// SONIC ROBO BLAST 2 //----------------------------------------------------------------------------- // Copyright (C) 2004 by Stephen McGranahan // Copyright (C) 2015-2021 by Sonic Team Junior. // // This program is free software distributed under the // terms of the GNU General Public License, version 2. // See the 'LICENSE' file for more details. //----------------------------------------------------------------------------- /// \file p_slopes.c /// \brief ZDoom + Eternity Engine Slopes, ported and enhanced by Kalaron #include "doomdef.h" #include "r_defs.h" #include "r_state.h" #include "m_bbox.h" #include "z_zone.h" #include "p_local.h" #include "p_spec.h" #include "p_slopes.h" #include "p_setup.h" #include "r_main.h" #include "p_maputl.h" #include "w_wad.h" pslope_t *slopelist = NULL; UINT16 slopecount = 0; // Calculate line normal void P_CalculateSlopeNormal(pslope_t *slope) { slope->normal.z = FINECOSINE(slope->zangle>>ANGLETOFINESHIFT); slope->normal.x = FixedMul(FINESINE(slope->zangle>>ANGLETOFINESHIFT), slope->d.x); slope->normal.y = FixedMul(FINESINE(slope->zangle>>ANGLETOFINESHIFT), slope->d.y); } /// Setup slope via 3 vertexes. static void ReconfigureViaVertexes (pslope_t *slope, const vector3_t v1, const vector3_t v2, const vector3_t v3) { vector3_t vec1, vec2; // Set origin. FV3_Copy(&slope->o, &v1); // Get slope's normal. FV3_SubEx(&v2, &v1, &vec1); FV3_SubEx(&v3, &v1, &vec2); // Set some defaults for a non-sloped "slope" if (vec1.z == 0 && vec2.z == 0) { slope->zangle = slope->xydirection = 0; slope->zdelta = slope->d.x = slope->d.y = 0; slope->normal.x = slope->normal.y = 0; slope->normal.z = FRACUNIT; } else { /// \note Using fixed point for vectorial products easily leads to overflows so we work around by downscaling them. fixed_t m = max( max(max(abs(vec1.x), abs(vec1.y)), abs(vec1.z)), max(max(abs(vec2.x), abs(vec2.y)), abs(vec2.z)) ) >> 5; // shifting right by 5 is good enough. FV3_Cross( FV3_Divide(&vec1, m), FV3_Divide(&vec2, m), &slope->normal ); // NOTE: FV3_Magnitude() doesn't work properly in some cases, and chaining FixedHypot() seems to give worse results. m = R_PointToDist2(0, 0, R_PointToDist2(0, 0, slope->normal.x, slope->normal.y), slope->normal.z); // Invert normal if it's facing down. if (slope->normal.z < 0) m = -m; FV3_Divide(&slope->normal, m); // Get direction vector m = FixedHypot(slope->normal.x, slope->normal.y); slope->d.x = -FixedDiv(slope->normal.x, m); slope->d.y = -FixedDiv(slope->normal.y, m); // Z delta slope->zdelta = FixedDiv(m, slope->normal.z); // Get angles slope->xydirection = R_PointToAngle2(0, 0, slope->d.x, slope->d.y)+ANGLE_180; slope->zangle = InvAngle(R_PointToAngle2(0, 0, FRACUNIT, slope->zdelta)); } } /// Recalculate dynamic slopes. void T_DynamicSlopeLine (dynplanethink_t* th) { pslope_t* slope = th->slope; line_t* srcline = th->sourceline; fixed_t zdelta; switch(th->type) { case DP_FRONTFLOOR: zdelta = srcline->backsector->floorheight - srcline->frontsector->floorheight; slope->o.z = srcline->frontsector->floorheight; break; case DP_FRONTCEIL: zdelta = srcline->backsector->ceilingheight - srcline->frontsector->ceilingheight; slope->o.z = srcline->frontsector->ceilingheight; break; case DP_BACKFLOOR: zdelta = srcline->frontsector->floorheight - srcline->backsector->floorheight; slope->o.z = srcline->backsector->floorheight; break; case DP_BACKCEIL: zdelta = srcline->frontsector->ceilingheight - srcline->backsector->ceilingheight; slope->o.z = srcline->backsector->ceilingheight; break; default: return; } if (slope->zdelta != FixedDiv(zdelta, th->extent)) { slope->zdelta = FixedDiv(zdelta, th->extent); slope->zangle = R_PointToAngle2(0, 0, th->extent, -zdelta); P_CalculateSlopeNormal(slope); } } /// Mapthing-defined void T_DynamicSlopeVert (dynplanethink_t* th) { pslope_t* slope = th->slope; size_t i; INT32 l; for (i = 0; i < 3; i++) { l = Tag_FindLineSpecial(799, th->tags[i]); if (l != -1) { th->vex[i].z = lines[l].frontsector->floorheight; } else th->vex[i].z = 0; } ReconfigureViaVertexes(slope, th->vex[0], th->vex[1], th->vex[2]); } static inline void P_AddDynSlopeThinker (pslope_t* slope, dynplanetype_t type, line_t* sourceline, fixed_t extent, const INT16 tags[3], const vector3_t vx[3]) { dynplanethink_t* th = Z_Calloc(sizeof (*th), PU_LEVSPEC, NULL); switch (type) { case DP_VERTEX: th->thinker.function.acp1 = (actionf_p1)T_DynamicSlopeVert; memcpy(th->tags, tags, sizeof(th->tags)); memcpy(th->vex, vx, sizeof(th->vex)); break; default: th->thinker.function.acp1 = (actionf_p1)T_DynamicSlopeLine; th->sourceline = sourceline; th->extent = extent; } th->slope = slope; th->type = type; P_AddThinker(THINK_DYNSLOPE, &th->thinker); } /// Create a new slope and add it to the slope list. static inline pslope_t* Slope_Add (const UINT8 flags) { pslope_t *ret = Z_Calloc(sizeof(pslope_t), PU_LEVEL, NULL); ret->flags = flags; ret->next = slopelist; slopelist = ret; slopecount++; ret->id = slopecount; return ret; } /// Alocates and fill the contents of a slope structure. static pslope_t *MakeViaVectors(const vector3_t *o, const vector2_t *d, const fixed_t zdelta, UINT8 flags) { pslope_t *ret = Slope_Add(flags); FV3_Copy(&ret->o, o); FV2_Copy(&ret->d, d); ret->zdelta = zdelta; ret->flags = flags; return ret; } /// Get furthest perpendicular distance from all vertexes in a sector for a given line. static fixed_t GetExtent(sector_t *sector, line_t *line) { // ZDoom code reference: v3float_t = vertex_t fixed_t fardist = -FRACUNIT; size_t i; // Find furthest vertex from the reference line. It, along with the two ends // of the line, will define the plane. for(i = 0; i < sector->linecount; i++) { line_t *li = sector->lines[i]; vertex_t tempv; fixed_t dist; // Don't compare to the slope line. if(li == line) continue; P_ClosestPointOnLine(li->v1->x, li->v1->y, line, &tempv); dist = R_PointToDist2(tempv.x, tempv.y, li->v1->x, li->v1->y); if(dist > fardist) fardist = dist; // Okay, maybe do it for v2 as well? P_ClosestPointOnLine(li->v2->x, li->v2->y, line, &tempv); dist = R_PointToDist2(tempv.x, tempv.y, li->v2->x, li->v2->y); if(dist > fardist) fardist = dist; } return fardist; } /// Creates one or more slopes based on the given line type and front/back sectors. static void line_SpawnViaLine(const int linenum, const boolean spawnthinker) { // With dynamic slopes, it's fine to just leave this function as normal, // because checking to see if a slope had changed will waste more memory than // if the slope was just updated when called line_t *line = lines + linenum; pslope_t *fslope = NULL, *cslope = NULL; vector3_t origin, point; vector2_t direction; fixed_t nx, ny, dz, extent; boolean frontfloor = line->args[0] == TMS_FRONT; boolean backfloor = line->args[0] == TMS_BACK; boolean frontceil = line->args[1] == TMS_FRONT; boolean backceil = line->args[1] == TMS_BACK; UINT8 flags = 0; // Slope flags if (line->args[2] & TMSL_NOPHYSICS) flags |= SL_NOPHYSICS; if (line->args[2] & TMSL_DYNAMIC) flags |= SL_DYNAMIC; if(!frontfloor && !backfloor && !frontceil && !backceil) { CONS_Printf("line_SpawnViaLine: Slope special with nothing to do.