// SONIC ROBO BLAST 2 //----------------------------------------------------------------------------- // Copyright (C) 1998-2000 by DooM Legacy Team. // Copyright (C) 1999-2016 by Sonic Team Junior. // // This program is free software distributed under the // terms of the GNU General Public License, version 2. // See the 'LICENSE' file for more details. //----------------------------------------------------------------------------- /// \file r_draw8.c /// \brief 8bpp span/column drawer functions /// \note no includes because this is included as part of r_draw.c // ========================================================================== // COLUMNS // ========================================================================== // A column is a vertical slice/span of a wall texture that uses // a has a constant z depth from top to bottom. // /** \brief The R_DrawColumn_8 function Experiment to make software go faster. Taken from the Boom source */ void R_DrawColumn_8(void) { INT32 count; register UINT8 *dest; register fixed_t frac; fixed_t fracstep; count = dc_yh - dc_yl; if (count < 0) // Zero length, column does not exceed a pixel. return; #ifdef RANGECHECK if ((unsigned)dc_x >= (unsigned)vid.width || dc_yl < 0 || dc_yh >= vid.height) return; #endif // Framebuffer destination address. // Use ylookup LUT to avoid multiply with ScreenWidth. // Use columnofs LUT for subwindows? //dest = ylookup[dc_yl] + columnofs[dc_x]; dest = &topleft[dc_yl*vid.width + dc_x]; count++; // Determine scaling, which is the only mapping to be done. fracstep = dc_iscale; //frac = dc_texturemid + (dc_yl - centery)*fracstep; frac = (dc_texturemid + FixedMul((dc_yl << FRACBITS) - centeryfrac, fracstep))*(!dc_hires); // Inner loop that does the actual texture mapping, e.g. a DDA-like scaling. // This is as fast as it gets. { register const UINT8 *source = dc_source; register const lighttable_t *colormap = dc_colormap; register INT32 heightmask = dc_texheight-1; if (dc_texheight & heightmask) // not a power of 2 -- killough { heightmask++; heightmask <<= FRACBITS; if (frac < 0) while ((frac += heightmask) < 0); else while (frac >= heightmask) frac -= heightmask; do { // Re-map color indices from wall texture column // using a lighting/special effects LUT. // heightmask is the Tutti-Frutti fix *dest = colormap[source[frac>>FRACBITS]]; dest += vid.width; // Avoid overflow. if (fracstep > 0x7FFFFFFF - frac) frac += fracstep - heightmask; else frac += fracstep; while (frac >= heightmask) frac -= heightmask; } while (--count); } else { while ((count -= 2) >= 0) // texture height is a power of 2 { *dest = colormap[source[(frac>>FRACBITS) & heightmask]]; dest += vid.width; frac += fracstep; *dest = colormap[source[(frac>>FRACBITS) & heightmask]]; dest += vid.width; frac += fracstep; } if (count & 1) *dest = colormap[source[(frac>>FRACBITS) & heightmask]]; } } } #define TRANSPARENTPIXEL 247 void R_Draw2sMultiPatchColumn_8(void) { INT32 count; register UINT8 *dest; register fixed_t frac; fixed_t fracstep; count = dc_yh - dc_yl; if (count < 0) // Zero length, column does not exceed a pixel. return; #ifdef RANGECHECK if ((unsigned)dc_x >= (unsigned)vid.width || dc_yl < 0 || dc_yh >= vid.height) return; #endif // Framebuffer destination address. // Use ylookup LUT to avoid multiply with ScreenWidth. // Use columnofs LUT for subwindows? //dest = ylookup[dc_yl] + columnofs[dc_x]; dest = &topleft[dc_yl*vid.width + dc_x]; count++; // Determine scaling, which is the only mapping to be done. fracstep = dc_iscale; //frac = dc_texturemid + (dc_yl - centery)*fracstep; frac = (dc_texturemid + FixedMul((dc_yl << FRACBITS) - centeryfrac, fracstep))*(!dc_hires); // Inner loop that does the actual texture mapping, e.g. a DDA-like scaling. // This is as fast as it gets. { register const UINT8 *source = dc_source; register const lighttable_t *colormap = dc_colormap; register INT32 heightmask = dc_texheight-1; register UINT8 val; if (dc_texheight & heightmask) // not a power of 2 -- killough { heightmask++; heightmask <<= FRACBITS; if (frac < 0) while ((frac += heightmask) < 0); else while (frac >= heightmask) frac -= heightmask; do { // Re-map color indices from wall texture column // using a lighting/special effects LUT. // heightmask is the Tutti-Frutti fix val = source[frac>>FRACBITS]; if (val != TRANSPARENTPIXEL) *dest = colormap[val]; dest += vid.width; // Avoid overflow. if (fracstep > 0x7FFFFFFF - frac) frac += fracstep - heightmask; else frac += fracstep; while (frac >= heightmask) frac -= heightmask; } while (--count); } else { while ((count -= 2) >= 0) // texture height is a power of 2 { val = source[(frac>>FRACBITS) & heightmask]; if (val != TRANSPARENTPIXEL) *dest = colormap[val]; dest += vid.width; frac += fracstep; val = source[(frac>>FRACBITS) & heightmask]; if (val != TRANSPARENTPIXEL) *dest = colormap[val]; dest += vid.width; frac += fracstep; } if (count & 1) { val = source[(frac>>FRACBITS) & heightmask]; if (val != TRANSPARENTPIXEL) *dest = colormap[val]; } } } } /** \brief The R_DrawShadeColumn_8 function Experiment to make software go faster. Taken from the Boom source */ void R_DrawShadeColumn_8(void) { register INT32 count; register UINT8 *dest; register fixed_t frac, fracstep; // check out coords for src* if ((dc_yl < 0) || (dc_x >= vid.width)) return; count = dc_yh - dc_yl; if (count < 0) return; #ifdef RANGECHECK if ((unsigned)dc_x >= (unsigned)vid.width || dc_yl < 0 || dc_yh >= vid.height) I_Error("R_DrawShadeColumn_8: %d to %d at %d", dc_yl, dc_yh, dc_x); #endif // FIXME. As above. //dest = ylookup[dc_yl] + columnofs[dc_x]; dest = &topleft[dc_yl*vid.width + dc_x]; // Looks familiar. fracstep = dc_iscale; //frac = dc_texturemid + (dc_yl - centery)*fracstep; frac = (dc_texturemid + FixedMul((dc_yl << FRACBITS) - centeryfrac, fracstep))*(!dc_hires); // Here we do an additional index re-mapping. do { *dest = colormaps[(dc_source[frac>>FRACBITS] <<8) + (*dest)]; dest += vid.width; frac += fracstep; } while (count--); } /** \brief The R_DrawTranslucentColumn_8 function I've made an asm routine for the transparency, because it slows down a lot in 640x480 with big sprites (bfg on all screen, or transparent walls on fullscreen) */ void R_DrawTranslucentColumn_8(void) { register INT32 count; register UINT8 *dest; register fixed_t frac, fracstep; count = dc_yh - dc_yl + 1; if (count <= 0) // Zero length, column does not exceed a pixel. return; #ifdef RANGECHECK if ((unsigned)dc_x >= (unsigned)vid.width || dc_yl < 0 || dc_yh >= vid.height) I_Error("R_DrawTranslucentColumn_8: %d to %d at %d", dc_yl, dc_yh, dc_x); #endif // FIXME. As above. //dest = ylookup[dc_yl] + columnofs[dc_x]; dest = &topleft[dc_yl*vid.width + dc_x]; // Looks familiar. fracstep = dc_iscale; //frac = dc_texturemid + (dc_yl - centery)*fracstep; frac = (dc_texturemid + FixedMul((dc_yl << FRACBITS) - centeryfrac, fracstep))*(!dc_hires); // Inner loop that does the actual texture mapping, e.g. a DDA-like scaling. // This is as fast as it gets. { register const UINT8 *source = dc_source; register const UINT8 *transmap = dc_transmap; register const lighttable_t *colormap = dc_colormap; register INT32 heightmask = dc_texheight - 1; if (dc_texheight & heightmask) { heightmask++; heightmask <<= FRACBITS; if (frac < 0) while ((frac += heightmask) < 0) ; else while (frac >= heightmask) frac -= heightmask; do { // Re-map color indices from wall texture column // using a lighting/special effects LUT. // heightmask is the Tutti-Frutti fix *dest = *(transmap + (colormap[source[frac>>FRACBITS]]<<8) + (*dest)); dest += vid.width; if ((frac += fracstep) >= heightmask) frac -= heightmask; } while (--count); } else { while ((count -= 2) >= 0) // texture height is a power of 2 { *dest = *(transmap + (colormap[source[(frac>>FRACBITS)&heightmask]]<<8) + (*dest)); dest += vid.width; frac += fracstep; *dest = *(transmap + (colormap[source[(frac>>FRACBITS)&heightmask]]<<8) + (*dest)); dest += vid.width; frac += fracstep; } if (count & 1) *dest = *(transmap + (colormap[source[(frac>>FRACBITS)&heightmask]]<<8) + (*dest)); } } } /** \brief The R_DrawTranslatedTranslucentColumn_8 function Spiffy function. Not only does it colormap a sprite, but does translucency as well. Uber-kudos to Cyan Helkaraxe */ void R_DrawTranslatedTranslucentColumn_8(void) { register INT32 count; register UINT8 *dest; register fixed_t frac, fracstep; count = dc_yh - dc_yl + 1; if (count <= 0) // Zero length, column does not exceed a pixel. return; // FIXME. As above. //dest = ylookup[dc_yl] + columnofs[dc_x]; dest = &topleft[dc_yl*vid.width + dc_x]; // Looks familiar. fracstep = dc_iscale; //frac = dc_texturemid + (dc_yl - centery)*fracstep; frac = (dc_texturemid + FixedMul((dc_yl << FRACBITS) - centeryfrac, fracstep))*(!dc_hires); // Inner loop that does the actual texture mapping, e.g. a DDA-like scaling. // This is as fast as it gets. { register INT32 heightmask = dc_texheight - 1; if (dc_texheight & heightmask) { heightmask++; heightmask <<= FRACBITS; if (frac < 0) while ((frac += heightmask) < 0) ; else while (frac >= heightmask) frac -= heightmask; do { // Re-map color indices from wall texture column // using a lighting/special effects LUT. // heightmask is the Tutti-Frutti fix *dest = *(dc_transmap + (dc_colormap[dc_translation[dc_source[frac>>FRACBITS]]]<<8) + (*dest)); dest += vid.width; if ((frac += fracstep) >= heightmask) frac -= heightmask; } while (--count); } else { while ((count -= 2) >= 0) // texture height is a power of 2 { *dest = *(dc_transmap + (dc_colormap[dc_translation[dc_source[(frac>>FRACBITS)&heightmask]]]<<8) + (*dest)); dest += vid.width; frac += fracstep; *dest = *(dc_transmap + (dc_colormap[dc_translation[dc_source[(frac>>FRACBITS)&heightmask]]]<<8) + (*dest)); dest += vid.width; frac += fracstep; } if (count & 1) *dest = *(dc_transmap + (dc_colormap[dc_translation[dc_source[(frac>>FRACBITS)&heightmask]]]<<8) + (*dest)); } } } /** \brief The R_DrawTranslatedColumn_8 function Draw columns up to 128 high but remap the green ramp to other colors \warning STILL NOT IN ASM, TO DO.. */ void R_DrawTranslatedColumn_8(void) { register INT32 count; register UINT8 *dest; register fixed_t frac, fracstep; count = dc_yh - dc_yl; if (count < 0) return; #ifdef RANGECHECK if ((unsigned)dc_x >= (unsigned)vid.width || dc_yl < 0 || dc_yh >= vid.height) I_Error("R_DrawTranslatedColumn_8: %d to %d at %d", dc_yl, dc_yh, dc_x); #endif // FIXME. As above. //dest = ylookup[dc_yl] + columnofs[dc_x]; dest = &topleft[dc_yl*vid.width + dc_x]; // Looks familiar. fracstep = dc_iscale; //frac = dc_texturemid + (dc_yl-centery)*fracstep; frac = (dc_texturemid + FixedMul((dc_yl << FRACBITS) - centeryfrac, fracstep))*(!dc_hires); // Here we do an additional index re-mapping. do { // Translation tables are used // to map certain colorramps to other ones, // used with PLAY sprites. // Thus the "green" ramp of the player 0 sprite // is mapped to gray, red, black/indigo. *dest = dc_colormap[dc_translation[dc_source[frac>>FRACBITS]]]; dest += vid.width; frac += fracstep; } while (count--); } // ========================================================================== // SPANS // ========================================================================== /** \brief The R_DrawSpan_8 function Draws the actual span. */ void R_DrawSpan_8 (void) { UINT32 xposition; UINT32 yposition; UINT32 xstep, ystep; UINT8 *source; UINT8 *colormap; UINT8 *dest; const UINT8 *deststop = screens[0] + vid.rowbytes * vid.height; size_t count; // SoM: we only need 6 bits for the integer part (0 thru 63) so the rest // can be used for the fraction part. This allows calculation of the memory address in the // texture with two shifts, an OR and one AND. (see below) // for texture sizes > 64 the amount of precision we can allow will decrease, but only by one // bit per power of two (obviously) // Ok, because I was able to eliminate the variable spot below, this function is now FASTER // than the original span renderer. Whodathunkit? xposition = ds_xfrac << nflatshiftup; yposition = ds_yfrac << nflatshiftup; xstep = ds_xstep << nflatshiftup; ystep = ds_ystep << nflatshiftup; source = ds_source; colormap = ds_colormap; dest = ylookup[ds_y] + columnofs[ds_x1]; count = ds_x2 - ds_x1 + 1; if (dest+8 > deststop) return; while (count >= 8) { // SoM: Why didn't I see this earlier? the spot variable is a waste now because we don't // have the uber complicated math to calculate it now, so that was a memory write we didn't // need! dest[0] = colormap[source[((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift)]]; xposition += xstep; yposition += ystep; dest[1] = colormap[source[((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift)]]; xposition += xstep; yposition += ystep; dest[2] = colormap[source[((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift)]]; xposition += xstep; yposition += ystep; dest[3] = colormap[source[((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift)]]; xposition += xstep; yposition += ystep; dest[4] = colormap[source[((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift)]]; xposition += xstep; yposition += ystep; dest[5] = colormap[source[((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift)]]; xposition += xstep; yposition += ystep; dest[6] = colormap[source[((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift)]]; xposition += xstep; yposition += ystep; dest[7] = colormap[source[((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift)]]; xposition += xstep; yposition += ystep; dest += 8; count -= 8; } while (count-- && dest <= deststop) { *dest++ = colormap[source[((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift)]]; xposition += xstep; yposition += ystep; } } #ifdef ESLOPE // R_CalcTiltedLighting // Exactly what it says on the tin. I wish I wasn't too lazy to explain things properly. static INT32 tiltlighting[MAXVIDWIDTH]; void R_CalcTiltedLighting(fixed_t start, fixed_t end) { // ZDoom uses a different lighting setup to us, and I couldn't figure out how to adapt their version // of this function. Here's my own. INT32 left = ds_x1, right = ds_x2; fixed_t step = (end-start)/(ds_x2-ds_x1+1); INT32 i; // I wanna do some optimizing by checking for out-of-range segments on either side to fill in all at once, // but I'm too bad at coding to not crash the game trying to do that. I guess this is fast enough for now... for (i = left; i <= right; i++) { tiltlighting[i] = (start += step) >> FRACBITS; if (tiltlighting[i] < 0) tiltlighting[i] = 0; else if (tiltlighting[i] >= MAXLIGHTSCALE) tiltlighting[i] = MAXLIGHTSCALE-1; } } /** \brief The R_DrawTiltedSpan_8 function Draw slopes! Holy sheit! */ void R_DrawTiltedSpan_8(void) { // x1, x2 = ds_x1, ds_x2 int width = ds_x2 - ds_x1; double iz, uz, vz; UINT32 u, v; int i; UINT8 *source; UINT8 *colormap; UINT8 *dest; double startz, startu, startv; double izstep, uzstep, vzstep; double endz, endu, endv; UINT32 stepu, stepv; iz = ds_sz.z + ds_sz.y*(centery-ds_y) + ds_sz.x*(ds_x1-centerx); // Lighting is simple. It's just linear interpolation from start to end { float planelightfloat = BASEVIDWIDTH*BASEVIDWIDTH/vid.width / (zeroheight - FIXED_TO_FLOAT(viewz)) / 21.0f; float lightstart, lightend; lightend = (iz + ds_sz.x*width) * planelightfloat; lightstart = iz * planelightfloat; R_CalcTiltedLighting(FLOAT_TO_FIXED(lightstart), FLOAT_TO_FIXED(lightend)); //CONS_Printf("tilted lighting %f to %f (foc %f)\n", lightstart, lightend, focallengthf); } uz = ds_su.z + ds_su.y*(centery-ds_y) + ds_su.x*(ds_x1-centerx); vz = ds_sv.z + ds_sv.y*(centery-ds_y) + ds_sv.x*(ds_x1-centerx); dest = ylookup[ds_y] + columnofs[ds_x1]; source = ds_source; //colormap = ds_colormap; #if 0 // The "perfect" reference version of this routine. Pretty slow. // Use it only to see how things are supposed to look. i = 0; do { double z = 1.f/iz; u = (INT64)(uz*z) + viewx; v = (INT64)(vz*z) + viewy; colormap = planezlight[tiltlighting[ds_x1++]] + (ds_colormap - colormaps); *dest = colormap[source[((v >> nflatyshift) & nflatmask) | (u >> nflatxshift)]]; dest++; iz += ds_sz.x; uz += ds_su.x; vz += ds_sv.x; } while (--width >= 0); #else #define SPANSIZE 16 #define INVSPAN 0.0625f startz = 1.f/iz; startu = uz*startz; startv = vz*startz; izstep = ds_sz.x * SPANSIZE; uzstep = ds_su.x * SPANSIZE; vzstep = ds_sv.x * SPANSIZE; //x1 = 0; width++; while (width >= SPANSIZE) { iz += izstep; uz += uzstep; vz += vzstep; endz = 1.f/iz; endu = uz*endz; endv = vz*endz; stepu = (INT64)((endu - startu) * INVSPAN); stepv = (INT64)((endv - startv) * INVSPAN); u = (INT64)(startu) + viewx; v = (INT64)(startv) + viewy; for (i = SPANSIZE-1; i >= 0; i--) { colormap = planezlight[tiltlighting[ds_x1++]] + (ds_colormap - colormaps); *dest = colormap[source[((v >> nflatyshift) & nflatmask) | (u >> nflatxshift)]]; dest++; u += stepu; v += stepv; } startu = endu; startv = endv; width -= SPANSIZE; } if (width > 0) { if (width == 1) { u = (INT64)(startu); v = (INT64)(startv); colormap = planezlight[tiltlighting[ds_x1++]] + (ds_colormap - colormaps); *dest = colormap[source[((v >> nflatyshift) & nflatmask) | (u >> nflatxshift)]]; } else { double left = width; iz += ds_sz.x * left; uz += ds_su.x * left; vz += ds_sv.x * left; endz = 1.f/iz; endu = uz*endz; endv = vz*endz; left = 1.f/left; stepu = (INT64)((endu - startu) * left); stepv = (INT64)((endv - startv) * left); u = (INT64)(startu) + viewx; v = (INT64)(startv) + viewy; for (; width != 0; width--) { colormap = planezlight[tiltlighting[ds_x1++]] + (ds_colormap - colormaps); *dest = colormap[source[((v >> nflatyshift) & nflatmask) | (u >> nflatxshift)]]; dest++; u += stepu; v += stepv; } } } #endif } /** \brief The R_DrawTiltedTranslucentSpan_8 function Like DrawTiltedSpan, but translucent */ void R_DrawTiltedTranslucentSpan_8(void) { // x1, x2 = ds_x1, ds_x2 int width = ds_x2 - ds_x1; double iz, uz, vz; UINT32 u, v; int i; UINT8 *source; UINT8 *colormap; UINT8 *dest; double startz, startu, startv; double izstep, uzstep, vzstep; double