// SONIC ROBO BLAST 2 //----------------------------------------------------------------------------- // Copyright (C) 1993-1996 by id Software, Inc. // Copyright (C) 1998-2000 by DooM Legacy Team. // Copyright (C) 1999-2019 by Sonic Team Junior. // // This program is free software distributed under the // terms of the GNU General Public License, version 2. // See the 'LICENSE' file for more details. //----------------------------------------------------------------------------- /// \file am_map.c /// \brief Code for the 'automap', former Doom feature used for DEVMODE testing #include "am_map.h" #include "g_game.h" #include "g_input.h" #include "p_local.h" #include "p_slopes.h" #include "v_video.h" #include "i_video.h" #include "r_state.h" #include "r_draw.h" #ifdef HWRENDER #include "hardware/hw_main.h" #endif // For use if I do walls with outsides/insides static const UINT8 REDS = (8*16); static const UINT8 REDRANGE = 16; static const UINT8 GRAYS = (1*16); static const UINT8 GRAYSRANGE = 16; static const UINT8 BROWNS = (3*16); static const UINT8 YELLOWS = (7*16); static const UINT8 GREENS = (10*16); static const UINT8 DBLACK = 31; static const UINT8 DWHITE = 0; static const UINT8 NOCLIMBREDS = 248; static const UINT8 NOCLIMBREDRANGE = 8; static const UINT8 NOCLIMBGRAYS = 204; static const UINT8 NOCLIMBBROWNS = (2*16); static const UINT8 NOCLIMBYELLOWS = (11*16); // Automap colors #define BACKGROUND DBLACK #define WALLCOLORS (REDS + REDRANGE/2) #define WALLRANGE (REDRANGE/2) #define NOCLIMBWALLCOLORS (NOCLIMBREDS + NOCLIMBREDRANGE/2) #define NOCLIMBWALLRANGE (NOCLIMBREDRANGE/2) #define THOKWALLCOLORS REDS #define THOKWALLRANGE REDRANGE #define NOCLIMBTHOKWALLCOLORS NOCLIMBREDS #define NOCLIMBTHOKWALLRANGE NOCLIMBREDRANGE #define TSWALLCOLORS GRAYS #define TSWALLRANGE GRAYSRANGE #define NOCLIMBTSWALLCOLORS NOCLIMBGRAYS #define FDWALLCOLORS BROWNS #define NOCLIMBFDWALLCOLORS NOCLIMBBROWNS #define CDWALLCOLORS YELLOWS #define NOCLIMBCDWALLCOLORS NOCLIMBYELLOWS #define THINGCOLORS GREENS #define GRIDCOLORS (GRAYS + GRAYSRANGE/2) #define XHAIRCOLORS DWHITE // controls #define AM_PANUPKEY KEY_UPARROW #define AM_PANDOWNKEY KEY_DOWNARROW #define AM_PANLEFTKEY KEY_LEFTARROW #define AM_PANRIGHTKEY KEY_RIGHTARROW #define AM_ZOOMINKEY '=' #define AM_ZOOMOUTKEY '-' #define AM_GOBIGKEY '0' #define AM_FOLLOWKEY 'f' #define AM_GRIDKEY 'g' #define AM_TOGGLEKEY KEY_TAB // scale on entry #define INITSCALEMTOF (FRACUNIT/5) // how much the automap moves window per tic in frame-buffer coordinates // moves 140 pixels in 1 second #define F_PANINC 4 // how much zoom-in per tic // goes to 2x in 1 second #define M_ZOOMIN ((51*FRACUNIT)/50) // how much zoom-out per tic // pulls out to 0.5x in 1 second #define M_ZOOMOUT ((50*FRACUNIT)/51) // translates between frame-buffer and map distances #define FTOM(x) FixedMul(((x)<>FRACBITS) // translates between frame-buffer and map coordinates #define CXMTOF(x) (f_x + MTOF((x)-m_x)) #define CYMTOF(y) (f_y + (f_h - MTOF((y)-m_y))) #define MAPBITS (FRACBITS-4) #define FRACTOMAPBITS (FRACBITS-MAPBITS) typedef struct { fixed_t x, y; } mpoint_t; typedef struct { mpoint_t a, b; } mline_t; // // The vector graphics for the automap. // A line