDiv(polysec->ceilingheight - los->sightzstart , frac); bottomslope = FixedDiv(polysec->floorheight - los->sightzstart , frac); if (topslope >= los->topslope && bottomslope <= los->bottomslope) return false; // view completely blocked // TODO: figure out if it's worth considering partially blocked cases or not? // maybe to adjust los's top/bottom slopes if needed //if (los->topslope <= los->bottomslope) //return false; } return true; } #endif // // P_CrossSubsector // // Returns true if strace crosses the given subsector successfully. // static boolean P_CrossSubsector(size_t num, register los_t *los) { seg_t *seg; INT32 count; #ifdef POLYOBJECTS polyobj_t *po; // haleyjd 02/23/06 #endif #ifdef RANGECHECK if (num >= numsubsectors) I_Error("P_CrossSubsector: ss %s with numss = %s\n", sizeu1(num), sizeu2(numsubsectors)); #endif // haleyjd 02/23/06: this assignment should be after the above check seg = segs + subsectors[num].firstline; #ifdef POLYOBJECTS // haleyjd 02/23/06: check polyobject lines if ((po = subsectors[num].polyList)) { while (po) { if (po->validcount != validcount) { po->validcount = validcount; if (!P_CrossSubsecPolyObj(po, los)) return false; } po = (polyobj_t *)(po->link.next); } } #endif for (count = subsectors[num].numlines; --count >= 0; seg++) // check lines { line_t *line = seg->linedef; divline_t divl; fixed_t popentop, popenbottom; const sector_t *front, *back; const vertex_t *v1,*v2; fixed_t frac; fixed_t frontf, backf, frontc, backc; #ifdef ESLOPE fixed_t fracx, fracy; #endif // already checked other side? if (line->validcount == validcount) continue; line->validcount = validcount; // OPTIMIZE: killough 4/20/98: Added quick bounding-box rejection test if (line->bbox[BOXLEFT ] > los->bbox[BOXRIGHT ] || line->bbox[BOXRIGHT ] < los->bbox[BOXLEFT ] || line->bbox[BOXBOTTOM] > los->bbox[BOXTOP ] || line->bbox[BOXTOP] < los->bbox[BOXBOTTOM]) continue; v1 = line->v1; v2 = line->v2; // line isn't crossed? if (P_DivlineSide(v1->x, v1->y, &los->strace) == P_DivlineSide(v2->x, v2->y, &los->strace)) continue; divl.dx = v2->x - (divl.x = v1->x); divl.dy = v2->y - (divl.y = v1->y); // line isn't crossed? if (P_DivlineSide(los->strace.x, los->strace.y, &divl) == P_DivlineSide(los->t2x, los->t2y, &divl)) continue; // stop because it is not two sided anyway if (!(line->flags & ML_TWOSIDED)) return false; // calculate fractional intercept (how far along we are divided by how far we are from t2) frac = P_InterceptVector2(&los->strace, &divl); front = seg->frontsector; back = seg->backsector; #ifdef ESLOPE // calculate position at intercept fracx = los->strace.x + FixedMul(los->strace.dx, frac); fracy = los->strace.y + FixedMul(los->strace.dy, frac); // calculate sector heights frontf = (front->f_slope) ? P_GetZAt(front->f_slope, fracx, fracy) : front->floorheight; frontc = (front->c_slope) ? P_GetZAt(front->c_slope, fracx, fracy) : front->ceilingheight; backf = (back->f_slope) ? P_GetZAt(back->f_slope, fracx, fracy) : back->floorheight; backc = (back->c_slope) ? P_GetZAt(back->c_slope, fracx, fracy) : back->ceilingheight; #else frontf = front->floorheight; frontc = front->ceilingheight; backf = back->floorheight; backc = back->ceilingheight; #endif // crosses a two sided line // no wall to block sight with? if (frontf == backf && frontc == backc && !front->ffloors & !back->ffloors) // (and no