// SONIC ROBO BLAST 2 //----------------------------------------------------------------------------- // Copyright (C) 1993-1996 by id Software, Inc. // Copyright (C) 1998-2000 by DooM Legacy Team. // Copyright (C) 1999-2019 by Sonic Team Junior. // // This program is free software distributed under the // terms of the GNU General Public License, version 2. // See the 'LICENSE' file for more details. //----------------------------------------------------------------------------- /// \file tables.c /// \brief Lookup tables /// Do not try to look them up :-). // In the order of appearance: // fixed_t finetangent[4096] - Tangents LUT. // Should work with BAM fairly well (12 of 16bit, effectively, by shifting). // fixed_t finesine[10240] - Sine lookup. // Guess what, serves as cosine, too. // Remarkable thing is, how to use BAMs with this? // fixed_t tantoangle[2049] - ArcTan LUT, // Maps tan(angle) to angle fast. Gotta search. #include "tables.h" unsigned SlopeDiv(unsigned num, unsigned den) { unsigned ans; num <<= (FINE_FRACBITS-FRACBITS); den <<= (FINE_FRACBITS-FRACBITS); if (den < 512) return SLOPERANGE; ans = (num<<3) / (den>>8); return ans <= SLOPERANGE ? ans : SLOPERANGE; } UINT64 SlopeDivEx(unsigned int num, unsigned int den) { UINT64 ans; if (den < 512) return SLOPERANGE; ans = ((UINT64)num<<3)/(den>>8); return ans <= SLOPERANGE ? ans : SLOPERANGE; } fixed_t AngleFixed(angle_t af) { angle_t wa = ANGLE_180; fixed_t wf = 180*FRACUNIT; fixed_t rf = 0*FRACUNIT; while (af) { while (af < wa) { wa /= 2; wf /= 2; } rf += wf; af -= wa; } return rf; } static FUNCMATH angle_t AngleAdj(const fixed_t fa, const fixed_t wf, angle_t ra) { const angle_t adj = 0x77; const boolean fan = fa < 0; const fixed_t sl = FixedDiv(fa, wf*2); const fixed_t lb = FixedRem(fa, wf*2); const fixed_t lo = (wf*2)-lb; if (ra == 0) { if (lb == 0) { ra = FixedMul(FRACUNIT/512, sl); if (ra > FRACUNIT/64) return InvAngle(ra); return ra; } else if (lb > 0) return InvAngle(FixedMul(lo*FRACUNIT, adj)); else return InvAngle(FixedMul(lo*FRACUNIT, adj)); } if (fan) return InvAngle(ra); else return ra; } angle_t FixedAngleC(fixed_t fa, fixed_t factor) { angle_t wa = ANGLE_180; fixed_t wf = 180*FRACUNIT; angle_t ra = 0; const fixed_t cfa = fa; fixed_t cwf = wf; if (fa == 0) return 0; // -2,147,483,648 has no absolute value in a 32 bit signed integer // so this code _would_ infinite loop if passed it if (fa == INT32_MIN) return 0; if (factor == 0) return FixedAngle(fa); else if (factor > 0) cwf = wf = FixedMul(wf, factor); else if (factor < 0) cwf = wf = FixedDiv(wf, -factor); fa = abs(fa); while (fa) { while (fa < wf) { wa /= 2; wf /= 2; } ra = ra + wa; fa = fa - wf; } return AngleAdj(cfa, cwf, ra); } angle_t FixedAngle(fixed_t fa) { angle_t wa = ANGLE_180; fixed_t wf = 180*FRACUNIT; angle_t ra = 0; const fixed_t cfa = fa; const fixed_t cwf = wf; if (fa == 0) return 0; // -2,147,483,648 has no absolute value in a 32 bit signed integer // so this code _would_ infinite loop if passed it if (fa == INT32_MIN) return 0; fa = abs(fa); while (fa) { while (fa < wf) { wa /= 2; wf /= 2; } ra = ra + wa; fa = fa - wf; } return AngleAdj(cfa, cwf, ra); } #include "t_ftan.c" #include "t_fsin.c" fixed_t *finecosine = &finesine[FINEANGLES/4]; #include "t_tan2a.c" #include "t_facon.c" FUNCMATH angle_t FixedAcos(fixed_t x) { if (-FRACUNIT > x || x >= FRACUNIT) return 0; return fineacon[((x<<(FINE_FRACBITS-FRACBITS)))+FRACUNIT]; } // // AngleBetweenVectors // // This checks to see if a point is inside the ranges of a polygon // angle_t FV2_AngleBetweenVectors(const vector2_t *Vector1, const vector2_t *Vector2) { // Remember, above we said that the Dot Product of returns the cosine of the angle // between 2 vectors? Well, that