\n"); return; } if(!line->frontsector || !line->backsector) { CONS_Debug(DBG_SETUP, "line_SpawnViaLine: Slope special used on a line without two sides. (line number %i)\n", linenum); return; } { fixed_t len = R_PointToDist2(0, 0, line->dx, line->dy); nx = FixedDiv(line->dy, len); ny = -FixedDiv(line->dx, len); } // Set origin to line's center. origin.x = line->v1->x + (line->v2->x - line->v1->x)/2; origin.y = line->v1->y + (line->v2->y - line->v1->y)/2; // For FOF slopes, make a special function to copy to the xy origin & direction relative to the position of the FOF on the map! if(frontfloor || frontceil) { line->frontsector->hasslope = true; // Tell the software renderer that we're sloped origin.z = line->backsector->floorheight; direction.x = nx; direction.y = ny; extent = GetExtent(line->frontsector, line); if(extent < 0) { CONS_Printf("line_SpawnViaLine failed to get frontsector extent on line number %i\n", linenum); return; } // reposition the origin according to the extent point.x = origin.x + FixedMul(direction.x, extent); point.y = origin.y + FixedMul(direction.y, extent); direction.x = -direction.x; direction.y = -direction.y; // TODO: We take origin and point 's xy values and translate them to the center of an FOF! if(frontfloor) { point.z = line->frontsector->floorheight; // Startz dz = FixedDiv(origin.z - point.z, extent); // Destinationz // In P_SpawnSlopeLine the origin is the centerpoint of the sourcelinedef fslope = line->frontsector->f_slope = MakeViaVectors(&point, &direction, dz, flags); // Now remember that f_slope IS a vector // fslope->o = origin 3D point 1 of the vector // fslope->d = destination 3D point 2 of the vector // fslope->normal is a 3D line perpendicular to the 3D vector fslope->zangle = R_PointToAngle2(0, origin.z, extent, point.z); fslope->xydirection = R_PointToAngle2(origin.x, origin.y, point.x, point.y); P_CalculateSlopeNormal(fslope); if (spawnthinker && (flags & SL_DYNAMIC)) P_AddDynSlopeThinker(fslope, DP_FRONTFLOOR, line, extent, NULL, NULL); } if(frontceil) { origin.z = line->backsector->ceilingheight; point.z = line->frontsector->ceilingheight; dz = FixedDiv(origin.z - point.z, extent); cslope = line->frontsector->c_slope = MakeViaVectors(&point, &direction, dz, flags); cslope->zangle = R_PointToAngle2(0, origin.z, extent, point.z); cslope->xydirection = R_PointToAngle2(origin.x, origin.y, point.x, point.y); P_CalculateSlopeNormal(cslope); if (spawnthinker && (flags & SL_DYNAMIC)) P_AddDynSlopeThinker(cslope, DP_FRONTCEIL, line, extent, NULL, NULL); } } if(backfloor || backceil) { line->backsector->hasslope = true; // Tell the software renderer that we're sloped origin.z = line->frontsector->floorheight; // Backsector direction.x = -nx; direction.y = -ny; extent = GetExtent(line->backsector, line); if(extent < 0) { CONS_Printf("line_SpawnViaLine failed to get backsector extent on line number %i\n", linenum); return; } // reposition the origin according to the extent point.x = origin.x + FixedMul(direction.x, extent); point.y = origin.y + FixedMul(direction.y, extent); direction.x = -direction.x; direction.y = -direction.y; if(backfloor) { point.z = line->backsector->floorheight; dz = FixedDiv(origin.z - point.z, extent); fslope = line->backsector->f_slope = MakeViaVectors(&point, &direction, dz, flags); fslope->zangle = R_PointToAngle2(0, origin.z, extent, point.z); fslope->xydirection = R_PointToAngle2(origin.x, origin.y, point.x, point.y); P_CalculateSlopeNormal(fslope); if (spawnthinker && (flags & SL_DYNAMIC)) P_AddDynSlopeThinker(fslope, DP_BACKFLOOR, line, extent, NULL, NULL); } if(backceil) { origin.z = line->frontsector->ceilingheight; point.z = line->backsector->ceilingheight; dz = FixedDiv(origin.z - point.z, extent); cslope = line->backsector->c_slope = MakeViaVectors(&point, &direction, dz, flags); cslope->zangle = R_PointToAngle2(0, origin.z, extent, point.z); cslope->xydirection = R_PointToAngle2(origin.x, origin.y, point.x, point.y); P_CalculateSlopeNormal(cslope); if (spawnthinker && (flags & SL_DYNAMIC)) P_AddDynSlopeThinker(cslope, DP_BACKCEIL, line, extent, NULL, NULL); } } } /// Creates a new slope from three mapthings with the specified IDs static pslope_t *MakeViaMapthings(INT16 tag1, INT16 tag2, INT16 tag3, UINT8 flags, const boolean spawnthinker) { size_t i; mapthing_t* mt = mapthings; mapthing_t* vertices[3] = {0}; INT16 tags[3] = {tag1, tag2, tag3}; vector3_t vx[3]; pslope_t* ret = Slope_Add(flags); // And... look for the vertices in question. for (i = 0; i < nummapthings; i++, mt++) { if (mt->type != 750) // Haha, I'm hijacking the old Chaos Spawn thingtype for something! continue; if (!vertices[0] && Tag_Find(&mt->tags, tag1)) vertices[0] = mt; else if (!vertices[1] && Tag_Find(&mt->tags, tag2)) vertices[1] = mt; else if (!vertices[2] && Tag_Find(&mt->tags, tag3)) vertices[2] = mt; } // Now set heights for each vertex, because they haven't been set yet for (i = 0; i < 3; i++) { mt = vertices[i]; if (!mt) // If a vertex wasn't found, it's game over. There's nothing you can do to recover (except maybe try and kill the slope instead - TODO?) I_Error("MakeViaMapthings: Slope vertex %s (for linedef tag %d) not found!", sizeu1(i), tag1); vx[i].x = mt->x << FRACBITS; vx[i].y = mt->y << FRACBITS; vx[i].z = mt->z << FRACBITS; if (!mt->extrainfo) vx[i].z += R_PointInSubsector(vx[i].x, vx[i].y)->sector->floorheight; } ReconfigureViaVertexes(ret, vx[0], vx[1], vx[2]); if (spawnthinker && (flags & SL_DYNAMIC)) P_AddDynSlopeThinker(ret, DP_VERTEX, NULL, 0, tags, vx); return ret; } /// Create vertex based slopes using tagged mapthings. static void line_SpawnViaMapthingVertexes(const int linenum, const boolean spawnthinker) { line_t *line = lines + linenum; side_t *side; pslope_t **slopetoset; UINT16 tag1 = line->args[1]; UINT16 tag2 = line->args[2]; UINT16 tag3 = line->args[3]; UINT8 flags = 0; // Slope flags if (line->args[4] & TMSL_NOPHYSICS) flags |= SL_NOPHYSICS; if (line->args[4] & TMSL_DYNAMIC) flags |= SL_DYNAMIC; switch(line->args[0]) { case TMSP_FRONTFLOOR: slopetoset = &line->frontsector->f_slope; side = &sides[line->sidenum[0]]; break; case TMSP_FRONTCEILING: slopetoset = &line->frontsector->c_slope; side = &sides[line->sidenum[0]]; break; case TMSP_BACKFLOOR: slopetoset = &line->backsector->f_slope; side = &sides[line->sidenum[1]]; break; case TMSP_BACKCEILING: slopetoset = &line->backsector->c_slope; side = &sides[line->sidenum[1]]; default: return; } *slopetoset = MakeViaMapthings(tag1, tag2, tag3, flags, spawnthinker); side->sector->hasslope = true; } /// Spawn textmap vertex slopes. static void SpawnVertexSlopes(void) { line_t *l1, *l2; sector_t* sc; vertex_t *v1, *v2, *v3; size_t i; for (i = 0, sc = sectors; i < numsectors; i++, sc++) { // The vertex slopes only work for 3-vertex sectors (and thus 3-sided sectors). if (sc->linecount != 3) continue; l1 = sc->lines[0]; l2 = sc->lines[1]; // Determine the vertexes. v1 = l1->v1; v2 = l1->v2; if ((l2->v1 != v1) && (l2->v1 != v2)) v3 = l2->v1; else v3 = l2->v2; if (v1->floorzset || v2->floorzset || v3->floorzset) { vector3_t vtx[3] = { {v1->x, v1->y, v1->floorzset ? v1->floorz : sc->floorheight}, {v2->x, v2->y, v2->floorzset ? v2->floorz : sc->floorheight}, {v3->x, v3->y, v3->floorzset ? v3->floorz : sc->floorheight}}; pslope_t *slop = Slope_Add(0); sc->f_slope = slop; sc->hasslope = true; ReconfigureViaVertexes(slop, vtx[0], vtx[1], vtx[2]); } if (v1->ceilingzset || v2->ceilingzset || v3->ceilingzset) { vector3_t vtx[3] = { {v1->x, v1->y, v1->ceilingzset ? v1->ceilingz : sc->ceilingheight}, {v2->x, v2->y, v2->ceilingzset ? v2->ceilingz : sc->ceilingheight}, {v3->x, v3->y, v3->ceilingzset ? v3->ceilingz : sc->ceilingheight}}; pslope_t *slop = Slope_Add(0); sc->c_slope = slop; sc->hasslope = true; ReconfigureViaVertexes(slop, vtx[0], vtx[1], vtx[2]); } } } static boolean P_SetSlopeFromTag(sector_t *sec, INT32 tag, boolean ceiling) { INT32 i; pslope_t **secslope = ceiling ? &sec->c_slope : &sec->f_slope; TAG_ITER_DECLARECOUNTER(0); if (!tag || *secslope) return false; TAG_ITER_SECTORS(0, tag, i) { pslope_t *srcslope = ceiling ? sectors[i].c_slope : sectors[i].f_slope; if (srcslope) { *secslope = srcslope; return true; } } return false; } static boolean P_CopySlope(pslope_t **toslope, pslope_t *fromslope) { if (*toslope || !fromslope) return true; *toslope = fromslope; return true; } static void P_UpdateHasSlope(sector_t *sec) { size_t i; sec->hasslope = true; // if this is an FOF control sector, make sure any target sectors also are marked as having slopes if (sec->numattached) for (i = 0; i < sec->numattached; i++) sectors[sec->attached[i]].hasslope = true; } // // P_CopySectorSlope // // Searches through tagged sectors and copies // void P_CopySectorSlope(line_t *line) { sector_t *fsec = line->frontsector; sector_t *bsec = line->backsector; boolean setfront = false; boolean setback = false; setfront |= P_SetSlopeFromTag(fsec, line->args[0], false); setfront |= P_SetSlopeFromTag(fsec, line->args[1], true); if (bsec) { setback |= P_SetSlopeFromTag(bsec, line->args[2], false); setback |= P_SetSlopeFromTag(bsec, line->args[3], true); if (line->args[4] & TMSC_FRONTTOBACKFLOOR) setback |= P_CopySlope(&bsec->f_slope, fsec->f_slope); if (line->args[4] & TMSC_BACKTOFRONTFLOOR) setfront |= P_CopySlope(&fsec->f_slope, bsec->f_slope); if (line->args[4] & TMSC_FRONTTOBACKCEILING) setback |= P_CopySlope(&bsec->c_slope, fsec->c_slope); if (line->args[4] & TMSC_BACKTOFRONTCEILING) setfront |= P_CopySlope(&fsec->c_slope, bsec->c_slope); } if (setfront) P_UpdateHasSlope(fsec); if (setback) P_UpdateHasSlope(bsec); line->special = 0; // Linedef was use to set slopes, it finished its job, so now make it a normal linedef } // // P_SlopeById // // Looks in the slope list for a slope with a specified ID. Mostly useful for netgame sync // pslope_t *P_SlopeById(UINT16 id) { pslope_t *ret; for (ret = slopelist; ret && ret->id != id; ret = ret->next); return ret; } /// Initializes and reads the slopes from the map data. void P_SpawnSlopes(const boolean fromsave) { size_t i; slopelist = NULL; slopecount = 0; /// Generates vertex slopes. SpawnVertexSlopes(); /// Generates line special-defined slopes. for (i = 0; i < numlines; i++) { switch (lines[i].special) { case 700: line_SpawnViaLine(i, !fromsave); break; case 704: line_SpawnViaMapthingVertexes(i, !fromsave); break; default: break; } } /// Copies slopes from tagged sectors via line specials. /// \note Doesn't actually copy, but instead they share the same pointers. for (i = 0; i < numlines; i++) switch (lines[i].special) { case 720: P_CopySectorSlope(&lines[i]); default: break; } } // ============================================================================ // // Various utilities related to slopes // // Returns the height of the sloped plane at (x, y) as a fixed_t fixed_t P_GetSlopeZAt(const pslope_t *slope, fixed_t x, fixed_t y) { fixed_t dist = FixedMul(x - slope->o.x, slope->d.x) + FixedMul(y - slope->o.y, slope->d.y); return slope->o.z + FixedMul(dist, slope->zdelta); } // Like P_GetSlopeZAt but falls back to z if slope is NULL fixed_t P_GetZAt(const pslope_t *slope, fixed_t x, fixed_t y, fixed_t z) { return slope ? P_GetSlopeZAt(slope, x, y) : z; } // Returns the height of the sector floor at (x, y) fixed_t P_GetSectorFloorZAt(const sector_t *sector, fixed_t x, fixed_t y) { return sector->f_slope ? P_GetSlopeZAt(sector->f_slope, x, y) : sector->floorheight; } // Returns the height of the sector ceiling at (x, y) fixed_t P_GetSectorCeilingZAt(const sector_t *sector, fixed_t x, fixed_t y) { return sector->c_slope ? P_GetSlopeZAt(sector->c_slope, x, y) : sector->ceilingheight; } // Returns the height of the FOF top at (x, y) fixed_t P_GetFFloorTopZAt(const ffloor_t *ffloor, fixed_t x, fixed_t y) { return *ffloor->t_slope ? P_GetSlopeZAt(*ffloor->t_slope, x, y) : *ffloor->topheight; } // Returns the height of the FOF bottom at (x, y) fixed_t P_GetFFloorBottomZAt(const ffloor_t *ffloor, fixed_t x, fixed_t y) { return *ffloor->b_slope ? P_GetSlopeZAt(*ffloor->b_slope, x, y) : *ffloor->bottomheight; } // Returns the height of the light list at (x, y) fixed_t P_GetLightZAt(const lightlist_t *light, fixed_t x, fixed_t y) { return light->slope ? P_GetSlopeZAt(light->slope, x, y) : light->height; } // // P_QuantizeMomentumToSlope // // When given a vector, rotates it and aligns it to a slope void P_QuantizeMomentumToSlope(vector3_t *momentum, pslope_t *slope) { vector3_t axis; // Fuck you, C90. if (slope->flags & SL_NOPHYSICS) return; // No physics, no quantizing. axis.x = -slope->d.y; axis.y = slope->d.x; axis.z = 0; FV3_Rotate(momentum, &axis, slope->zangle >> ANGLETOFINESHIFT); } // // P_ReverseQuantizeMomentumToSlope // // When given a vector, rotates and aligns it to a flat surface (from being relative to a given slope) void P_ReverseQuantizeMomentumToSlope(vector3_t *momentum, pslope_t *slope) { slope->zangle = InvAngle(slope->zangle); P_QuantizeMomentumToSlope(momentum, slope); slope->zangle = InvAngle(slope->zangle); } // // P_SlopeLaunch // // Handles slope ejection for objects void P_SlopeLaunch(mobj_t *mo) { if (!(mo->standingslope->flags & SL_NOPHYSICS) // If there's physics, time for launching. && (mo->standingslope->normal.x != 0 || mo->standingslope->normal.y != 0)) { // Double the pre-rotation Z, then halve the post-rotation Z. This reduces the // vertical launch given from slopes while increasing the horizontal launch // given. Good for SRB2's gravity and horizontal speeds. vector3_t slopemom; slopemom.x = mo->momx; slopemom.y = mo->momy; slopemom.z = mo->momz*2; P_QuantizeMomentumToSlope(&slopemom, mo->standingslope); mo->momx = slopemom.x; mo->momy = slopemom.y; mo->momz = slopemom.z/2; if (mo->player) mo->player->powers[pw_justlaunched] = 1; } //CONS_Printf("Launched off of slope.