Merge branch 'software-slope-plane-uv-fix-attempt' into 'next'

Fix slope plane rotation and alignment (resolves #508)

Closes #508

See merge request STJr/SRB2!1464
This commit is contained in:
sphere 2021-05-27 16:56:16 -04:00
commit 75938e2dfa
7 changed files with 384 additions and 354 deletions

View file

@ -367,10 +367,10 @@ static void HWR_RenderPlane(subsector_t *subsector, extrasubsector_t *xsub, bool
float fflatwidth = 64.0f, fflatheight = 64.0f;
INT32 flatflag = 63;
boolean texflat = false;
float scrollx = 0.0f, scrolly = 0.0f;
float scrollx = 0.0f, scrolly = 0.0f, anglef = 0.0f;
angle_t angle = 0;
FSurfaceInfo Surf;
fixed_t tempxsow, tempytow;
float tempxsow, tempytow;
pslope_t *slope = NULL;
static FOutVector *planeVerts = NULL;
@ -504,24 +504,15 @@ static void HWR_RenderPlane(subsector_t *subsector, extrasubsector_t *xsub, bool
}
}
if (angle) // Only needs to be done if there's an altered angle
{
tempxsow = flatxref;
tempytow = flatyref;
angle = (InvAngle(angle))>>ANGLETOFINESHIFT;
anglef = ANG2RAD(InvAngle(angle));
// This needs to be done so that it scrolls in a different direction after rotation like software
/*tempxsow = FLOAT_TO_FIXED(scrollx);
tempytow = FLOAT_TO_FIXED(scrolly);
scrollx = (FIXED_TO_FLOAT(FixedMul(tempxsow, FINECOSINE(angle)) - FixedMul(tempytow, FINESINE(angle))));
scrolly = (FIXED_TO_FLOAT(FixedMul(tempxsow, FINESINE(angle)) + FixedMul(tempytow, FINECOSINE(angle))));*/
// This needs to be done so everything aligns after rotation
// It would be done so that rotation is done, THEN the translation, but I couldn't get it to rotate AND scroll like software does
tempxsow = FLOAT_TO_FIXED(flatxref);
tempytow = FLOAT_TO_FIXED(flatyref);
flatxref = (FIXED_TO_FLOAT(FixedMul(tempxsow, FINECOSINE(angle)) - FixedMul(tempytow, FINESINE(angle))));
flatyref = (FIXED_TO_FLOAT(FixedMul(tempxsow, FINESINE(angle)) + FixedMul(tempytow, FINECOSINE(angle))));
flatxref = (tempxsow * cos(anglef)) - (tempytow * sin(anglef));
flatyref = (tempxsow * sin(anglef)) + (tempytow * cos(anglef));
}
#define SETUP3DVERT(vert, vx, vy) {\
@ -540,10 +531,10 @@ static void HWR_RenderPlane(subsector_t *subsector, extrasubsector_t *xsub, bool
/* Need to rotate before translate */\
if (angle) /* Only needs to be done if there's an altered angle */\
{\
tempxsow = FLOAT_TO_FIXED(vert->s);\
tempytow = FLOAT_TO_FIXED(vert->t);\
vert->s = (FIXED_TO_FLOAT(FixedMul(tempxsow, FINECOSINE(angle)) - FixedMul(tempytow, FINESINE(angle))));\
vert->t = (FIXED_TO_FLOAT(FixedMul(tempxsow, FINESINE(angle)) + FixedMul(tempytow, FINECOSINE(angle))));\
tempxsow = vert->s;\
tempytow = vert->t;\
vert->s = (tempxsow * cos(anglef)) - (tempytow * sin(anglef));\
vert->t = (tempxsow * sin(anglef)) + (tempytow * cos(anglef));\
}\
\
vert->x = (vx);\

View file

@ -177,7 +177,7 @@ void R_Draw2sMultiPatchTranslucentColumn_8(void);
void R_DrawFogColumn_8(void);
void R_DrawColumnShadowed_8(void);
#define PLANELIGHTFLOAT (BASEVIDWIDTH * BASEVIDWIDTH / vid.width / (zeroheight - FIXED_TO_FLOAT(viewz)) / 21.0f * FIXED_TO_FLOAT(fovtan))
#define PLANELIGHTFLOAT (BASEVIDWIDTH * BASEVIDWIDTH / vid.width / zeroheight / 21.0f * FIXED_TO_FLOAT(fovtan))
void R_DrawSpan_8(void);
void R_DrawTranslucentSpan_8(void);