endz, endu, endv; UINT32 stepu, stepv; iz = ds_sz.z + ds_sz.y*(centery-ds_y) + ds_sz.x*(ds_x1-centerx); // Lighting is simple. It's just linear interpolation from start to end { float planelightfloat = BASEVIDWIDTH*BASEVIDWIDTH/vid.width / (zeroheight - FIXED_TO_FLOAT(viewz)) / 21.0f; float lightstart, lightend; lightend = (iz + ds_sz.x*width) * planelightfloat; lightstart = iz * planelightfloat; R_CalcTiltedLighting(FLOAT_TO_FIXED(lightstart), FLOAT_TO_FIXED(lightend)); //CONS_Printf("tilted lighting %f to %f (foc %f)\n", lightstart, lightend, focallengthf); } uz = ds_su.z + ds_su.y*(centery-ds_y) + ds_su.x*(ds_x1-centerx); vz = ds_sv.z + ds_sv.y*(centery-ds_y) + ds_sv.x*(ds_x1-centerx); dest = ylookup[ds_y] + columnofs[ds_x1]; source = ds_source; //colormap = ds_colormap; #if 0 // The "perfect" reference version of this routine. Pretty slow. // Use it only to see how things are supposed to look. i = 0; do { double z = 1.f/iz; u = (INT64)(uz*z) + viewx; v = (INT64)(vz*z) + viewy; colormap = planezlight[tiltlighting[ds_x1++]] + (ds_colormap - colormaps); *dest = *(ds_transmap + (colormap[source[((v >> nflatyshift) & nflatmask) | (u >> nflatxshift)]] << 8) + *dest); dest++; iz += ds_sz.x; uz += ds_su.x; vz += ds_sv.x; } while (--width >= 0); #else #define SPANSIZE 16 #define INVSPAN 0.0625f startz = 1.f/iz; startu = uz*startz; startv = vz*startz; izstep = ds_sz.x * SPANSIZE; uzstep = ds_su.x * SPANSIZE; vzstep = ds_sv.x * SPANSIZE; //x1 = 0; width++; while (width >= SPANSIZE) { iz += izstep; uz += uzstep; vz += vzstep; endz = 1.f/iz; endu = uz*endz; endv = vz*endz; stepu = (INT64)((endu - startu) * INVSPAN); stepv = (INT64)((endv - startv) * INVSPAN); u = (INT64)(startu) + viewx; v = (INT64)(startv) + viewy; for (i = SPANSIZE-1; i >= 0; i--) { colormap = planezlight[tiltlighting[ds_x1++]] + (ds_colormap - colormaps); *dest = *(ds_transmap + (colormap[source[((v >> nflatyshift) & nflatmask) | (u >> nflatxshift)]] << 8) + *dest); dest++; u += stepu; v += stepv; } startu = endu; startv = endv; width -= SPANSIZE; } if (width > 0) { if (width == 1) { u = (INT64)(startu); v = (INT64)(startv); colormap = planezlight[tiltlighting[ds_x1++]] + (ds_colormap - colormaps); *dest = *(ds_transmap + (colormap[source[((v >> nflatyshift) & nflatmask) | (u >> nflatxshift)]] << 8) + *dest); } else { double left = width; iz += ds_sz.x * left; uz += ds_su.x * left; vz += ds_sv.x * left; endz = 1.f/iz; endu = uz*endz; endv = vz*endz; left = 1.f/left; stepu = (INT64)((endu - startu) * left); stepv = (INT64)((endv - startv) * left); u = (INT64)(startu) + viewx; v = (INT64)(startv) + viewy; for (; width != 0; width--) { colormap = planezlight[tiltlighting[ds_x1++]] + (ds_colormap - colormaps); *dest = *(ds_transmap + (colormap[source[((v >> nflatyshift) & nflatmask) | (u >> nflatxshift)]] << 8) + *dest); dest++; u += stepu; v += stepv; } } } #endif } void R_DrawTiltedSplat_8(void) { // x1, x2 = ds_x1, ds_x2 int width = ds_x2 - ds_x1; double iz, uz, vz; UINT32 u, v; int i; UINT8 *source; UINT8 *colormap; UINT8 *dest; UINT8 val; double startz, startu, startv; double izstep, uzstep, vzstep; double endz, endu, endv; UINT32 stepu, stepv; iz = ds_sz.z + ds_sz.y*(centery-ds_y) + ds_sz.x*(ds_x1-centerx); // Lighting is simple. It's just linear interpolation from start to end { float planelightfloat = BASEVIDWIDTH*BASEVIDWIDTH/vid.width / (zeroheight - FIXED_TO_FLOAT(viewz)) / 21.0f; float lightstart, lightend; lightend = (iz + ds_sz.x*width) * planelightfloat; lightstart = iz * planelightfloat; R_CalcTiltedLighting(FLOAT_TO_FIXED(lightstart), FLOAT_TO_FIXED(lightend)); //CONS_Printf("tilted lighting %f to %f (foc %f)\n", lightstart, lightend, focallengthf); } uz = ds_su.z + ds_su.y*(centery-ds_y) + ds_su.x*(ds_x1-centerx); vz = ds_sv.z + ds_sv.y*(centery-ds_y) + ds_sv.x*(ds_x1-centerx); dest = ylookup[ds_y] + columnofs[ds_x1]; source = ds_source; //colormap = ds_colormap; #if 0 // The "perfect" reference version of this routine. Pretty slow. // Use it only to see how things are supposed to look. i = 0; do { double z = 1.f/iz; u = (INT64)(uz*z) + viewx; v = (INT64)(vz*z) + viewy; colormap = planezlight[tiltlighting[ds_x1++]] + (ds_colormap - colormaps); val = source[((v >> nflatyshift) & nflatmask) | (u >> nflatxshift)]; if (val != TRANSPARENTPIXEL) *dest = colormap[val]; dest++; iz += ds_sz.x; uz += ds_su.x; vz += ds_sv.x; } while (--width >= 0); #else #define SPANSIZE 16 #define INVSPAN 0.0625f startz = 1.f/iz; startu = uz*startz; startv = vz*startz; izstep = ds_sz.x * SPANSIZE; uzstep = ds_su.x * SPANSIZE; vzstep = ds_sv.x * SPANSIZE; //x1 = 0; width++; while (width >= SPANSIZE) { iz += izstep; uz += uzstep; vz += vzstep; endz = 1.f/iz; endu = uz*endz; endv = vz*endz; stepu = (INT64)((endu - startu) * INVSPAN); stepv = (INT64)((endv - startv) * INVSPAN); u = (INT64)(startu) + viewx; v = (INT64)(startv) + viewy; for (i = SPANSIZE-1; i >= 0; i--) { colormap = planezlight[tiltlighting[ds_x1++]] + (ds_colormap - colormaps); val = source[((v >> nflatyshift) & nflatmask) | (u >> nflatxshift)]; if (val != TRANSPARENTPIXEL) *dest = colormap[val]; dest++; u += stepu; v += stepv; } startu = endu; startv = endv; width -= SPANSIZE; } if (width > 0) { if (width == 1) { u = (INT64)(startu); v = (INT64)(startv); colormap = planezlight[tiltlighting[ds_x1++]] + (ds_colormap - colormaps); val = source[((v >> nflatyshift) & nflatmask) | (u >> nflatxshift)]; if (val != TRANSPARENTPIXEL) *dest = colormap[val]; } else { double left = width; iz += ds_sz.x * left; uz += ds_su.x * left; vz += ds_sv.x * left; endz = 1.f/iz; endu = uz*endz; endv = vz*endz; left = 1.f/left; stepu = (INT64)((endu - startu) * left); stepv = (INT64)((endv - startv) * left); u = (INT64)(startu) + viewx; v = (INT64)(startv) + viewy; for (; width != 0; width--) { colormap = planezlight[tiltlighting[ds_x1++]] + (ds_colormap - colormaps); val = source[((v >> nflatyshift) & nflatmask) | (u >> nflatxshift)]; if (val != TRANSPARENTPIXEL) *dest = colormap[val]; dest++; u += stepu; v += stepv; } } } #endif } #endif // ESLOPE /** \brief The R_DrawSplat_8 function Just like R_DrawSpan_8, but skips transparent pixels. */ void R_DrawSplat_8 (void) { UINT32 xposition; UINT32 yposition; UINT32 xstep, ystep; UINT8 *source; UINT8 *colormap; UINT8 *dest; size_t count; UINT32 val; // SoM: we only need 6 bits for the integer part (0 thru 63) so the rest // can be used for the fraction part. This allows calculation of the memory address in the // texture with two shifts, an OR and one AND. (see below) // for texture sizes > 64 the amount of precision we can allow will decrease, but only by one // bit per power of two (obviously) // Ok, because I was able to eliminate the variable spot below, this function is now FASTER // than the original span renderer. Whodathunkit? xposition = ds_xfrac << nflatshiftup; yposition = ds_yfrac << nflatshiftup; xstep = ds_xstep << nflatshiftup; ystep = ds_ystep << nflatshiftup; source = ds_source; colormap = ds_colormap; dest = ylookup[ds_y] + columnofs[ds_x1]; count = ds_x2 - ds_x1 + 1; while (count >= 8) { // SoM: Why didn't I see this earlier? the spot variable is a waste now because we don't // have the uber complicated math to calculate it now, so that was a memory write we didn't // need! // // 4194303 = (2048x2048)-1 (2048x2048 is maximum flat size) val = ((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift); val &= 4194303; val = source[val]; if (val != TRANSPARENTPIXEL) dest[0] = colormap[val]; xposition += xstep; yposition += ystep; val = ((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift); val &= 4194303; val = source[val]; if (val != TRANSPARENTPIXEL) dest[1] = colormap[val]; xposition += xstep; yposition += ystep; val = ((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift); val &= 4194303; val = source[val]; if (val != TRANSPARENTPIXEL) dest[2] = colormap[val]; xposition += xstep; yposition += ystep; val = ((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift); val &= 4194303; val = source[val]; if (val != TRANSPARENTPIXEL) dest[3] = colormap[val]; xposition += xstep; yposition += ystep; val = ((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift); val &= 4194303; val = source[val]; if (val != TRANSPARENTPIXEL) dest[4] = colormap[val]; xposition += xstep; yposition += ystep; val = ((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift); val &= 4194303; val = source[val]; if (val != TRANSPARENTPIXEL) dest[5] = colormap[val]; xposition += xstep; yposition += ystep; val = ((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift); val &= 4194303; val = source[val]; if (val != TRANSPARENTPIXEL) dest[6] = colormap[val]; xposition += xstep; yposition += ystep; val = ((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift); val &= 4194303; val = source[val]; if (val != TRANSPARENTPIXEL) dest[7] = colormap[val]; xposition += xstep; yposition += ystep; dest += 8; count -= 8; } while (count--) { val = ((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift); val &= 