FOFs) continue; // possible occluder // because of ceiling height differences popentop = min(frontc, backc); // because of floor height differences popenbottom = max(frontf, backf); // quick test for totally closed doors if (popenbottom >= popentop) return false; if (frontf != backf) { fixed_t slope = FixedDiv(popenbottom - los->sightzstart , frac); if (slope > los->bottomslope) los->bottomslope = slope; } if (frontc != backc) { fixed_t slope = FixedDiv(popentop - los->sightzstart , frac); if (slope < los->topslope) los->topslope = slope; } if (los->topslope <= los->bottomslope) return false; // Monster Iestyn: check FOFs! if (front->ffloors || back->ffloors) { ffloor_t *rover; fixed_t topslope, bottomslope; fixed_t topz, bottomz; // check front sector's FOFs first for (rover = front->ffloors; rover; rover = rover->next) { if (!(rover->flags & FF_EXISTS) || !(rover->flags & FF_RENDERSIDES) || rover->flags & FF_TRANSLUCENT) { continue; } #ifdef ESLOPE topz = (*rover->t_slope) ? P_GetZAt(*rover->t_slope, fracx, fracy) : *rover->topheight; bottomz = (*rover->b_slope) ? P_GetZAt(*rover->b_slope, fracx, fracy) : *rover->bottomheight; #else topz = *rover->topheight; bottomz = *rover->bottomheight; #endif topslope = FixedDiv(topz - los->sightzstart , frac); bottomslope = FixedDiv(bottomz - los->sightzstart , frac); if (topslope >= los->topslope && bottomslope <= los->bottomslope) return false; // view completely blocked } // check back sector's FOFs as well for (rover = back->ffloors; rover; rover = rover->next) { if (!(rover->flags & FF_EXISTS) || !(rover->flags & FF_RENDERSIDES) || rover->flags & FF_TRANSLUCENT) { continue; } #ifdef ESLOPE topz = (*rover->t_slope) ? P_GetZAt(*rover->t_slope, fracx, fracy) : *rover->topheight; bottomz = (*rover->b_slope) ? P_GetZAt(*rover->b_slope, fracx, fracy) : *rover->bottomheight; #else topz = *rover->topheight; bottomz = *rover->bottomheight; #endif topslope = FixedDiv(topz - los->sightzstart , frac); bottomslope = FixedDiv(bottomz - los->sightzstart , frac); if (topslope >= los->topslope && bottomslope <= los->bottomslope) return false; // view completely blocked } // TODO: figure out if it's worth considering partially blocked cases or not? // maybe to adjust los's top/bottom slopes if needed } } // passed the subsector ok return true; } // // P_CrossBSPNode // Returns true // if strace crosses the given node successfully. // // killough 4/20/98: rewritten to remove tail recursion, clean up, and optimize static boolean P_CrossBSPNode(INT32 bspnum, register los_t *los) { while (!(bspnum & NF_SUBSECTOR)) { register node_t *bsp = nodes + bspnum; INT32 side = P_DivlineSide(los->strace.x,los->strace.y,(divline_t *)bsp)&1; if (side == P_DivlineSide(los->t2x, los->t2y, (divline_t *) bsp)) bspnum = bsp->children[side]; // doesn't touch the other side else // the partition plane is crossed here { if (!P_CrossBSPNode(bsp->children[side], los)) return 0; // cross the starting side else bspnum = bsp->children[side^1]; // cross the ending side } } return P_CrossSubsector((bspnum == -1 ? 