View file

@ -693,8 +693,8 @@ void R_DrawTiltedSpan_8(void)
do
{
double z = 1.f/iz;
u = (INT64)(uz*z) + viewx;
v = (INT64)(vz*z) + viewy;
u = (INT64)(uz*z);
v = (INT64)(vz*z);
colormap = planezlight[tiltlighting[ds_x1++]] + (ds_colormap - colormaps);
@ -726,8 +726,8 @@ void R_DrawTiltedSpan_8(void)
endv = vz*endz;
stepu = (INT64)((endu - startu) * INVSPAN);
stepv = (INT64)((endv - startv) * INVSPAN);
u = (INT64)(startu) + viewx;
v = (INT64)(startv) + viewy;
u = (INT64)(startu);
v = (INT64)(startv);
for (i = SPANSIZE-1; i >= 0; i--)
{
@ -763,8 +763,8 @@ void R_DrawTiltedSpan_8(void)
left = 1.f/left;
stepu = (INT64)((endu - startu) * left);
stepv = (INT64)((endv - startv) * left);
u = (INT64)(startu) + viewx;
v = (INT64)(startv) + viewy;
u = (INT64)(startu);
v = (INT64)(startv);
for (; width != 0; width--)
{
@ -826,8 +826,8 @@ void R_DrawTiltedTranslucentSpan_8(void)
do
{
double z = 1.f/iz;
u = (INT64)(uz*z) + viewx;
v = (INT64)(vz*z) + viewy;
u = (INT64)(uz*z);
v = (INT64)(vz*z);
colormap = planezlight[tiltlighting[ds_x1++]] + (ds_colormap - colormaps);
*dest = *(ds_transmap + (colormap[source[((v >> nflatyshift) & nflatmask) | (u >> nflatxshift)]] << 8) + *dest);
@ -858,8 +858,8 @@ void R_DrawTiltedTranslucentSpan_8(void)
endv = vz*endz;
stepu = (INT64)((endu - startu) * INVSPAN);
stepv = (INT64)((endv - startv) * INVSPAN);
u = (INT64)(startu) + viewx;
v = (INT64)(startv) + viewy;
u = (INT64)(startu);
v = (INT64)(startv);
for (i = SPANSIZE-1; i >= 0; i--)
{
@ -895,8 +895,8 @@ void R_DrawTiltedTranslucentSpan_8(void)
left = 1.f/left;
stepu = (INT64)((endu - startu) * left);
stepv = (INT64)((endv - startv) * left);
u = (INT64)(startu) + viewx;
v = (INT64)(startv) + viewy;
u = (INT64)(startu);
v = (INT64)(startv);
for (; width != 0; width--)
{
@ -960,8 +960,8 @@ void R_DrawTiltedTranslucentWaterSpan_8(void)
do
{
double z = 1.f/iz;
u = (INT64)(uz*z) + viewx;
v = (INT64)(vz*z) + viewy;
u = (INT64)(uz*z);
v = (INT64)(vz*z);
colormap = planezlight[tiltlighting[ds_x1++]] + (ds_colormap - colormaps);
*dest = *(ds_transmap + (colormap[source[((v >> nflatyshift) & nflatmask) | (u >> nflatxshift)]] << 8) + *dsrc++);
@ -992,8 +992,8 @@ void R_DrawTiltedTranslucentWaterSpan_8(void)
endv = vz*endz;
stepu = (INT64)((endu - startu) * INVSPAN);
stepv = (INT64)((endv - startv) * INVSPAN);
u = (INT64)(startu) + viewx;
v = (INT64)(startv) + viewy;
u = (INT64)(startu);
v = (INT64)(startv);
for (i = SPANSIZE-1; i >= 0; i--)
{
@ -1029,8 +1029,8 @@ void R_DrawTiltedTranslucentWaterSpan_8(void)
left = 1.f/left;
stepu = (INT64)((endu - startu) * left);
stepv = (INT64)((endv - startv) * left);
u = (INT64)(startu) + viewx;
v = (INT64)(startv) + viewy;
u = (INT64)(startu);
v = (INT64)(startv);
for (; width != 0; width--)
{
@ -1091,8 +1091,8 @@ void R_DrawTiltedSplat_8(void)
do
{
double z = 1.f/iz;
u = (INT64)(uz*z) + viewx;
v = (INT64)(vz*z) + viewy;
u = (INT64)(uz*z);
v = (INT64)(vz*z);
colormap = planezlight[tiltlighting[ds_x1++]] + (ds_colormap - colormaps);
@ -1127,8 +1127,8 @@ void R_DrawTiltedSplat_8(void)
endv = vz*endz;
stepu = (INT64)((endu - startu) * INVSPAN);
stepv = (INT64)((endv - startv) * INVSPAN);
u = (INT64)(startu) + viewx;
v = (INT64)(startv) + viewy;
u = (INT64)(startu);
v = (INT64)(startv);
for (i = SPANSIZE-1; i >= 0; i--)
{
@ -1168,8 +1168,8 @@ void R_DrawTiltedSplat_8(void)
left = 1.f/left;
stepu = (INT64)((endu - startu) * left);
stepv = (INT64)((endv - startv) * left);
u = (INT64)(startu) + viewx;
v = (INT64)(startv) + viewy;
u = (INT64)(startu);
v = (INT64)(startv);
for (; width != 0; width--)
{
@ -1672,8 +1672,8 @@ void R_DrawTiltedFloorSprite_8(void)
endv = vz*endz;
stepu = (INT64)((endu - startu) * INVSPAN);
stepv = (INT64)((endv - startv) * INVSPAN);
u = (INT64)(startu) + viewx;
v = (INT64)(startv) + viewy;
u = (INT64)(startu);
v = (INT64)(startv);
for (i = SPANSIZE-1; i >= 0; i--)
{
@ -1712,8 +1712,8 @@ void R_DrawTiltedFloorSprite_8(void)
left = 1.f/left;
stepu = (INT64)((endu - startu) * left);
stepv = (INT64)((endv - startv) * left);
u = (INT64)(startu) + viewx;
v = (INT64)(startv) + viewy;
u = (INT64)(startu);
v = (INT64)(startv);
for (; width != 0; width--)
{
@ -1781,8 +1781,8 @@ void R_DrawTiltedTranslucentFloorSprite_8(void)
endv = vz*endz;
stepu = (INT64)((endu - startu) * INVSPAN);
stepv = (INT64)((endv - startv) * INVSPAN);
u = (INT64)(startu) + viewx;
v = (INT64)(startv) + viewy;
u = (INT64)(startu);
v = (INT64)(startv);
for (i = SPANSIZE-1; i >= 0; i--)
{
@ -1821,8 +1821,8 @@ void R_DrawTiltedTranslucentFloorSprite_8(void)
left = 1.f/left;
stepu = (INT64)((endu - startu) * left);
stepv = (INT64)((endv - startv) * left);
u = (INT64)(startu) + viewx;
v = (INT64)(startv) + viewy;
u = (INT64)(startu);
v = (INT64)(startv);
for (; width != 0; width--)
{