is assuming they are unit vectors (normalize vectors). // So, if we don't have a unit vector, then instead of just saying arcCos(DotProduct(A, B)) // We need to divide the dot product by the magnitude of the 2 vectors multiplied by each other. // Here is the equation: arc cosine of (V . W / || V || * || W || ) // the || V || means the magnitude of V. This then cancels out the magnitudes dot product magnitudes. // But basically, if you have normalize vectors already, you can forget about the magnitude part. // Get the dot product of the vectors fixed_t dotProduct = FV2_Dot(Vector1, Vector2); // Get the product of both of the vectors magnitudes fixed_t vectorsMagnitude = FixedMul(FV2_Magnitude(Vector1), FV2_Magnitude(Vector2)); // Return the arc cosine of the (dotProduct / vectorsMagnitude) which is the angle in RADIANS. return FixedAcos(FixedDiv(dotProduct, vectorsMagnitude)); } angle_t FV3_AngleBetweenVectors(const vector3_t *Vector1, const vector3_t *Vector2) { // Remember, above we said that the Dot Product of returns the cosine of the angle // between 2 vectors? Well, that is assuming they are unit vectors (normalize vectors). // So, if we don't have a unit vector, then instead of just saying arcCos(DotProduct(A, B)) // We need to divide the dot product by the magnitude of the 2 vectors multiplied by each other. // Here is the equation: arc cosine of (V . W / || V || * || W || ) // the || V || means the magnitude of V. This then cancels out the magnitudes dot product magnitudes. // But basically, if you have normalize vectors already, you can forget about the magnitude part. // Get the dot product of the vectors fixed_t dotProduct = FV3_Dot(Vector1, Vector2); // Get the product of both of the vectors magnitudes fixed_t vectorsMagnitude = FixedMul(FV3_Magnitude(Vector1), FV3_Magnitude(Vector2)); // Return the arc cosine of the (dotProduct / vectorsMagnitude) which is the angle in RADIANS. return FixedAcos(FixedDiv(dotProduct, vectorsMagnitude)); } // // InsidePolygon // // This checks to see if a point is inside the ranges of a polygon // boolean FV2_InsidePolygon(const vector2_t *vIntersection, const vector2_t *Poly, const INT32 vertexCount) { INT32 i; UINT64 Angle = 0; // Initialize the angle vector2_t vA, vB; // Create temp vectors // Just because we intersected the plane, doesn't mean we were anywhere near the polygon. // This functions checks our intersection point to make sure it is inside of the polygon. // This is another tough function to grasp at first, but let me try and explain. // It's a brilliant method really, what it does is create triangles within the polygon // from the intersection point. It then adds up the inner angle of each of those triangles. // If the angles together add up to 360 degrees (or 2 * PI in radians) then we are inside! // If the angle is under that value, we must be outside of polygon. To further // understand why this works, take a pencil and draw a perfect triangle. Draw a dot in // the middle of the triangle. Now, from that dot, draw a line to each of the vertices. // Now, we have 3 triangles within that triangle right? Now, we know that if we add up // all of the angles in a triangle we get 360 right? Well, that is kinda what we are doing, // but the inverse of that. Say your triangle is an isosceles triangle, so add up the angles // and you will get 360 degree angles. 