drawing of the player pointing right, // starting from the middle. // #define PLAYERRADIUS (16*(1< { { R, 0 }, { R-R/2, -R/4 } }, { { -R+R/8, 0 }, { -R-R/8, R/4 } }, // >----> { { -R+R/8, 0 }, { -R-R/8, -R/4 } }, { { -R+3*R/8, 0 }, { -R+R/8, R/4 } }, // >>---> { { -R+3*R/8, 0 }, { -R+R/8, -R/4 } } }; #undef R #define NUMPLYRLINES (sizeof (player_arrow)/sizeof (mline_t)) #define R (FRACUNIT) static const mline_t cross_mark[] = { { { -R, 0 }, { R, 0} }, { { 0, -R }, { 0, R } }, }; #undef R #define NUMCROSSMARKLINES (sizeof(cross_mark)/sizeof(mline_t)) #define R (FRACUNIT) static const mline_t thintriangle_guy[] = { { { (-1*R)/2, (-7*R)/10 }, { R, 0 } }, { { R, 0 }, { (-1*R)/2, (7*R)/10 } }, { { (-1*R)/2, (7*R)/10 }, { (-1*R)/2, (-7*R)/10 } } }; #undef R #define NUMTHINTRIANGLEGUYLINES (sizeof (thintriangle_guy)/sizeof (mline_t)) static boolean bigstate; // user view and large view (full map view) static boolean draw_grid = false; boolean automapactive = false; boolean am_recalc = false; //added : 05-02-98 : true when screen size changes static boolean am_stopped = true; static INT32 f_x, f_y; // location of window on screen (always zero for both) static INT32 f_w, f_h; // size of window on screen (always the screen width and height respectively) static mpoint_t m_paninc; // how far the window pans each tic (map coords) static fixed_t mtof_zoommul; // how far the window zooms in each tic (map coords) static fixed_t ftom_zoommul; // how far the window zooms in each tic (fb coords) static fixed_t m_x, m_y; // LL x,y where the window is on the map (map coords) static fixed_t m_x2, m_y2; // UR x,y where the window is on the map (map coords) // // width/height of window on map (map coords) // static fixed_t m_w; static fixed_t m_h; // based on level size static fixed_t min_x; static fixed_t min_y; static fixed_t max_x; static fixed_t max_y; static fixed_t max_w; // max_x-min_x, static fixed_t max_h; // max_y-min_y static fixed_t min_scale_mtof; // used to tell when to stop zooming out static fixed_t max_scale_mtof; // used to tell when to stop zooming in // old stuff for recovery later static fixed_t old_m_w, old_m_h; static fixed_t old_m_x, old_m_y; // old location used by the Follower routine static mpoint_t f_oldloc; // used by MTOF to scale from map-to-frame-buffer coords static fixed_t scale_mtof = (fixed_t)INITSCALEMTOF; // used by FTOM to scale from frame-buffer-to-map coords (=1/scale_mtof) static fixed_t scale_ftom; static player_t *plr; // the player represented by an arrow static boolean followplayer = true; // specifies whether to follow the player around // function for drawing lines, depends on rendermode typedef void (*AMDRAWFLINEFUNC) (const fline_t *fl, INT32 color); static AMDRAWFLINEFUNC AM_drawFline; static void AM_drawFline_soft(const fline_t *fl, INT32 color); static void AM_activateNewScale(void) { m_x += m_w/2; m_y += m_h/2; m_w = FTOM(f_w); m_h = FTOM(f_h); m_x -= m_w/2; m_y -= m_h/2; m_x2 = m_x + m_w; m_y2 = m_y + m_h; } static inline void AM_saveScaleAndLoc(void) { old_m_x = m_x; old_m_y = m_y; old_m_w = m_w; old_m_h = m_h; } static inline void AM_restoreScaleAndLoc(void) { m_w = old_m_w; m_h = old_m_h; if (!followplayer) { m_x = old_m_x; m_y = old_m_y; } else { m_x = (plr->mo->x >> FRACTOMAPBITS) - m_w/2; m_y = (plr->mo->y >> FRACTOMAPBITS) - m_h/2; } m_x2 = m_x + m_w; m_y2 = m_y + m_h; // Change the scaling multipliers scale_mtof = FixedDiv(f_w< max_x) max_x = vertexes[i].x; if (vertexes[i].y < min_y) min_y = vertexes[i].y; else if (vertexes[i].y > max_y) max_y = vertexes[i].y; } max_w = (max_x >>= FRACTOMAPBITS) - (min_x >>= FRACTOMAPBITS); max_h = (max_y >>= FRACTOMAPBITS) - (min_y >>= FRACTOMAPBITS); a = FixedDiv(f_w< max_x) m_x = max_x - m_w/2; else if (m_x + m_w/2 < min_x) m_x = min_x - m_w/2; if (m_y + m_h/2 > max_y) m_y = max_y - m_h/2; else if (m_y + m_h/2 < min_y) m_y = min_y - m_h/2; m_x2 = m_x + m_w; m_y2 = m_y + m_h; } static void AM_initVariables(void) { INT32 pnum; automapactive = true; f_oldloc.x = INT32_MAX; m_paninc.x = m_paninc.y = 0; ftom_zoommul = FRACUNIT; mtof_zoommul = FRACUNIT; m_w = FTOM(f_w); m_h = FTOM(f_h); // find player to center on initially if (!playeringame[pnum = consoleplayer]) for (pnum = 0; pnum < MAXPLAYERS; pnum++) if (playeringame[pnum]) break; plr = &players[pnum]; if (plr != NULL && plr->mo != NULL) { m_x = (plr->mo->x >> FRACTOMAPBITS) - m_w/2; m_y = (plr->mo->y >> FRACTOMAPBITS) - m_h/2; } AM_changeWindowLoc(); // for saving & restoring old_m_x = m_x; old_m_y = m_y; old_m_w = m_w; old_m_h = m_h; } // // should be called at the start of every level // right now, i figure it out myself // static void AM_LevelInit(void) { f_x = f_y = 0; f_w = vid.width; f_h = vid.height; AM_drawFline = AM_drawFline_soft; #ifdef HWRENDER if (rendermode == render_opengl) AM_drawFline = HWR_drawAMline; #endif AM_findMinMaxBoundaries(); scale_mtof = FixedDiv(min_scale_mtof*10, 7*FRACUNIT); if (scale_mtof > max_scale_mtof) scale_mtof = min_scale_mtof; scale_ftom = FixedDiv(FRACUNIT, scale_mtof); } /** Disables automap. * * \sa AM_Start */ void AM_Stop(void) { automapactive = false; am_stopped = true; } /** Enables automap. * * \sa AM_Stop */ static inline void AM_Start(void) { static INT32 lastlevel = -1; if (!am_stopped) AM_Stop(); am_stopped = false; if (lastlevel != gamemap || am_recalc) // screen size changed { AM_LevelInit(); lastlevel = gamemap; am_recalc = false; } AM_initVariables(); } // // set the window scale to the maximum size // static void AM_minOutWindowScale(void) { scale_mtof = min_scale_mtof; scale_ftom = FixedDiv(FRACUNIT, scale_mtof); AM_activateNewScale(); } // // set the window scale to the minimum size // static void AM_maxOutWindowScale(void) { scale_mtof = max_scale_mtof; scale_ftom = FixedDiv(FRACUNIT, scale_mtof); AM_activateNewScale(); } /** Responds to user inputs in automap mode. * * \param ev Event to possibly respond to. * \return True if the automap responder ate the event. */ boolean AM_Responder(event_t *ev) { INT32 rc = false; if (devparm || cv_debug) // only automap in Debug Tails 01-19-2001 { if (!automapactive) { if (ev->type == ev_keydown && ev->data1 == AM_TOGGLEKEY) { //faB: prevent alt-tab in win32 version to activate automap just before // minimizing the app; doesn't do any harm to the DOS version if (!gamekeydown[KEY_LALT] && !gamekeydown[KEY_RALT]) { bigstate = 0; //added : 24-01-98 : toggle off large view AM_Start(); rc = true; } } } else if (ev->type == ev_keydown) { rc = true; switch (ev->data1) { case AM_PANRIGHTKEY: // pan right if (!followplayer) m_paninc.x = FTOM(F_PANINC); else rc = false; break; case AM_PANLEFTKEY: // pan left if (!followplayer) m_paninc.x = -FTOM(F_PANINC); else rc = false; break; case AM_PANUPKEY: // pan up if (!followplayer) m_paninc.y = FTOM(F_PANINC); else rc = false; break; case AM_PANDOWNKEY: // pan down if (!followplayer) m_paninc.y = -FTOM(F_PANINC); else rc = false; break; case AM_ZOOMOUTKEY: // zoom out mtof_zoommul = M_ZOOMOUT; ftom_zoommul = M_ZOOMIN; break; case AM_ZOOMINKEY: // zoom in mtof_zoommul = M_ZOOMIN; ftom_zoommul = M_ZOOMOUT; break; case AM_TOGGLEKEY: AM_Stop(); break; case AM_GOBIGKEY: bigstate = !bigstate; if (bigstate) { AM_saveScaleAndLoc(); AM_minOutWindowScale(); } else AM_restoreScaleAndLoc(); break; case AM_FOLLOWKEY: followplayer = !followplayer; f_oldloc.x = INT32_MAX; break; case AM_GRIDKEY: draw_grid = !draw_grid; break; default: rc = false; } } else if (ev->type == ev_keyup) { rc = false; switch (ev->data1) { case AM_PANRIGHTKEY: case AM_PANLEFTKEY: if (!followplayer) m_paninc.x = 0; break; case AM_PANUPKEY: case AM_PANDOWNKEY: if (!followplayer) m_paninc.y = 0; break; case AM_ZOOMOUTKEY: case AM_ZOOMINKEY: mtof_zoommul = FRACUNIT; ftom_zoommul = FRACUNIT; break; } } } return rc; } /** Makes a zooming change take effect. */ static inline void AM_changeWindowScale(void) { // Change the scaling multipliers scale_mtof = FixedMul(scale_mtof, mtof_zoommul); scale_ftom = FixedDiv(FRACUNIT, scale_mtof); if (scale_mtof < min_scale_mtof) AM_minOutWindowScale(); else if (scale_mtof > max_scale_mtof) AM_maxOutWindowScale(); else AM_activateNewScale(); } static inline void AM_doFollowPlayer(void) { if (f_oldloc.x != plr->mo->x || f_oldloc.y != plr->mo->y) { m_x = FTOM(MTOF(plr->mo->x >> FRACTOMAPBITS)) - m_w/2; m_y = FTOM(MTOF(plr->mo->y >> FRACTOMAPBITS)) - m_h/2; m_x2 = m_x + m_w; m_y2 = m_y + m_h; f_oldloc.x = plr->mo->x; f_oldloc.y = plr->mo->y; } } /** Updates automap on a game tic, while the automap is enabled. */ void AM_Ticker(void) { if (!cv_debug) AM_Stop(); if (dedicated || !automapactive) return; if (followplayer) AM_doFollowPlayer(); // Change the zoom if necessary if (ftom_zoommul != FRACUNIT) AM_changeWindowScale(); // Change x,y location if (m_paninc.x || m_paninc.y) AM_changeWindowLoc(); } /** Clears the automap framebuffer. * * \param color Color to erase to. */ static void AM_clearFB(INT32 color) { V_DrawFill(f_x, f_y, f_w, f_h, color|V_NOSCALESTART); } /** Performs automap clipping of lines. * Based on Cohen-Sutherland clipping algorithm but with a slightly * faster reject and precalculated slopes. If the speed is needed, * use a hash algorithm to handle the common cases. * * \param ml Line to clip. * \param fl Resulting framebuffer coordinates? * \return True if the line is inside the boundaries. */ static boolean AM_clipMline(const mline_t *ml, fline_t *fl) { enum { LEFT = 1, RIGHT = 2, BOTTOM = 4, TOP = 8 }; register INT32 outcode1 = 0, outcode2 = 0, outside; fpoint_t tmp ={0,0}; INT32 dx, dy; #define DOOUTCODE(oc, mx, my) \ (oc) = 0; \ if ((my) < 0) (oc) |= TOP; \ else if ((my) >= f_h) (oc) |= BOTTOM; \ if ((mx) < 0) (oc) |= LEFT; \ else if ((mx) >= f_w) (oc) |= RIGHT; // do trivial rejects and outcodes if (ml->a.y > m_y2) outcode1 = TOP; else if (ml->a.y < m_y) outcode1 = BOTTOM; if (ml->b.y > m_y2) outcode2 = TOP; else if (ml->b.y < m_y) outcode2 = BOTTOM; if (outcode1 & outcode2) return false; // trivially outside if (ml->a.x < m_x) outcode1 |= LEFT; else if (ml->a.x > m_x2) outcode1 |= RIGHT; if (ml->b.x < m_x) outcode2 |= LEFT; else if (ml->b.x > m_x2) outcode2 |= RIGHT; if (outcode1 & outcode2) return false; // trivially outside // transform to frame-buffer coordinates. fl->a.x = CXMTOF(ml->a.x); fl->a.y = CYMTOF(ml->a.y); fl->b.x = CXMTOF(ml->b.x); fl->b.y = CYMTOF(ml->b.y); DOOUTCODE(outcode1, fl->a.x, fl->a.y); DOOUTCODE(outcode2, fl->b.x, fl->b.y); if (outcode1 & outcode2) return false; while (outcode1 | outcode2) { // may be partially inside box // find an outside point if (outcode1) outside = outcode1; else outside = outcode2; // clip to each side if (outside & TOP) { dy = fl->a.y - fl->b.y; dx = fl->b.x - fl->a.x; tmp.x = fl->a.x + (dx*(fl->a.y))/dy; tmp.y = 0; } else if (outside & BOTTOM) { dy = fl->a.y - fl->b.y; dx = fl->b.x - fl->a.x; tmp.x = fl->a.x + (dx*(fl->a.y-f_h))/dy; tmp.y = f_h-1; } else if (outside & RIGHT) { dy = fl->b.y - fl->a.y; dx = fl->b.x - fl->a.x; tmp.y = fl->a.y + (dy*(f_w-1 - fl->a.x))/dx; tmp.x = f_w-1; } else if (outside & LEFT) { dy = fl->b.y - fl->a.y; dx = fl->b.x - fl->a.x; tmp.y = fl->a.y + (dy*(-fl->a.x))/dx; tmp.x = 0; } if (outside == outcode1) { fl->a = tmp; DOOUTCODE(outcode1, fl->a.x, fl->a.y); } else { fl->b = tmp; DOOUTCODE(outcode2, fl->b.x, fl->b.y); } if (outcode1 & outcode2) return false; // trivially outside } return true; } #undef DOOUTCODE // // Classic Bresenham w/ whatever optimizations needed for speed // static void AM_drawFline_soft(const fline_t *fl, INT32 color) { INT32 x, y, dx, dy, sx, sy, ax, ay, d; #ifdef _DEBUG static INT32 num = 0; // For debugging only if (fl->a.x < 0 || fl->a.x >= f_w || fl->a.y < 0 || fl->a.y >= f_h || fl->b.x < 0 || fl->b.x >= f_w || fl->b.y < 0 || fl->b.y >= f_h) { CONS_Debug(DBG_RENDER, "line clipping problem %d\n", num++); return; } #endif #define PUTDOT(xx,yy,cc) V_DrawFill(xx,yy,1,1,cc|V_NOSCALESTART); dx = fl->b.x - fl->a.x; ax = 2 * (dx < 0 ? -dx : dx); sx = dx < 0 ? -1 : 1; dy = fl->b.y - fl->a.y; ay = 2 * (dy < 0 ? -dy : dy); sy = dy < 0 ? -1 : 1; x = fl->a.x; y = fl->a.y; if (ax > ay) { d = ay - ax/2; for (;;) { PUTDOT(x, y, color) if (x == fl->b.x) return; if (d >= 0) { y += sy; d -= ax; } x += sx; d += ay; } } else { d = ax - ay/2; for (;;) { PUTDOT(x, y, color) if (y == fl->b.y) return; if (d >= 0) { x += sx; d -= ay; } y += sy; d += ax; } } #undef PUTDOT } // // Clip lines, draw visible parts of lines. // static void AM_drawMline(const mline_t *ml, INT32 color) { static fline_t fl; if (AM_clipMline(ml, &fl)) AM_drawFline(&fl, color); // draws it on frame buffer using fb coords } // // Draws flat (floor/ceiling tile) aligned grid lines. // static void AM_drawGrid(INT32 color) { fixed_t x, y; fixed_t start, end; mline_t ml; fixed_t gridsize = (MAPBLOCKUNITS<>FRACTOMAPBITS)) % gridsize) start += gridsize - ((start - (bmaporgx>>FRACTOMAPBITS)) % gridsize); end = m_x + m_w; // draw vertical gridlines ml.a.y = m_y; ml.b.y = m_y + m_h; for (x = start; x < end; x += gridsize) { ml.a.x = x; ml.b.x = x; AM_drawMline(&ml, color); } // Figure out start of horizontal gridlines start = m_y; if ((start - (bmaporgy>>FRACTOMAPBITS)) % gridsize) start += gridsize - ((start - (bmaporgy>>FRACTOMAPBITS)) % gridsize); end = m_y + m_h; // draw horizontal gridlines ml.a.x = m_x; ml.b.x = m_x + m_w; for (y = start; y < end; y += gridsize) { ml.a.y = y; ml.b.y = y; AM_drawMline(&ml, color); } } // // Determines visible lines, draws them. // This is LineDef based, not LineSeg based. // static inline void AM_drawWalls(void) { size_t i; static mline_t l; #ifdef ESLOPE fixed_t frontf1,frontf2, frontc1, frontc2; // front floor/ceiling ends fixed_t backf1 = 0, backf2 = 0, backc1 = 0, backc2 = 0; // back floor ceiling ends #endif for (i = 0; i < numlines; i++) { l.a.x = lines[i].v1->x >> FRACTOMAPBITS; l.a.y = lines[i].v1->y >> FRACTOMAPBITS; l.b.x = lines[i].v2->x >> FRACTOMAPBITS; l.b.y = lines[i].v2->y >> FRACTOMAPBITS; #ifdef ESLOPE #define SLOPEPARAMS(slope, end1, end2, normalheight) \ if (slope) { \ end1 = P_GetZAt(slope, lines[i].v1->x, lines[i].v1->y); \ end2 = P_GetZAt(slope, lines[i].v2->x, lines[i].v2->y); \ } else \ end1 = end2 = normalheight; SLOPEPARAMS(lines[i].frontsector->f_slope, frontf1, frontf2, lines[i].frontsector->floorheight) SLOPEPARAMS(lines[i].frontsector->c_slope, frontc1, frontc2, lines[i].frontsector->ceilingheight) if (lines[i].backsector) { SLOPEPARAMS(lines[i].backsector->f_slope, backf1, backf2, lines[i].backsector->floorheight) SLOPEPARAMS(lines[i].backsector->c_slope, backc1, backc2, lines[i].backsector->ceilingheight) } #undef SLOPEPARAMS #endif if (!lines[i].backsector) // 1-sided { if (lines[i].flags & ML_NOCLIMB) AM_drawMline(&l, NOCLIMBWALLCOLORS); else AM_drawMline(&l, WALLCOLORS); } #ifdef ESLOPE else if ((backf1 == backc1 && backf2 == backc2) // Back is thok barrier || (frontf1 == frontc1 && frontf2 == frontc2)) // Front is thok barrier { if (backf1 == backc1 && backf2 == backc2 && frontf1 == frontc1 && frontf2 == frontc2) // BOTH are thok barriers #else else if (lines[i].backsector->floorheight == lines[i].backsector->ceilingheight // Back is thok barrier || lines[i].frontsector->floorheight == lines[i].frontsector->ceilingheight) // Front is thok barrier { if (lines[i].backsector->floorheight == lines[i].backsector->ceilingheight && lines[i].frontsector->floorheight == lines[i].frontsector->ceilingheight) // BOTH are thok barriers #endif { if (lines[i].flags & ML_NOCLIMB) AM_drawMline(&l, NOCLIMBTSWALLCOLORS); else AM_drawMline(&l, TSWALLCOLORS); } else { if (lines[i].flags & ML_NOCLIMB) AM_drawMline(&l, NOCLIMBTHOKWALLCOLORS); else AM_drawMline(&l, THOKWALLCOLORS); } } else { if (lines[i].flags & ML_NOCLIMB) { #ifdef ESLOPE if (backf1 != frontf1 || backf2 != frontf2) { #else if (lines[i].backsector->floorheight != lines[i].frontsector->floorheight) { #endif AM_drawMline(&l, NOCLIMBFDWALLCOLORS); // floor level change } #ifdef ESLOPE else if (backc1 != frontc1 || backc2 != frontc2) { #else else if (lines[i].backsector->ceilingheight != lines[i].frontsector->ceilingheight) { #endif