View file

@ -133,15 +133,15 @@ void R_DrawTiltedSpan_NPO2_8(void)
do
{
double z = 1.f/iz;
u = (INT64)(uz*z) + viewx;
v = (INT64)(vz*z) + viewy;
u = (INT64)(uz*z);
v = (INT64)(vz*z);
colormap = planezlight[tiltlighting[ds_x1++]] + (ds_colormap - colormaps);
// Lactozilla: Non-powers-of-two
{
fixed_t x = (((fixed_t)u-viewx) >> FRACBITS);
fixed_t y = (((fixed_t)v-viewy) >> FRACBITS);
fixed_t x = (((fixed_t)u) >> FRACBITS);
fixed_t y = (((fixed_t)v) >> FRACBITS);
// Carefully align all of my Friends.
if (x < 0)
@ -181,16 +181,16 @@ void R_DrawTiltedSpan_NPO2_8(void)
endv = vz*endz;
stepu = (INT64)((endu - startu) * INVSPAN);
stepv = (INT64)((endv - startv) * INVSPAN);
u = (INT64)(startu) + viewx;
v = (INT64)(startv) + viewy;
u = (INT64)(startu);
v = (INT64)(startv);
for (i = SPANSIZE-1; i >= 0; i--)
{
colormap = planezlight[tiltlighting[ds_x1++]] + (ds_colormap - colormaps);
// Lactozilla: Non-powers-of-two
{
fixed_t x = (((fixed_t)u-viewx) >> FRACBITS);
fixed_t y = (((fixed_t)v-viewy) >> FRACBITS);
fixed_t x = (((fixed_t)u) >> FRACBITS);
fixed_t y = (((fixed_t)v) >> FRACBITS);
// Carefully align all of my Friends.
if (x < 0)
@ -220,8 +220,8 @@ void R_DrawTiltedSpan_NPO2_8(void)
colormap = planezlight[tiltlighting[ds_x1++]] + (ds_colormap - colormaps);
// Lactozilla: Non-powers-of-two
{
fixed_t x = (((fixed_t)u-viewx) >> FRACBITS);
fixed_t y = (((fixed_t)v-viewy) >> FRACBITS);
fixed_t x = (((fixed_t)u) >> FRACBITS);
fixed_t y = (((fixed_t)v) >> FRACBITS);
// Carefully align all of my Friends.
if (x < 0)
@ -248,16 +248,16 @@ void R_DrawTiltedSpan_NPO2_8(void)
left = 1.f/left;
stepu = (INT64)((endu - startu) * left);
stepv = (INT64)((endv - startv) * left);
u = (INT64)(startu) + viewx;
v = (INT64)(startv) + viewy;
u = (INT64)(startu);
v = (INT64)(startv);
for (; width != 0; width--)
{
colormap = planezlight[tiltlighting[ds_x1++]] + (ds_colormap - colormaps);
// Lactozilla: Non-powers-of-two
{
fixed_t x = (((fixed_t)u-viewx) >> FRACBITS);
fixed_t y = (((fixed_t)v-viewy) >> FRACBITS);
fixed_t x = (((fixed_t)u) >> FRACBITS);
fixed_t y = (((fixed_t)v) >> FRACBITS);
// Carefully align all of my Friends.
if (x < 0)
@ -326,14 +326,14 @@ void R_DrawTiltedTranslucentSpan_NPO2_8(void)
do
{
double z = 1.f/iz;
u = (INT64)(uz*z) + viewx;
v = (INT64)(vz*z) + viewy;
u = (INT64)(uz*z);
v = (INT64)(vz*z);
colormap = planezlight[tiltlighting[ds_x1++]] + (ds_colormap - colormaps);
// Lactozilla: Non-powers-of-two
{
fixed_t x = (((fixed_t)u-viewx) >> FRACBITS);
fixed_t y = (((fixed_t)v-viewy) >> FRACBITS);
fixed_t x = (((fixed_t)u) >> FRACBITS);
fixed_t y = (((fixed_t)v) >> FRACBITS);
// Carefully align all of my Friends.
if (x < 0)
@ -373,16 +373,16 @@ void R_DrawTiltedTranslucentSpan_NPO2_8(void)
endv = vz*endz;
stepu = (INT64)((endu - startu) * INVSPAN);
stepv = (INT64)((endv - startv) * INVSPAN);
u = (INT64)(startu) + viewx;
v = (INT64)(startv) + viewy;
u = (INT64)(startu);
v = (INT64)(startv);
for (i = SPANSIZE-1; i >= 0; i--)
{
colormap = planezlight[tiltlighting[ds_x1++]] + (ds_colormap - colormaps);
// Lactozilla: Non-powers-of-two
{
fixed_t x = (((fixed_t)u-viewx) >> FRACBITS);
fixed_t y = (((fixed_t)v-viewy) >> FRACBITS);
fixed_t x = (((fixed_t)u) >> FRACBITS);
fixed_t y = (((fixed_t)v) >> FRACBITS);
// Carefully align all of my Friends.
if (x < 0)
@ -412,8 +412,8 @@ void R_DrawTiltedTranslucentSpan_NPO2_8(void)
colormap = planezlight[tiltlighting[ds_x1++]] + (ds_colormap - colormaps);
// Lactozilla: Non-powers-of-two
{
fixed_t x = (((fixed_t)u-viewx) >> FRACBITS);
fixed_t y = (((fixed_t)v-viewy) >> FRACBITS);
fixed_t x = (((fixed_t)u) >> FRACBITS);
fixed_t y = (((fixed_t)v) >> FRACBITS);
// Carefully align all of my Friends.
if (x < 0)
@ -440,16 +440,16 @@ void R_DrawTiltedTranslucentSpan_NPO2_8(void)
left = 1.f/left;
stepu = (INT64)((endu - startu) * left);
stepv = (INT64)((endv - startv) * left);
u = (INT64)(startu) + viewx;
v = (INT64)(startv) + viewy;
u = (INT64)(startu);
v = (INT64)(startv);
for (; width != 0; width--)
{
colormap = planezlight[tiltlighting[ds_x1++]] + (ds_colormap - colormaps);
// Lactozilla: Non-powers-of-two
{
fixed_t x = (((fixed_t)u-viewx) >> FRACBITS);
fixed_t y = (((fixed_t)v-viewy) >> FRACBITS);
fixed_t x = (((fixed_t)u) >> FRACBITS);
fixed_t y = (((fixed_t)v) >> FRACBITS);
// Carefully align all of my Friends.
if (x < 0)
@ -517,15 +517,15 @@ void R_DrawTiltedSplat_NPO2_8(void)
do
{
double z = 1.f/iz;
u = (INT64)(uz*z) + viewx;
v = (INT64)(vz*z) + viewy;
u = (INT64)(uz*z);
v = (INT64)(vz*z);
colormap = planezlight[tiltlighting[ds_x1++]] + (ds_colormap - colormaps);
// Lactozilla: Non-powers-of-two
{
fixed_t x = (((fixed_t)u-viewx) >> FRACBITS);
fixed_t y = (((fixed_t)v-viewy) >> FRACBITS);
fixed_t x = (((fixed_t)u) >> FRACBITS);
fixed_t y = (((fixed_t)v) >> FRACBITS);
// Carefully align all of my Friends.
if (x < 0)
@ -569,16 +569,16 @@ void R_DrawTiltedSplat_NPO2_8(void)
endv = vz*endz;
stepu = (INT64)((endu - startu) * INVSPAN);
stepv = (INT64)((endv - startv) * INVSPAN);
u = (INT64)(startu) + viewx;
v = (INT64)(startv) + viewy;
u = (INT64)(startu);
v = (INT64)(startv);
for (i = SPANSIZE-1; i >= 0; i--)
{
colormap = planezlight[tiltlighting[ds_x1++]] + (ds_colormap - colormaps);
// Lactozilla: Non-powers-of-two
{
fixed_t x = (((fixed_t)u-viewx) >> FRACBITS);
fixed_t y = (((fixed_t)v-viewy) >> FRACBITS);
fixed_t x = (((fixed_t)u) >> FRACBITS);
fixed_t y = (((fixed_t)v) >> FRACBITS);
// Carefully align all of my Friends.
if (x < 0)
@ -610,8 +610,8 @@ void R_DrawTiltedSplat_NPO2_8(void)
colormap = planezlight[tiltlighting[ds_x1++]] + (ds_colormap - colormaps);
// Lactozilla: Non-powers-of-two
{
fixed_t x = (((fixed_t)u-viewx) >> FRACBITS);
fixed_t y = (((fixed_t)v-viewy) >> FRACBITS);
fixed_t x = (((fixed_t)u) >> FRACBITS);
fixed_t y = (((fixed_t)v) >> FRACBITS);
// Carefully align all of my Friends.