4194303; val = source[val]; if (val != TRANSPARENTPIXEL) *dest = colormap[val]; dest++; xposition += xstep; yposition += ystep; } } /** \brief The R_DrawTranslucentSplat_8 function Just like R_DrawSplat_8, but is translucent! */ void R_DrawTranslucentSplat_8 (void) { UINT32 xposition; UINT32 yposition; UINT32 xstep, ystep; UINT8 *source; UINT8 *colormap; UINT8 *dest; size_t count; UINT8 val; // SoM: we only need 6 bits for the integer part (0 thru 63) so the rest // can be used for the fraction part. This allows calculation of the memory address in the // texture with two shifts, an OR and one AND. (see below) // for texture sizes > 64 the amount of precision we can allow will decrease, but only by one // bit per power of two (obviously) // Ok, because I was able to eliminate the variable spot below, this function is now FASTER // than the original span renderer. Whodathunkit? xposition = ds_xfrac << nflatshiftup; yposition = ds_yfrac << nflatshiftup; xstep = ds_xstep << nflatshiftup; ystep = ds_ystep << nflatshiftup; source = ds_source; colormap = ds_colormap; dest = ylookup[ds_y] + columnofs[ds_x1]; count = ds_x2 - ds_x1 + 1; while (count >= 8) { // SoM: Why didn't I see this earlier? the spot variable is a waste now because we don't // have the uber complicated math to calculate it now, so that was a memory write we didn't // need! val = source[((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift)]; if (val != TRANSPARENTPIXEL) dest[0] = *(ds_transmap + (colormap[val] << 8) + dest[0]); xposition += xstep; yposition += ystep; val = source[((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift)]; if (val != TRANSPARENTPIXEL) dest[1] = *(ds_transmap + (colormap[val] << 8) + dest[1]); xposition += xstep; yposition += ystep; val = source[((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift)]; if (val != TRANSPARENTPIXEL) dest[2] = *(ds_transmap + (colormap[val] << 8) + dest[2]); xposition += xstep; yposition += ystep; val = source[((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift)]; if (val != TRANSPARENTPIXEL) dest[3] = *(ds_transmap + (colormap[val] << 8) + dest[3]); xposition += xstep; yposition += ystep; val = source[((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift)]; if (val != TRANSPARENTPIXEL) dest[4] = *(ds_transmap + (colormap[val] << 8) + dest[4]); xposition += xstep; yposition += ystep; val = source[((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift)]; if (val != TRANSPARENTPIXEL) dest[5] = *(ds_transmap + (colormap[val] << 8) + dest[5]); xposition += xstep; yposition += ystep; val = source[((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift)]; if (val != TRANSPARENTPIXEL) dest[6] = *(ds_transmap + (colormap[val] << 8) + dest[6]); xposition += xstep; yposition += ystep; val = source[((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift)]; if (val != TRANSPARENTPIXEL) dest[7] = *(ds_transmap + (colormap[val] << 8) + dest[7]); xposition += xstep; yposition += ystep; dest += 8; count -= 8; } while (count--) { val = source[((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift)]; if (val != TRANSPARENTPIXEL) *dest = *(ds_transmap + (colormap[val] << 8) + *dest); dest++; xposition += xstep; yposition += ystep; } } /** \brief The R_DrawTranslucentSpan_8 function Draws the actual span with translucent. */ void R_DrawTranslucentSpan_8 (void) { UINT32 xposition; UINT32 yposition; UINT32 xstep, ystep; UINT8 *source; UINT8 *colormap; UINT8 *dest; size_t count; // SoM: we only need 6 bits for the integer part (0 thru 63) so the rest // can be used for the fraction part. This allows calculation of the memory address in the // texture with two shifts, an OR and one AND. (see below) // for texture sizes > 64 the amount of precision we can allow will decrease, but only by one // bit per power of two (obviously) // Ok, because I was able to eliminate the variable spot below, this function is now FASTER // than the original span renderer. Whodathunkit? xposition = ds_xfrac << nflatshiftup; yposition = ds_yfrac << nflatshiftup; xstep = ds_xstep << nflatshiftup; ystep = ds_ystep << nflatshiftup; source = ds_source; colormap = ds_colormap; dest = ylookup[ds_y] + columnofs[ds_x1]; count = ds_x2 - ds_x1 + 1; while (count >= 8) { // SoM: Why didn't I see this earlier? the spot variable is a waste now because we don't // have the uber complicated math to calculate it now, so that was a memory write we didn't // need! dest[0] = *(ds_transmap + (colormap[source[((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift)]] << 8) + dest[0]); xposition += xstep; yposition += ystep; dest[1] = *(ds_transmap + (colormap[source[((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift)]] << 8) + dest[1]); xposition += xstep; yposition += ystep; dest[2] = *(ds_transmap + (colormap[source[((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift)]] << 8) + dest[2]); xposition += xstep; yposition += ystep; dest[3] = *(ds_transmap + (colormap[source[((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift)]] << 8) + dest[3]); xposition += xstep; yposition += ystep; dest[4] = *(ds_transmap + (colormap[source[((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift)]] << 8) + dest[4]); xposition += xstep; yposition += ystep; dest[5] = *(ds_transmap + (colormap[source[((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift)]] << 8) + dest[5]); xposition += xstep; yposition += ystep; dest[6] = *(ds_transmap + (colormap[source[((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift)]] << 8) + dest[6]); xposition += xstep; yposition += ystep; dest[7] = *(ds_transmap + (colormap[source[((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift)]] << 8) + dest[7]); xposition += xstep; yposition += ystep; dest += 8; count -= 8; } while (count--) { *dest = *(ds_transmap + (colormap[source[((yposition >> nflatyshift) & nflatmask) | (xposition >> nflatxshift)]] << 8) + *dest); dest++; xposition += xstep; yposition += ystep; } } /** \brief The R_DrawFogSpan_8 function Draws the actual span with fogging. */ void R_DrawFogSpan_8(void) { UINT8 *colormap; UINT8 *dest; size_t count; colormap = ds_colormap; //dest = ylookup[ds_y] + columnofs[ds_x1]; dest = &topleft[ds_y *vid.width + ds_x1]; count = ds_x2 - ds_x1 + 1; while (count >= 4) { dest[0] = colormap[dest[0]]; dest[1] = colormap[dest[1]]; dest[2] = colormap[dest[2]]; dest[3] = colormap[dest[3]]; dest += 4; count -= 4; } while (count--) { *dest = colormap[*dest]; dest++; } } /** \brief The R_DrawFogColumn_8 function Fog wall. */ void R_DrawFogColumn_8(void) { INT32 count; UINT8 *dest; count = dc_yh - dc_yl; // Zero length, column does not exceed a pixel. if (count < 0) return; #ifdef RANGECHECK if ((unsigned)dc_x >= (unsigned)vid.width || dc_yl < 0 || dc_yh >= vid.height) I_Error("R_DrawFogColumn_8: %d to %d at %d", dc_yl, dc_yh, dc_x); #endif // Framebuffer destination address. // Use ylookup LUT to avoid multiply with ScreenWidth. // Use columnofs LUT for subwindows? //dest = ylookup[dc_yl] + columnofs[dc_x]; dest = &topleft[dc_yl*vid.width + dc_x]; // Determine scaling, which is the only mapping to be done. do { // Simple. Apply the colormap to what's already on the screen. *dest = dc_colormap[*dest]; dest += vid.width; } while (count--); } /** \brief The R_DrawShadeColumn_8 function This is for 3D floors that cast shadows on walls. This function just cuts the column up into sections and calls R_DrawColumn_8 */ void R_DrawColumnShadowed_8(void) { INT32 count, realyh, i, height, bheight = 0, solid = 0; realyh = dc_yh; count = dc_yh - dc_yl; // Zero length, column does not exceed a pixel. if (count < 0) return; #ifdef RANGECHECK if ((unsigned)dc_x >= (unsigned)vid.width || dc_yl < 0 || dc_yh >= vid.height) I_Error("R_DrawColumnShadowed_8: %d to %d at %d", dc_yl, dc_yh, dc_x); #endif // This runs through the lightlist from top to bottom and cuts up the column accordingly. for (i = 0; i < dc_numlights; i++) { // If the height of the light is above the column, get the colormap // anyway because the lighting of the top should be affected. solid = dc_lightlist[i].flags & FF_CUTSOLIDS; height = dc_lightlist[i].height >> LIGHTSCALESHIFT; if (solid) { bheight = dc_lightlist[i].botheight >> LIGHTSCALESHIFT; if (bheight < height) { // confounded slopes sometimes allow partial invertedness, // even including cases where the top and bottom heights // should actually be the same! // swap the height values as a workaround for this quirk INT32 temp = height; height = bheight; bheight = temp; } } if (height <= dc_yl) { dc_colormap = dc_lightlist[i].rcolormap; if (solid && dc_yl < bheight) dc_yl = bheight; continue; } // Found a break in the column! dc_yh = height; if (dc_yh > realyh) dc_yh = realyh; basecolfunc(); // R_DrawColumn_8 for the appropriate architecture if (solid) dc_yl = bheight; else dc_yl = dc_yh + 1; dc_colormap = dc_lightlist[i].rcolormap; } dc_yh = realyh; if (dc_yl <= realyh) walldrawerfunc(); // R_DrawWallColumn_8 for the appropriate architecture }