AM_drawMline(&l, NOCLIMBCDWALLCOLORS); // ceiling level change } else AM_drawMline(&l, NOCLIMBTSWALLCOLORS); } else { #ifdef ESLOPE if (backf1 != frontf1 || backf2 != frontf2) { #else if (lines[i].backsector->floorheight != lines[i].frontsector->floorheight) { #endif AM_drawMline(&l, FDWALLCOLORS); // floor level change } #ifdef ESLOPE else if (backc1 != frontc1 || backc2 != frontc2) { #else else if (lines[i].backsector->ceilingheight != lines[i].frontsector->ceilingheight) { #endif AM_drawMline(&l, CDWALLCOLORS); // ceiling level change } else AM_drawMline(&l, TSWALLCOLORS); } } } } // // Rotation in 2D. // Used to rotate player arrow line character. // static void AM_rotate(fixed_t *x, fixed_t *y, angle_t a) { fixed_t tmpx; tmpx = FixedMul(*x, FINECOSINE(a>>ANGLETOFINESHIFT)) - FixedMul(*y, FINESINE(a>>ANGLETOFINESHIFT)); *y = FixedMul(*x, FINESINE(a>>ANGLETOFINESHIFT)) + FixedMul(*y, FINECOSINE(a>>ANGLETOFINESHIFT)); *x = tmpx; } static void AM_drawLineCharacter(const mline_t *lineguy, size_t lineguylines, fixed_t scale, angle_t angle, INT32 color, fixed_t x, fixed_t y) { size_t i; mline_t l; for (i = 0; i < lineguylines; i++) { l.a.x = lineguy[i].a.x; l.a.y = lineguy[i].a.y; if (scale) { l.a.x = FixedMul(scale, l.a.x); l.a.y = FixedMul(scale, l.a.y); } if (angle) AM_rotate(&l.a.x, &l.a.y, angle); l.a.x += x; l.a.y += y; l.b.x = lineguy[i].b.x; l.b.y = lineguy[i].b.y; if (scale) { l.b.x = FixedMul(scale, l.b.x); l.b.y = FixedMul(scale, l.b.y); } if (angle) AM_rotate(&l.b.x, &l.b.y, angle); l.b.x += x; l.b.y += y; l.a.x >>= FRACTOMAPBITS; l.a.y >>= FRACTOMAPBITS; l.b.x >>= FRACTOMAPBITS; l.b.y >>= FRACTOMAPBITS; AM_drawMline(&l, color); } } static inline void AM_drawPlayers(void) { INT32 i; player_t *p; INT32 color = GREENS; if (!multiplayer) { AM_drawLineCharacter(player_arrow, NUMPLYRLINES, 16<mo->angle, DWHITE, plr->mo->x, plr->mo->y); return; } // multiplayer (how??) for (i = 0; i < MAXPLAYERS; i++) { if (!playeringame[i] || players[i].spectator) continue; p = &players[i]; if (p->skincolor > 0) color = R_GetTranslationColormap(TC_DEFAULT, p->skincolor, GTC_CACHE)[GREENS + 8]; AM_drawLineCharacter(player_arrow, NUMPLYRLINES, 16<mo->angle, color, p->mo->x, p->mo->y); } } static inline void AM_drawThings(UINT8 colors) { size_t i; mobj_t *t; for (i = 0; i < numsectors; i++) { t = sectors[i].thinglist; while (t) { AM_drawLineCharacter(thintriangle_guy, NUMTHINTRIANGLEGUYLINES, 16<angle, colors, t->x, t->y); t = t->snext; } } } /** Draws the crosshair. * * \param color Color for the crosshair. */ static inline void AM_drawCrosshair(UINT8 color) { const fixed_t scale = 4<> FRACBITS; fl.a.y = FixedMul(cross_mark[i].a.y, scale) >> FRACBITS; fl.b.x = FixedMul(cross_mark[i].b.x, scale) >> FRACBITS; fl.b.y = FixedMul(cross_mark[i].b.y, scale) >> FRACBITS; fl.a.x += f_x + (f_w / 2); fl.a.y += f_y + (f_h / 2); fl.b.x += f_x + (f_w / 2); fl.b.y += f_y + (f_h / 2); AM_drawFline(&fl, color); } } /** Draws the automap. */ void AM_Drawer(void) { if (!automapactive) return; AM_clearFB(BACKGROUND); if (draw_grid) AM_drawGrid(GRIDCOLORS); AM_drawWalls(); AM_drawPlayers(); AM_drawThings(THINGCOLORS); if (!followplayer) AM_drawCrosshair(XHAIRCOLORS); }