if (x < 0)
@ -640,8 +640,8 @@ void R_DrawTiltedSplat_NPO2_8(void)
left = 1.f/left;
stepu = (INT64)((endu - startu) * left);
stepv = (INT64)((endv - startv) * left);
u = (INT64)(startu) + viewx;
v = (INT64)(startv) + viewy;
u = (INT64)(startu);
v = (INT64)(startv);
for (; width != 0; width--)
{
@ -649,8 +649,8 @@ void R_DrawTiltedSplat_NPO2_8(void)
val = source[((v >> nflatyshift) & nflatmask) | (u >> nflatxshift)];
// Lactozilla: Non-powers-of-two
{
fixed_t x = (((fixed_t)u-viewx) >> FRACBITS);
fixed_t y = (((fixed_t)v-viewy) >> FRACBITS);
fixed_t x = (((fixed_t)u) >> FRACBITS);
fixed_t y = (((fixed_t)v) >> FRACBITS);
// Carefully align all of my Friends.
if (x < 0)
@ -1002,14 +1002,14 @@ void R_DrawTiltedFloorSprite_NPO2_8(void)
endv = vz*endz;
stepu = (INT64)((endu - startu) * INVSPAN);
stepv = (INT64)((endv - startv) * INVSPAN);
u = (INT64)(startu) + viewx;
v = (INT64)(startv) + viewy;
u = (INT64)(startu);
v = (INT64)(startv);
for (i = SPANSIZE-1; i >= 0; i--)
{
// Lactozilla: Non-powers-of-two
fixed_t x = (((fixed_t)u-viewx) >> FRACBITS);
fixed_t y = (((fixed_t)v-viewy) >> FRACBITS);
fixed_t x = (((fixed_t)u) >> FRACBITS);
fixed_t y = (((fixed_t)v) >> FRACBITS);
// Carefully align all of my Friends.
if (x < 0)
@ -1040,8 +1040,8 @@ void R_DrawTiltedFloorSprite_NPO2_8(void)
v = (INT64)(startv);
// Lactozilla: Non-powers-of-two
{
fixed_t x = (((fixed_t)u-viewx) >> FRACBITS);
fixed_t y = (((fixed_t)v-viewy) >> FRACBITS);
fixed_t x = (((fixed_t)u) >> FRACBITS);
fixed_t y = (((fixed_t)v) >> FRACBITS);
// Carefully align all of my Friends.
if (x < 0)
@ -1070,14 +1070,14 @@ void R_DrawTiltedFloorSprite_NPO2_8(void)
left = 1.f/left;
stepu = (INT64)((endu - startu) * left);
stepv = (INT64)((endv - startv) * left);
u = (INT64)(startu) + viewx;
v = (INT64)(startv) + viewy;
u = (INT64)(startu);
v = (INT64)(startv);
for (; width != 0; width--)
{
// Lactozilla: Non-powers-of-two
fixed_t x = (((fixed_t)u-viewx) >> FRACBITS);
fixed_t y = (((fixed_t)v-viewy) >> FRACBITS);
fixed_t x = (((fixed_t)u) >> FRACBITS);
fixed_t y = (((fixed_t)v) >> FRACBITS);
// Carefully align all of my Friends.
if (x < 0)
@ -1152,14 +1152,14 @@ void R_DrawTiltedTranslucentFloorSprite_NPO2_8(void)
endv = vz*endz;
stepu = (INT64)((endu - startu) * INVSPAN);
stepv = (INT64)((endv - startv) * INVSPAN);
u = (INT64)(startu) + viewx;
v = (INT64)(startv) + viewy;
u = (INT64)(startu);
v = (INT64)(startv);
for (i = SPANSIZE-1; i >= 0; i--)
{
// Lactozilla: Non-powers-of-two
fixed_t x = (((fixed_t)u-viewx) >> FRACBITS);
fixed_t y = (((fixed_t)v-viewy) >> FRACBITS);
fixed_t x = (((fixed_t)u) >> FRACBITS);
fixed_t y = (((fixed_t)v) >> FRACBITS);
// Carefully align all of my Friends.
if (x < 0)
@ -1190,8 +1190,8 @@ void R_DrawTiltedTranslucentFloorSprite_NPO2_8(void)
v = (INT64)(startv);
// Lactozilla: Non-powers-of-two
{
fixed_t x = (((fixed_t)u-viewx) >> FRACBITS);
fixed_t y = (((fixed_t)v-viewy) >> FRACBITS);
fixed_t x = (((fixed_t)u) >> FRACBITS);
fixed_t y = (((fixed_t)v) >> FRACBITS);
// Carefully align all of my Friends.
if (x < 0)
@ -1220,14 +1220,14 @@ void R_DrawTiltedTranslucentFloorSprite_NPO2_8(void)
left = 1.f/left;
stepu = (INT64)((endu - startu) * left);
stepv = (INT64)((endv - startv) * left);
u = (INT64)(startu) + viewx;
v = (INT64)(startv) + viewy;
u = (INT64)(startu);
v = (INT64)(startv);
for (; width != 0; width--)
{
// Lactozilla: Non-powers-of-two
fixed_t x = (((fixed_t)u-viewx) >> FRACBITS);
fixed_t y = (((fixed_t)v-viewy) >> FRACBITS);
fixed_t x = (((fixed_t)u) >> FRACBITS);
fixed_t y = (((fixed_t)v) >> FRACBITS);
// Carefully align all of my Friends.
if (x < 0)
@ -1429,14 +1429,14 @@ void R_DrawTiltedTranslucentWaterSpan_NPO2_8(void)
do
{
double z = 1.f/iz;
u = (INT64)(uz*z) + viewx;
v = (INT64)(vz*z) + viewy;
u = (INT64)(uz*z);
v = (INT64)(vz*z);
colormap = planezlight[tiltlighting[ds_x1++]] + (ds_colormap - colormaps);
// Lactozilla: Non-powers-of-two
{
fixed_t x = (((fixed_t)u-viewx) >> FRACBITS);
fixed_t y = (((fixed_t)v-viewy) >> FRACBITS);
fixed_t x = (((fixed_t)u) >> FRACBITS);
fixed_t y = (((fixed_t)v) >> FRACBITS);
// Carefully align all of my Friends.
if (x < 0)
@ -1476,16 +1476,16 @@ void R_DrawTiltedTranslucentWaterSpan_NPO2_8(void)
endv = vz*endz;
stepu = (INT64)((endu - startu) * INVSPAN);
stepv = (INT64)((endv - startv) * INVSPAN);
u = (INT64)(startu) + viewx;
v = (INT64)(startv) + viewy;
u = (INT64)(startu);
v = (INT64)(startv);
for (i = SPANSIZE-1; i >= 0; i--)
{
colormap = planezlight[tiltlighting[ds_x1++]] + (ds_colormap - colormaps);
// Lactozilla: Non-powers-of-two
{
fixed_t x = (((fixed_t)u-viewx) >> FRACBITS);
fixed_t y = (((fixed_t)v-viewy) >> FRACBITS);
fixed_t x = (((fixed_t)u) >> FRACBITS);
fixed_t y = (((fixed_t)v) >> FRACBITS);
// Carefully align all of my Friends.
if (x < 0)
@ -1515,8 +1515,8 @@ void R_DrawTiltedTranslucentWaterSpan_NPO2_8(void)
colormap = planezlight[tiltlighting[ds_x1++]] + (ds_colormap - colormaps);
// Lactozilla: Non-powers-of-two
{
fixed_t x = (((fixed_t)u-viewx) >> FRACBITS);
fixed_t y = (((fixed_t)v-viewy) >> FRACBITS);
fixed_t x = (((fixed_t)u) >> FRACBITS);
fixed_t y = (((fixed_t)v) >> FRACBITS);
// Carefully align all of my Friends.
if (x < 0)
@ -1543,16 +1543,16 @@ void R_DrawTiltedTranslucentWaterSpan_NPO2_8(void)
left = 1.f/left;
stepu = (INT64)((endu - startu) * left);
stepv = (INT64)((endv - startv) * left);
u = (INT64)(startu) + viewx;
v = (INT64)(startv) + viewy;
u = (INT64)(startu);
v = (INT64)(startv);
for (; width != 0; width--)
{
colormap = planezlight[tiltlighting[ds_x1++]] + (ds_colormap - colormaps);
// Lactozilla: Non-powers-of-two
{
fixed_t x = (((fixed_t)u-viewx) >> FRACBITS);
fixed_t y = (((fixed_t)v-viewy) >> FRACBITS);
fixed_t x = (((fixed_t)u) >> FRACBITS);
fixed_t y = (((fixed_t)v) >> FRACBITS);
// Carefully align all of my Friends.
if (x < 0)