90 + 90 + 90 is 360. for (i = 0; i < vertexCount; i++) // Go in a circle to each vertex and get the angle between { FV2_Point2Vec(&Poly[i], vIntersection, &vA); // Subtract the intersection point from the current vertex // Subtract the point from the next vertex FV2_Point2Vec(&Poly[(i + 1) % vertexCount], vIntersection, &vB); Angle += FV2_AngleBetweenVectors(&vA, &vB); // Find the angle between the 2 vectors and add them all up as we go along } // Now that we have the total angles added up, we need to check if they add up to 360 degrees. // Since we are using the dot product, we are working in radians, so we check if the angles // equals 2*PI. We defined PI in 3DMath.h. You will notice that we use a MATCH_FACTOR // in conjunction with our desired degree. This is because of the inaccuracy when working // with floating point numbers. It usually won't always be perfectly 2 * PI, so we need // to use a little twiddling. I use .9999, but you can change this to fit your own desired accuracy. if(Angle >= ANGLE_MAX) // If the angle is greater than 2 PI, (360 degrees) return 1; // The point is inside of the polygon return 0; // If you get here, it obviously wasn't inside the polygon. } boolean FV3_InsidePolygon(const vector3_t *vIntersection, const vector3_t *Poly, const INT32 vertexCount) { INT32 i; UINT64 Angle = 0; // Initialize the angle vector3_t vA, vB; // Create temp vectors // Just because we intersected the plane, doesn't mean we were anywhere near the polygon. // This functions checks our intersection point to make sure it is inside of the polygon. // This is another tough function to grasp at first, but let me try and explain. // It's a brilliant method really, what it does is create triangles within the polygon // from the intersection point. It then adds up the inner angle of each of those triangles. // If the angles together add up to 360 degrees (or 2 * PI in radians) then we are inside! // If the angle is under that value, we must be outside of polygon. To further // understand why this works, take a pencil and draw a perfect triangle. Draw a dot in // the middle of the triangle. Now, from that dot, draw a line to each of the vertices. // Now, we have 3 triangles within that triangle right? Now, we know that if we add up // all of the angles in a triangle we get 360 right? Well, that is kinda what we are doing, // but the inverse of that. Say your triangle is an isosceles triangle, so add up the angles // and you will get 360 degree angles. 90 + 90 + 90 is 360. for (i = 0; i < vertexCount; i++) // Go in a circle to each vertex and get the angle between { FV3_Point2Vec(&Poly[i], vIntersection, &vA); // Subtract the intersection point from the current vertex // Subtract the point from the next vertex FV3_Point2Vec(&Poly[(i + 1) % vertexCount], vIntersection, &vB); Angle += FV3_AngleBetweenVectors(&vA, &vB); // Find the angle between the 2 vectors and add them all up as we go along } // Now that we have the total angles added up, we need to check if they add up to 360 degrees. // Since we are using the dot product, we are working in radians, so we check if the angles // equals 2*PI. We defined PI in 3DMath.h. You will notice that we use a MATCH_FACTOR // in conjunction with our desired degree. This is because of the inaccuracy when working // with floating point numbers. It usually won't always be perfectly 2 * PI, so we need // to use a little twiddling. I use .9999, but you can change this to fit your own desired accuracy. if(Angle >= ANGLE_MAX) // If the angle is greater than 2 PI, (360 degrees) return 1; // The point is inside of the polygon return 0; // If you get here, it obviously wasn't inside the polygon. } // // IntersectedPolygon // // This checks if a line is intersecting a polygon // boolean FV3_IntersectedPolygon(const vector3_t *vPoly, const vector3_t *vLine, const INT32 vertexCount, vector3_t *collisionPoint) { vector3_t vNormal, vIntersection; fixed_t originDistance = 0*FRACUNIT; // First we check to see if our line intersected the plane. If this isn't true // there is no need to go on, so