\n"); mo->standingslope = NULL; } // // P_GetWallTransferMomZ // // It would be nice to have a single function that does everything necessary for slope-to-wall transfer. // However, it needs to be seperated out in P_XYMovement to take into account momentum before and after hitting the wall. // This just performs the necessary calculations for getting the base vertical momentum; the horizontal is already reasonably calculated by P_SlideMove. fixed_t P_GetWallTransferMomZ(mobj_t *mo, pslope_t *slope) { vector3_t slopemom, axis; angle_t ang; if (mo->standingslope->flags & SL_NOPHYSICS) return 0; // If there's physics, time for launching. // Doesn't kill the vertical momentum as much as P_SlopeLaunch does. ang = slope->zangle + ANG15*((slope->zangle > 0) ? 1 : -1); if (ang > ANGLE_90 && ang < ANGLE_180) ang = ((slope->zangle > 0) ? ANGLE_90 : InvAngle(ANGLE_90)); // hard cap of directly upwards slopemom.x = mo->momx; slopemom.y = mo->momy; slopemom.z = 3*(mo->momz/2); axis.x = -slope->d.y; axis.y = slope->d.x; axis.z = 0; FV3_Rotate(&slopemom, &axis, ang >> ANGLETOFINESHIFT); return 2*(slopemom.z/3); } // Function to help handle landing on slopes void P_HandleSlopeLanding(mobj_t *thing, pslope_t *slope) { vector3_t mom; // Ditto. if (slope->flags & SL_NOPHYSICS || (slope->normal.x == 0 && slope->normal.y == 0)) { // No physics, no need to make anything complicated. if (P_MobjFlip(thing)*(thing->momz) < 0) // falling, land on slope { thing->standingslope = slope; if (!thing->player || !(thing->player->pflags & PF_BOUNCING)) thing->momz = -P_MobjFlip(thing); } return; } mom.x = thing->momx; mom.y = thing->momy; mom.z = thing->momz*2; P_ReverseQuantizeMomentumToSlope(&mom, slope); if (P_MobjFlip(thing)*mom.z < 0) { // falling, land on slope thing->momx = mom.x; thing->momy = mom.y; thing->standingslope = slope; if (!thing->player || !(thing->player->pflags & PF_BOUNCING)) thing->momz = -P_MobjFlip(thing); } } // https://yourlogicalfallacyis.com/slippery-slope // Handles sliding down slopes, like if they were made of butter :) void P_ButteredSlope(mobj_t *mo) { fixed_t thrust; if (!mo->standingslope) return; if (mo->standingslope->flags & SL_NOPHYSICS) return; // No physics, no butter. if (mo->flags & (MF_NOCLIPHEIGHT|MF_NOGRAVITY)) return; // don't slide down slopes if you can't touch them or you're not affected by gravity if (mo->player) { if (abs(mo->standingslope->zdelta) < FRACUNIT/4 && !(mo->player->pflags & PF_SPINNING)) return; // Don't slide on non-steep slopes unless spinning if (abs(mo->standingslope->zdelta) < FRACUNIT/2 && !(mo->player->rmomx || mo->player->rmomy)) return; // Allow the player to stand still on slopes below a certain steepness } thrust = FINESINE(mo->standingslope->zangle>>ANGLETOFINESHIFT) * 3 / 2 * (mo->eflags & MFE_VERTICALFLIP ? 1 : -1); if (mo->player && (mo->player->pflags & PF_SPINNING)) { fixed_t mult = 0; if (mo->momx || mo->momy) { angle_t angle = R_PointToAngle2(0, 0, mo->momx, mo->momy) - mo->standingslope->xydirection; if (P_MobjFlip(mo) * mo->standingslope->zdelta < 0) angle ^= ANGLE_180; mult = FINECOSINE(angle >> ANGLETOFINESHIFT); } thrust = FixedMul(thrust, FRACUNIT*2/3 + mult/8); } if (mo->momx || mo->momy) // Slightly increase thrust based on the object's speed thrust = FixedMul(thrust, FRACUNIT+P_AproxDistance(mo->momx, mo->momy)/16); // This makes it harder to zigzag up steep slopes, as well as allows greater top speed when rolling down // Let's get the gravity strength for the object... thrust = FixedMul(thrust, abs(P_GetMobjGravity(mo))); // ... and its friction against the ground for good measure (divided by original friction to keep behaviour for normal slopes the same). thrust = FixedMul(thrust, FixedDiv(mo->friction, ORIG_FRICTION)); P_Thrust(mo, mo->standingslope->xydirection, thrust); }