View file

@ -31,13 +31,6 @@
#include "z_zone.h"
#include "p_tick.h"
#ifdef TIMING
#include "p5prof.h"
INT64 mycount;
INT64 mytotal = 0;
UINT32 nombre = 100000;
#endif
//
// opening
//
@ -104,6 +97,7 @@ fixed_t cachedxstep[MAXVIDHEIGHT];
fixed_t cachedystep[MAXVIDHEIGHT];
static fixed_t xoffs, yoffs;
static floatv3_t ds_slope_origin, ds_slope_u, ds_slope_v;
//
// R_InitPlanes
@ -127,21 +121,20 @@ struct
boolean active;
} planeripple;
static void R_CalculatePlaneRipple(visplane_t *plane, INT32 y, fixed_t plheight, boolean calcfrac)
// ripples da water texture
static fixed_t R_CalculateRippleOffset(INT32 y)
{
fixed_t distance = FixedMul(plheight, yslope[y]);
fixed_t distance = FixedMul(planeheight, yslope[y]);
const INT32 yay = (planeripple.offset + (distance>>9)) & 8191;
return FixedDiv(FINESINE(yay), (1<<12) + (distance>>11));
}
// ripples da water texture
ds_bgofs = FixedDiv(FINESINE(yay), (1<<12) + (distance>>11))>>FRACBITS;
if (calcfrac)
{
angle_t angle = (plane->viewangle + plane->plangle)>>ANGLETOFINESHIFT;
angle = (angle + 2048) & 8191; // 90 degrees
planeripple.xfrac = FixedMul(FINECOSINE(angle), (ds_bgofs<<FRACBITS));
planeripple.yfrac = FixedMul(FINESINE(angle), (ds_bgofs<<FRACBITS));
}
static void R_CalculatePlaneRipple(angle_t angle)
{
angle >>= ANGLETOFINESHIFT;
angle = (angle + 2048) & 8191; // 90 degrees
planeripple.xfrac = FixedMul(FINECOSINE(angle), ds_bgofs);
planeripple.yfrac = FixedMul(FINESINE(angle), ds_bgofs);
}
static void R_UpdatePlaneRipple(void)
@ -159,7 +152,7 @@ static void R_UpdatePlaneRipple(void)
// baseyscale
// centerx
void R_MapPlane(INT32 y, INT32 x1, INT32 x2)
static void R_MapPlane(INT32 y, INT32 x1, INT32 x2)
{
angle_t angle, planecos, planesin;
fixed_t distance = 0, span;
@ -173,60 +166,50 @@ void R_MapPlane(INT32 y, INT32 x1, INT32 x2)
if (x1 >= vid.width)
x1 = vid.width - 1;
if (!currentplane->slope)
angle = (currentplane->viewangle + currentplane->plangle)>>ANGLETOFINESHIFT;
planecos = FINECOSINE(angle);
planesin = FINESINE(angle);
if (planeheight != cachedheight[y])
{
angle = (currentplane->viewangle + currentplane->plangle)>>ANGLETOFINESHIFT;
planecos = FINECOSINE(angle);
planesin = FINESINE(angle);
cachedheight[y] = planeheight;
cacheddistance[y] = distance = FixedMul(planeheight, yslope[y]);
span = abs(centery - y);
if (planeheight != cachedheight[y])
if (span) // don't divide by zero
{
cachedheight[y] = planeheight;
cacheddistance[y] = distance = FixedMul(planeheight, yslope[y]);
span = abs(centery - y);
if (span) // don't divide by zero
{
ds_xstep = FixedMul(planesin, planeheight) / span;
ds_ystep = FixedMul(planecos, planeheight) / span;
}
else
{
ds_xstep = FixedMul(distance, basexscale);
ds_ystep = FixedMul(distance, baseyscale);
}
cachedxstep[y] = ds_xstep;
cachedystep[y] = ds_ystep;
ds_xstep = FixedMul(planesin, planeheight) / span;
ds_ystep = FixedMul(planecos, planeheight) / span;
}
else
{
distance = cacheddistance[y];
ds_xstep = cachedxstep[y];
ds_ystep = cachedystep[y];
ds_xstep = FixedMul(distance, basexscale);
ds_ystep = FixedMul(distance, baseyscale);
}
ds_xfrac = xoffs + FixedMul(planecos, distance) + (x1 - centerx) * ds_xstep;
ds_yfrac = yoffs - FixedMul(planesin, distance) + (x1 - centerx) * ds_ystep;
cachedxstep[y] = ds_xstep;
cachedystep[y] = ds_ystep;
}
else
{
distance = cacheddistance[y];
ds_xstep = cachedxstep[y];
ds_ystep = cachedystep[y];
}
ds_xfrac = xoffs + FixedMul(planecos, distance) + (x1 - centerx) * ds_xstep;
ds_yfrac = yoffs - FixedMul(planesin, distance) + (x1 - centerx) * ds_ystep;
// Water ripple effect
if (planeripple.active)
{
// Needed for ds_bgofs
R_CalculatePlaneRipple(currentplane, y, planeheight, (!currentplane->slope));
ds_bgofs = R_CalculateRippleOffset(y);
if (currentplane->slope)
{
ds_sup = &ds_su[y];
ds_svp = &ds_sv[y];
ds_szp = &ds_sz[y];
}
else
{
ds_xfrac += planeripple.xfrac;
ds_yfrac += planeripple.yfrac;
}
R_CalculatePlaneRipple(currentplane->viewangle + currentplane->plangle);
ds_xfrac += planeripple.xfrac;
ds_yfrac += planeripple.yfrac;
ds_bgofs >>= FRACBITS;
if ((y + ds_bgofs) >= viewheight)
ds_bgofs = viewheight-y-1;
@ -234,16 +217,11 @@ void R_MapPlane(INT32 y, INT32 x1, INT32 x2)
ds_bgofs = -y;
}
if (currentplane->slope)
ds_colormap = colormaps;
else
{
pindex = distance >> LIGHTZSHIFT;
if (pindex >= MAXLIGHTZ)
pindex = MAXLIGHTZ - 1;
ds_colormap = planezlight[pindex];
}
pindex = distance >> LIGHTZSHIFT;
if (pindex >= MAXLIGHTZ)
pindex = MAXLIGHTZ - 1;
ds_colormap = planezlight[pindex];
if (currentplane->extra_colormap)
ds_colormap = currentplane->extra_colormap->colormap + (ds_colormap - colormaps);
@ -251,19 +229,46 @@ void R_MapPlane(INT32 y, INT32 x1, INT32 x2)
ds_x1 = x1;
ds_x2 = x2;
// profile drawer
#ifdef TIMING
ProfZeroTimer();
spanfunc();
}
static void R_MapTiltedPlane(INT32 y, INT32 x1, INT32 x2)
{
#ifdef RANGECHECK
if (x2 < x1 || x1 < 0 || x2 >= viewwidth || y > viewheight)
I_Error("R_MapTiltedPlane: %d, %d at %d", x1, x2, y);
#endif
if (x1 >= vid.width)
x1 = vid.width - 1;
// Water ripple effect
if (planeripple.active)
{
ds_bgofs = R_CalculateRippleOffset(y);
ds_sup = &ds_su[y];
ds_svp = &ds_sv[y];
ds_szp = &ds_sz[y];
ds_bgofs >>= FRACBITS;
if ((y + ds_bgofs) >= viewheight)
ds_bgofs = viewheight-y-1;
if ((y + ds_bgofs) < 0)
ds_bgofs = -y;
}
if (currentplane->extra_colormap)
ds_colormap = currentplane->extra_colormap->colormap;
else
ds_colormap = colormaps;
ds_y = y;
ds_x1 = x1;
ds_x2 = x2;
spanfunc();
#ifdef TIMING
RDMSR(0x10, &mycount);
mytotal += mycount; // 64bit add
if (!(nombre--))
I_Error("spanfunc() CPU Spy reports: 0x%d %d\n", *((INT32 *)&mytotal+1), (INT32)mytotal);
#endif
}
void R_ClearFFloorClips (void)
@ -363,11 +368,11 @@ visplane_t *R_FindPlane(fixed_t height, INT32 picnum, INT32 lightlevel,
if (plangle != 0)
{
// Add the view offset, rotated by the plane angle.
fixed_t cosinecomponent = FINECOSINE(plangle>>ANGLETOFINESHIFT);
fixed_t sinecomponent = FINESINE(plangle>>ANGLETOFINESHIFT);
fixed_t oldxoff = xoff;
xoff = FixedMul(xoff,cosinecomponent)+FixedMul(yoff,sinecomponent);
yoff = -FixedMul(oldxoff,sinecomponent)+FixedMul(yoff,cosinecomponent);
float ang = ANG2RAD(plangle);
float x = FixedToFloat(xoff);
float y = FixedToFloat(yoff);
xoff = FloatToFixed(x * cos(ang) + y * sin(ang));
yoff = FloatToFixed(-x * sin(ang) + y * cos(ang));
}
}
@ -571,10 +576,7 @@ void R_ExpandPlane(visplane_t *pl, INT32 start, INT32 stop)
}
//
// R_MakeSpans
//
void R_MakeSpans(INT32 x, INT32 t1, INT32 b1, INT32 t2, INT32 b2)