return false immediately. // We pass in address of vNormal and originDistance so we only calculate it once if(!FV3_IntersectedPlane(vPoly, vLine, &vNormal, &originDistance)) return false; // Now that we have our normal and distance passed back from IntersectedPlane(), // we can use it to calculate the intersection point. The intersection point // is the point that actually is ON the plane. It is between the line. We need // this point test next, if we are inside the polygon. To get the I-Point, we // give our function the normal of the plane, the points of the line, and the originDistance. FV3_IntersectionPoint(&vNormal, vLine, originDistance, &vIntersection); // Now that we have the intersection point, we need to test if it's inside the polygon. // To do this, we pass in : // (our intersection point, the polygon, and the number of vertices our polygon has) if(FV3_InsidePolygon(&vIntersection, vPoly, vertexCount)) { if (collisionPoint != NULL) // Optional - load the collision point. { collisionPoint->x = vIntersection.x; collisionPoint->y = vIntersection.y; collisionPoint->z = vIntersection.z; } return true; // We collided! } // If we get here, we must have NOT collided return false; } // // RotateVector // // Rotates a vector around another vector // void FV3_Rotate(vector3_t *rotVec, const vector3_t *axisVec, const angle_t angle) { // Rotate the point (x,y,z) around the vector (u,v,w) fixed_t ux = FixedMul(axisVec->x, rotVec->x); fixed_t uy = FixedMul(axisVec->x, rotVec->y); fixed_t uz = FixedMul(axisVec->x, rotVec->z); fixed_t vx = FixedMul(axisVec->y, rotVec->x); fixed_t vy = FixedMul(axisVec->y, rotVec->y); fixed_t vz = FixedMul(axisVec->y, rotVec->z); fixed_t wx = FixedMul(axisVec->z, rotVec->x); fixed_t wy = FixedMul(axisVec->z, rotVec->y); fixed_t wz = FixedMul(axisVec->z, rotVec->z); fixed_t sa = FINESINE(angle); fixed_t ca = FINECOSINE(angle); fixed_t ua = ux+vy+wz; fixed_t ax = FixedMul(axisVec->x,ua); fixed_t ay = FixedMul(axisVec->y,ua); fixed_t az = FixedMul(axisVec->z,ua); fixed_t xs = FixedMul(axisVec->x,axisVec->x); fixed_t ys = FixedMul(axisVec->y,axisVec->y); fixed_t zs = FixedMul(axisVec->z,axisVec->z); fixed_t bx = FixedMul(rotVec->x,ys+zs); fixed_t by = FixedMul(rotVec->y,xs+zs); fixed_t bz = FixedMul(rotVec->z,xs+ys); fixed_t cx = FixedMul(axisVec->x,vy+wz); fixed_t cy = FixedMul(axisVec->y,ux+wz); fixed_t cz = FixedMul(axisVec->z,ux+vy); fixed_t dx = FixedMul(bx-cx, ca); fixed_t dy = FixedMul(by-cy, ca); fixed_t dz = FixedMul(bz-cz, ca); fixed_t ex = FixedMul(vz-wy, sa); fixed_t ey = FixedMul(wx-uz, sa); fixed_t ez = FixedMul(uy-vx, sa); rotVec->x = ax+dx+ex; rotVec->y = ay+dy+ey; rotVec->z = az+dz+ez; } void FM_Rotate(matrix_t *dest, angle_t angle, fixed_t x, fixed_t y, fixed_t z) { #define M(row,col) dest->m[row * 4 + col] const fixed_t sinA = FINESINE(angle>>ANGLETOFINESHIFT); const fixed_t cosA = FINECOSINE(angle>>ANGLETOFINESHIFT); const fixed_t invCosA = FRACUNIT - cosA; vector3_t nrm; fixed_t xSq, ySq, zSq; fixed_t sx, sy, sz; fixed_t sxy, sxz, syz; nrm.x = x; nrm.y = y; nrm.z = z; FV3_Normalize(&nrm); x = nrm.x; y = nrm.y; z = nrm.z; xSq = FixedMul(x, FixedMul(invCosA,x)); ySq = FixedMul(y, FixedMul(invCosA,y)); zSq = FixedMul(z, FixedMul(invCosA,z)); sx = FixedMul(sinA, x); sy = FixedMul(sinA, y); sz = FixedMul(sinA, z); sxy = FixedMul(x, FixedMul(invCosA,y)); sxz = FixedMul(x, FixedMul(invCosA,z)); syz = FixedMul(y, FixedMul(invCosA,z)); M(0, 0) = xSq + cosA; M(1, 0) = sxy - sz; M(2, 0) = sxz + sy; M(3, 0) = 0; M(0, 1) = sxy + sz; M(1, 1) = ySq + cosA; M(2, 1) = syz - sx; M(3, 1) = 0; M(0, 2) = sxz - sy; M(1, 2) = syz + sx; M(2, 2) = zSq + cosA; M(3, 2) = 0; M(0, 3) = 0; M(1, 3) = 0; M(2, 3) = 0; M(3, 3) = FRACUNIT; #undef M }