0 : bspnum & ~NF_SUBSECTOR), los); } // // P_CheckSight // // Returns true if a straight line between t1 and t2 is unobstructed. // Uses REJECT. // boolean P_CheckSight(mobj_t *t1, mobj_t *t2) { const sector_t *s1, *s2; size_t pnum; los_t los; // First check for trivial rejection. if (!t1 || !t2) return false; I_Assert(!P_MobjWasRemoved(t1)); I_Assert(!P_MobjWasRemoved(t2)); if (!t1->subsector || !t2->subsector || !t1->subsector->sector || !t2->subsector->sector) return false; s1 = t1->subsector->sector; s2 = t2->subsector->sector; pnum = (s1-sectors)*numsectors + (s2-sectors); if (rejectmatrix != NULL) { // Check in REJECT table. if (rejectmatrix[pnum>>3] & (1 << (pnum&7))) // can't possibly be connected return false; } // killough 11/98: shortcut for melee situations // same subsector? obviously visible #ifndef POLYOBJECTS if (t1->subsector == t2->subsector) return true; #else // haleyjd 02/23/06: can't do this if there are polyobjects in the subsec if (!t1->subsector->polyList && t1->subsector == t2->subsector) return true; #endif // An unobstructed LOS is possible. // Now look from eyes of t1 to any part of t2. sightcounts[1]++; validcount++; los.topslope = (los.bottomslope = t2->z - (los.sightzstart = t1->z + t1->height - (t1->height>>2))) + t2->height; los.strace.dx = (los.t2x = t2->x) - (los.strace.x = t1->x); los.strace.dy = (los.t2y = t2->y) - (los.strace.y = t1->y); if (t1->x > t2->x) los.bbox[BOXRIGHT] = t1->x, los.bbox[BOXLEFT] = t2->x; else los.bbox[BOXRIGHT] = t2->x, los.bbox[BOXLEFT] = t1->x; if (t1->y > t2->y) los.bbox[BOXTOP] = t1->y, los.bbox[BOXBOTTOM] = t2->y; else los.bbox[BOXTOP] = t2->y, los.bbox[BOXBOTTOM] = t1->y; // Prevent SOME cases of looking through 3dfloors // // This WILL NOT work for things like 3d stairs with monsters behind // them - they will still see you! TODO: Fix. // if (s1 == s2) // Both sectors are the same. { ffloor_t *rover; fixed_t topz1, bottomz1; // top, bottom heights at t1's position fixed_t topz2, bottomz2; // likewise but for t2 for (rover = s1->ffloors; rover; rover = rover->next) { // Allow sight through water, fog, etc. /// \todo Improve by checking fog density/translucency /// and setting a sight limit. if (!(rover->flags & FF_EXISTS) || !(rover->flags & FF_RENDERPLANES) || rover->flags & FF_TRANSLUCENT) { continue; } #ifdef ESLOPE if (*rover->t_slope) { topz1 = P_GetZAt(*rover->t_slope, t1->x, t1->y); topz2 = P_GetZAt(*rover->t_slope, t2->x, t2->y); } else topz1 = topz2 = *rover->topheight; if (*rover->b_slope) { bottomz1 = P_GetZAt(*rover->b_slope, t1->x, t1->y); bottomz2 = P_GetZAt(*rover->b_slope, t2->x, t2->y); } else bottomz1 = bottomz2 = *rover->bottomheight; #else topz1 = topz2 = *rover->topheight; bottomz1 = bottomz2 = *rover->bottomheight; #endif // Check for blocking floors here. if ((los.sightzstart < bottomz1 && t2->z >= topz2) || (los.sightzstart >= topz1 && t2->z + t2->height < bottomz2)) { // no way to see through that return false; } if (rover->flags & FF_SOLID) continue; // shortcut since neither mobj can be inside the 3dfloor if (!(rover->flags & FF_INVERTPLANES)) { if (los.sightzstart >= topz1 && t2->z + t2->height < topz2) return false; // blocked by upper outside plane if (los.sightzstart < bottomz1 && t2->z >= bottomz2) return false; // blocked by lower outside plane } if (rover->flags & FF_INVERTPLANES || rover->flags & FF_BOTHPLANES) { if (los.sightzstart < topz1 && t2->z >= topz2) return false; // blocked by upper inside plane if (los.sightzstart >= bottomz1 && t2->z + t2->height < bottomz2) return false; // blocked by lower inside plane } } } // the head node is the last node output return P_CrossBSPNode((INT32)numnodes - 1, &los); }