static void R_MakeSpans(INT32 x, INT32 t1, INT32 b1, INT32 t2, INT32 b2)
{
// Alam: from r_splats's R_RasterizeFloorSplat
if (t1 >= vid.height) t1 = vid.height-1;
@ -600,6 +602,32 @@ void R_MakeSpans(INT32 x, INT32 t1, INT32 b1, INT32 t2, INT32 b2)
spanstart[b2--] = x;
}
static void R_MakeTiltedSpans(INT32 x, INT32 t1, INT32 b1, INT32 t2, INT32 b2)
{
// Alam: from r_splats's R_RasterizeFloorSplat
if (t1 >= vid.height) t1 = vid.height-1;
if (b1 >= vid.height) b1 = vid.height-1;
if (t2 >= vid.height) t2 = vid.height-1;
if (b2 >= vid.height) b2 = vid.height-1;
if (x-1 >= vid.width) x = vid.width;
while (t1 < t2 && t1 <= b1)
{
R_MapTiltedPlane(t1, spanstart[t1], x - 1);
t1++;
}
while (b1 > b2 && b1 >= t1)
{
R_MapTiltedPlane(b1, spanstart[b1], x - 1);
b1--;
}
while (t2 < t1 && t2 <= b2)
spanstart[t2++] = x;
while (b2 > b1 && b2 >= t2)
spanstart[b2--] = x;
}
void R_DrawPlanes(void)
{
visplane_t *pl;
@ -662,69 +690,109 @@ static void R_DrawSkyPlane(visplane_t *pl)
}
}
// Potentially override other stuff for now cus we're mean. :< But draw a slope plane!
// I copied ZDoom's code and adapted it to SRB2... -Red
void R_CalculateSlopeVectors(pslope_t *slope, fixed_t planeviewx, fixed_t planeviewy, fixed_t planeviewz, fixed_t planexscale, fixed_t planeyscale, fixed_t planexoffset, fixed_t planeyoffset, angle_t planeviewangle, angle_t planeangle, float fudge)
// Returns the height of the sloped plane at (x, y) as a 32.16 fixed_t
static INT64 R_GetSlopeZAt(const pslope_t *slope, fixed_t x, fixed_t y)
{
floatv3_t p, m, n;
float ang;
float vx, vy, vz;
float xscale = FIXED_TO_FLOAT(planexscale);
float yscale = FIXED_TO_FLOAT(planeyscale);
// compiler complains when P_GetSlopeZAt is used in FLOAT_TO_FIXED directly
// use this as a temp var to store P_GetSlopeZAt's return value each time
fixed_t temp;
INT64 x64 = ((INT64)x - (INT64)slope->o.x);
INT64 y64 = ((INT64)y - (INT64)slope->o.y);
vx = FIXED_TO_FLOAT(planeviewx+planexoffset);
vy = FIXED_TO_FLOAT(planeviewy-planeyoffset);
vz = FIXED_TO_FLOAT(planeviewz);
x64 = (x64 * (INT64)slope->d.x) / FRACUNIT;
y64 = (y64 * (INT64)slope->d.y) / FRACUNIT;
temp = P_GetSlopeZAt(slope, planeviewx, planeviewy);
zeroheight = FIXED_TO_FLOAT(temp);
return (INT64)slope->o.z + ((x64 + y64) * (INT64)slope->zdelta) / FRACUNIT;
}
// Sets the texture origin vector of the sloped plane.
static void R_SetSlopePlaneOrigin(pslope_t *slope, fixed_t xpos, fixed_t ypos, fixed_t zpos, fixed_t xoff, fixed_t yoff, fixed_t angle)
{
floatv3_t *p = &ds_slope_origin;
INT64 vx = (INT64)xpos + (INT64)xoff;
INT64 vy = (INT64)ypos - (INT64)yoff;
float vxf = vx / (float)FRACUNIT;
float vyf = vy / (float)FRACUNIT;
float ang = ANG2RAD(ANGLE_270 - angle);
// p is the texture origin in view space
// Don't add in the offsets at this stage, because doing so can result in
// errors if the flat is rotated.
ang = ANG2RAD(ANGLE_270 - planeviewangle);
p.x = vx * cos(ang) - vy * sin(ang);
p.z = vx * sin(ang) + vy * cos(ang);
temp = P_GetSlopeZAt(slope, -planexoffset, planeyoffset);
p.y = FIXED_TO_FLOAT(temp) - vz;
p->x = vxf * cos(ang) - vyf * sin(ang);
p->z = vxf * sin(ang) + vyf * cos(ang);
p->y = (R_GetSlopeZAt(slope, -xoff, yoff) - zpos) / (float)FRACUNIT;
}
// This function calculates all of the vectors necessary for drawing a sloped plane.
void R_SetSlopePlane(pslope_t *slope, fixed_t xpos, fixed_t ypos, fixed_t zpos, fixed_t xoff, fixed_t yoff, angle_t angle, angle_t plangle)
{
// Potentially override other stuff for now cus we're mean. :< But draw a slope plane!
// I copied ZDoom's code and adapted it to SRB2... -Red
floatv3_t *m = &ds_slope_v, *n = &ds_slope_u;
fixed_t height, temp;
float ang;
R_SetSlopePlaneOrigin(slope, xpos, ypos, zpos, xoff, yoff, angle);
height = P_GetSlopeZAt(slope, xpos, ypos);
zeroheight = FixedToFloat(height - zpos);
// m is the v direction vector in view space
ang = ANG2RAD(ANGLE_180 - (planeviewangle + planeangle));
m.x = yscale * cos(ang);
m.z = yscale * sin(ang);
ang = ANG2RAD(ANGLE_180 - (angle + plangle));
m->x = cos(ang);
m->z = sin(ang);
// n is the u direction vector in view space
n.x = xscale * sin(ang);
n.z = -xscale * cos(ang);
n->x = sin(ang);
n->z = -cos(ang);
ang = ANG2RAD(planeangle);
temp = P_GetSlopeZAt(slope, planeviewx + FLOAT_TO_FIXED(yscale * sin(ang)), planeviewy + FLOAT_TO_FIXED(yscale * cos(ang)));
m.y = FIXED_TO_FLOAT(temp) - zeroheight;
temp = P_GetSlopeZAt(slope, planeviewx + FLOAT_TO_FIXED(xscale * cos(ang)), planeviewy - FLOAT_TO_FIXED(xscale * sin(ang)));
n.y = FIXED_TO_FLOAT(temp) - zeroheight;
plangle >>= ANGLETOFINESHIFT;
temp = P_GetSlopeZAt(slope, xpos + FINESINE(plangle), ypos + FINECOSINE(plangle));
m->y = FixedToFloat(temp - height);
temp = P_GetSlopeZAt(slope, xpos + FINECOSINE(plangle), ypos - FINESINE(plangle));
n->y = FixedToFloat(temp - height);
}
if (ds_powersoftwo)
{
m.x /= fudge;
m.y /= fudge;
m.z /= fudge;
// This function calculates all of the vectors necessary for drawing a sloped and scaled plane.
void R_SetScaledSlopePlane(pslope_t *slope, fixed_t xpos, fixed_t ypos, fixed_t zpos, fixed_t xs, fixed_t ys, fixed_t xoff, fixed_t yoff, angle_t angle, angle_t plangle)
{
floatv3_t *m = &ds_slope_v, *n = &ds_slope_u;
fixed_t height, temp;
n.x *= fudge;
n.y *= fudge;
n.z *= fudge;
}
float xscale = FixedToFloat(xs);
float yscale = FixedToFloat(ys);
float ang;
R_SetSlopePlaneOrigin(slope, xpos, ypos, zpos, xoff, yoff, angle);
height = P_GetSlopeZAt(slope, xpos, ypos);
zeroheight = FixedToFloat(height - zpos);
// m is the v direction vector in view space
ang = ANG2RAD(ANGLE_180 - (angle + plangle));
m->x = yscale * cos(ang);
m->z = yscale * sin(ang);
// n is the u direction vector in view space
n->x = xscale * sin(ang);
n->z = -xscale * cos(ang);
ang = ANG2RAD(plangle);
temp = P_GetSlopeZAt(slope, xpos + FloatToFixed(yscale * sin(ang)), ypos + FloatToFixed(yscale * cos(ang)));
m->y = FixedToFloat(temp - height);
temp = P_GetSlopeZAt(slope, xpos + FloatToFixed(xscale * cos(ang)), ypos - FloatToFixed(xscale * sin(ang)));
n->y = FixedToFloat(temp - height);
}
void R_CalculateSlopeVectors(void)
{
float sfmult = 65536.f;
// Eh. I tried making this stuff fixed-point and it exploded on me. Here's a macro for the only floating-point vector function I recall using.
#define CROSS(d, v1, v2) \
d->x = (v1.y * v2.z) - (v1.z * v2.y);\
d->y = (v1.z * v2.x) - (v1.x * v2.z);\
d->z = (v1.x * v2.y) - (v1.y * v2.x)
CROSS(ds_sup, p, m);
CROSS(ds_svp, p, n);
CROSS(ds_szp, m, n);
CROSS(ds_sup, ds_slope_origin, ds_slope_v);
CROSS(ds_svp, ds_slope_origin, ds_slope_u);
CROSS(ds_szp, ds_slope_v, ds_slope_u);
#undef CROSS
ds_sup->z *= focallengthf;
@ -732,27 +800,15 @@ d->z = (v1.x * v2.y) - (v1.y * v2.x)
ds_szp->z *= focallengthf;
// Premultiply the texture vectors with the scale factors
#define SFMULT 65536.f
if (ds_powersoftwo)
{
ds_sup->x *= (SFMULT * (1<<nflatshiftup));
ds_sup->y *= (SFMULT * (1<<nflatshiftup));
ds_sup->z *= (SFMULT * (1<<nflatshiftup));
ds_svp->x *= (SFMULT * (1<<nflatshiftup));
ds_svp->y *= (SFMULT * (1<<nflatshiftup));
ds_svp->z *= (SFMULT * (1<<nflatshiftup));
}
else
{
// Lactozilla: I'm essentially multiplying the vectors by FRACUNIT...
ds_sup->x *= SFMULT;
ds_sup->y *= SFMULT;
ds_sup->z *= SFMULT;
ds_svp->x *= SFMULT;
ds_svp->y *= SFMULT;
ds_svp->z *= SFMULT;
}
#undef SFMULT
sfmult *= (1 << nflatshiftup);
ds_sup->x *= sfmult;
ds_sup->y *= sfmult;
ds_sup->z *= sfmult;
ds_svp->x *= sfmult;
ds_svp->y *= sfmult;
ds_svp->z *= sfmult;
}
void R_SetTiltedSpan(INT32 span)
@ -769,10 +825,40 @@ void R_SetTiltedSpan(INT32 span)
ds_szp = &ds_sz[span];
}
static void R_SetSlopePlaneVectors(visplane_t *pl, INT32 y, fixed_t xoff, fixed_t yoff, float fudge)
static void R_SetSlopePlaneVectors(visplane_t *pl, INT32 y, fixed_t xoff, fixed_t yoff)
{
R_SetTiltedSpan(y);
R_CalculateSlopeVectors(pl->slope, pl->viewx, pl->viewy, pl->viewz, FRACUNIT, FRACUNIT, xoff, yoff, pl->viewangle, pl->plangle, fudge);
R_SetSlopePlane(pl->slope, pl->viewx, pl->viewy, pl->viewz, xoff, yoff, pl->viewangle, pl->plangle);
R_CalculateSlopeVectors();
}
static inline void R_AdjustSlopeCoordinates(vector3_t *origin)
{
const fixed_t modmask = ((1 << (32-nflatshiftup)) - 1);
fixed_t ox = (origin->x & modmask);
fixed_t oy = -(origin->y & modmask);
xoffs &= modmask;
yoffs &= modmask;
xoffs -= (origin->x - ox);
yoffs += (origin->y + oy);
}
static inline void R_AdjustSlopeCoordinatesNPO2(vector3_t *origin)
{
const fixed_t modmaskw = (ds_flatwidth << FRACBITS);
const fixed_t modmaskh = (ds_flatheight << FRACBITS);
fixed_t ox = (origin->x % modmaskw);
fixed_t oy = -(origin->y % modmaskh);
xoffs %= modmaskw;
yoffs %= modmaskh;
xoffs -= (origin->x - ox);
yoffs += (origin->y + oy);
}
void R_DrawSinglePlane(visplane_t *pl)
@ -782,8 +868,8 @@ void R_DrawSinglePlane(visplane_t *pl)
INT32 x;
INT32 stop, angle;
ffloor_t *rover;
int type;
int spanfunctype = BASEDRAWFUNC;
INT32 type;
INT32 spanfunctype = BASEDRAWFUNC;
if (!(pl->minx <= pl->maxx))
return;
@ -943,7 +1029,6 @@ void R_DrawSinglePlane(visplane_t *pl)
xoffs = pl->xoffs;
yoffs = pl->yoffs;
planeheight = abs(pl->height - pl->viewz);
if (light >= LIGHTLEVELS)
light = LIGHTLEVELS-1;
@ -953,76 +1038,29 @@ void R_DrawSinglePlane(visplane_t *pl)
if (pl->slope)
{
float fudgecanyon = 0;
angle_t hack = (pl->plangle & (ANGLE_90-1));
yoffs *= 1;
if (ds_powersoftwo)
if (!pl->plangle)
{
fixed_t temp;
// Okay, look, don't ask me why this works, but without this setup there's a disgusting-looking misalignment with the textures. -Red
fudgecanyon = ((1<<nflatshiftup)+1.0f)/(1<<nflatshiftup);
if (hack)
{
/*
Essentially: We can't & the components along the regular axes when the plane is rotated.
This is because the distance on each regular axis in order to loop is different.
We rotate them, & the components, add them together, & them again, and then rotate them back.
These three seperate & operations are done per axis in order to prevent overflows.
toast 10/04/17
*/
const fixed_t cosinecomponent = FINECOSINE(hack>>ANGLETOFINESHIFT);
const fixed_t sinecomponent = FINESINE(hack>>ANGLETOFINESHIFT);
const fixed_t modmask = ((1 << (32-nflatshiftup)) - 1);
fixed_t ox = (FixedMul(pl->slope->o.x,cosinecomponent) & modmask) - (FixedMul(pl->slope->o.y,sinecomponent) & modmask);
fixed_t oy = (-FixedMul(pl->slope->o.x,sinecomponent) & modmask) - (FixedMul(pl->slope->o.y,cosinecomponent) & modmask);
temp = ox & modmask;
oy &= modmask;
ox = FixedMul(temp,cosinecomponent)+FixedMul(oy,-sinecomponent); // negative sine for opposite direction
oy = -FixedMul(temp,-sinecomponent)+FixedMul(oy,cosinecomponent);
temp = xoffs;
xoffs = (FixedMul(temp,cosinecomponent) & modmask) + (FixedMul(yoffs,sinecomponent) & modmask);
yoffs = (-FixedMul(temp,sinecomponent) & modmask) + (FixedMul(yoffs,cosinecomponent) & modmask);
temp = xoffs & modmask;
yoffs &= modmask;
xoffs = FixedMul(temp,cosinecomponent)+FixedMul(yoffs,-sinecomponent); // ditto
yoffs = -FixedMul(temp,-sinecomponent)+FixedMul(yoffs,cosinecomponent);
xoffs -= (pl->slope->o.x - ox);
yoffs += (pl->slope->o.y + oy);
}
if (ds_powersoftwo)
R_AdjustSlopeCoordinates(&pl->slope->o);
else
{
xoffs &= ((1 << (32-nflatshiftup))-1);
yoffs &= ((1 << (32-nflatshiftup))-1);
xoffs -= (pl->slope->o.x + (1 << (31-nflatshiftup))) & ~((1 << (32-nflatshiftup))-1);
yoffs += (pl->slope->o.y + (1 << (31-nflatshiftup))) & ~((1 << (32-nflatshiftup))-1);
}
xoffs = (fixed_t)(xoffs*fudgecanyon);
yoffs = (fixed_t)(yoffs/fudgecanyon);
R_AdjustSlopeCoordinatesNPO2(&pl->slope->o);
}
if (planeripple.active)
{
fixed_t plheight = abs(P_GetSlopeZAt(pl->slope, pl->viewx, pl->viewy) - pl->viewz);
planeheight = abs(P_GetSlopeZAt(pl->slope, pl->viewx, pl->viewy) - pl->viewz);
R_PlaneBounds(pl);
for (x = pl->high; x < pl->low; x++)
{
R_CalculatePlaneRipple(pl, x, plheight, true);
R_SetSlopePlaneVectors(pl, x, (xoffs + planeripple.xfrac), (yoffs + planeripple.yfrac), fudgecanyon);
ds_bgofs = R_CalculateRippleOffset(x);
R_CalculatePlaneRipple(pl->viewangle + pl->plangle);
R_SetSlopePlaneVectors(pl, x, (xoffs + planeripple.xfrac), (yoffs + planeripple.yfrac));
}
}
else
R_SetSlopePlaneVectors(pl, 0, xoffs, yoffs, fudgecanyon);
R_SetSlopePlaneVectors(pl, 0, xoffs, yoffs);
switch (spanfunctype)
{
@ -1043,7 +1081,10 @@ void R_DrawSinglePlane(visplane_t *pl)
planezlight = scalelight[light];
}
else
{
planeheight = abs(pl->height - pl->viewz);
planezlight = zlight[light];
}
// Use the correct span drawer depending on the powers-of-twoness
if (!ds_powersoftwo)
@ -1064,18 +1105,15 @@ void R_DrawSinglePlane(visplane_t *pl)
stop = pl->maxx + 1;
if (viewx != pl->viewx || viewy != pl->viewy)
if (pl->slope)
{
viewx = pl->viewx;
viewy = pl->viewy;
for (x = pl->minx; x <= stop; x++)
R_MakeTiltedSpans(x, pl->top[x-1], pl->bottom[x-1], pl->top[x], pl->bottom[x]);
}
if (viewz != pl->viewz)
viewz = pl->viewz;
for (x = pl->minx; x <= stop; x++)
else
{
R_MakeSpans(x, pl->top[x-1], pl->bottom[x-1],
pl->top[x], pl->bottom[x]);
for (x = pl->minx; x <= stop; x++)
R_MakeSpans(x, pl->top[x-1], pl->bottom[x-1], pl->top[x], pl->bottom[x]);
}
/*

View file

@ -78,8 +78,6 @@ void R_InitPlanes(void);
void R_ClearPlanes(void);
void R_ClearFFloorClips (void);
void R_MapPlane(INT32 y, INT32 x1, INT32 x2);
void R_MakeSpans(INT32 x, INT32 t1, INT32 b1, INT32 t2, INT32 b2);
void R_DrawPlanes(void);
visplane_t *R_FindPlane(fixed_t height, INT32 picnum, INT32 lightlevel, fixed_t xoff, fixed_t yoff, angle_t plangle,
extracolormap_t *planecolormap, ffloor_t *ffloor, polyobj_t *polyobj, pslope_t *slope);
@ -94,7 +92,9 @@ boolean R_CheckPowersOfTwo(void);
void R_DrawSinglePlane(visplane_t *pl);
// Calculates the slope vectors needed for tilted span drawing.
void R_CalculateSlopeVectors(pslope_t *slope, fixed_t planeviewx, fixed_t planeviewy, fixed_t planeviewz, fixed_t planexscale, fixed_t planeyscale, fixed_t planexoffset, fixed_t planeyoffset, angle_t planeviewangle, angle_t planeangle, float fudge);
void R_SetSlopePlane(pslope_t *slope, fixed_t xpos, fixed_t ypos, fixed_t zpos, fixed_t xoff, fixed_t yoff, angle_t angle, angle_t plangle);
void R_SetScaledSlopePlane(pslope_t *slope, fixed_t xpos, fixed_t ypos, fixed_t zpos, fixed_t xs, fixed_t ys, fixed_t xoff, fixed_t yoff, angle_t angle, angle_t plangle);
void R_CalculateSlopeVectors(void);
// Sets the slope vector pointers for the current tilted span.
void R_SetTiltedSpan(INT32 span);

View file

@ -419,7 +419,8 @@ static void R_RasterizeFloorSplat(floorsplat_t *pSplat, vector2_t *verts, visspr
if (pSplat->tilted)
{
R_SetTiltedSpan(0);
R_CalculateSlopeVectors(&pSplat->slope, viewx, viewy, viewz, pSplat->xscale, pSplat->yscale, -pSplat->verts[0].x, pSplat->verts[0].y, vis->viewangle, pSplat->angle, 1.0f);
R_SetScaledSlopePlane(&pSplat->slope, viewx, viewy, viewz, pSplat->xscale, pSplat->yscale, -pSplat->verts[0].x, pSplat->verts[0].y, vis->viewangle, pSplat->angle);
R_CalculateSlopeVectors();
spanfunctype = SPANDRAWFUNC_TILTEDSPRITE;
}
else