diff --git a/src/CMakeLists.txt b/src/CMakeLists.txt index f319523b..bb4f9a4a 100644 --- a/src/CMakeLists.txt +++ b/src/CMakeLists.txt @@ -32,7 +32,6 @@ set(SRB2_CORE_SOURCES m_misc.c m_queue.c m_random.c - m_vector.c md5.c mserv.c s_sound.c @@ -96,7 +95,6 @@ set(SRB2_CORE_HEADERS m_queue.h m_random.h m_swap.h - m_vector.h md5.h mserv.h p5prof.h diff --git a/src/Makefile b/src/Makefile index 49785b9e..bee60804 100644 --- a/src/Makefile +++ b/src/Makefile @@ -436,7 +436,6 @@ OBJS:=$(i_main_o) \ $(OBJDIR)/m_misc.o \ $(OBJDIR)/m_random.o \ $(OBJDIR)/m_queue.o \ - $(OBJDIR)/m_vector.o \ $(OBJDIR)/info.o \ $(OBJDIR)/p_ceilng.o \ $(OBJDIR)/p_enemy.o \ diff --git a/src/m_vector.c b/src/m_vector.c deleted file mode 100644 index b417fd98..00000000 --- a/src/m_vector.c +++ /dev/null @@ -1,1159 +0,0 @@ -// Emacs style mode select -*- C++ -*- -//----------------------------------------------------------------------------- -// -// Copyright(C) 2004 Stephen McGranahan -// -// This program is free software; you can redistribute it and/or modify -// it under the terms of the GNU General Public License as published by -// the Free Software Foundation; either version 2 of the License, or -// (at your option) any later version. -// -// This program is distributed in the hope that it will be useful, -// but WITHOUT ANY WARRANTY; without even the implied warranty of -// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -// GNU General Public License for more details. -// -// You should have received a copy of the GNU General Public License -// along with this program; if not, write to the Free Software -// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA -// -//-------------------------------------------------------------------------- -// -// DESCRIPTION: -// Vectors -// SoM created 05/18/09 -// -//----------------------------------------------------------------------------- -#if 0 // GET THIS SHEIT OUTTA HEEEEEEEEEEEEEEEEEEEEEEERE -#include "doomdef.h" -#include "m_vector.h" -#include "r_main.h" -#include "m_fixed.h" -#include "m_misc.h" -#include "tables.h" - -#ifdef ESLOPE - -v3fixed_t *M_LoadVec(v3fixed_t *vec, fixed_t x, fixed_t y, fixed_t z) -{ - vec->x = x; - vec->y = y; - vec->z = z; - return vec; -} - -v3fixed_t *M_CopyVec(v3fixed_t *a_o, const v3fixed_t *a_i) -{ - return M_Memcpy(a_o, a_i, sizeof(v3fixed_t)); -} - -v3float_t *M_LoadVecf(v3float_t *vec, float x, float y, float z) -{ - vec->x = x; - vec->y = y; - vec->z = z; - return vec; -} - -v3float_t *M_CopyVecf(v3float_t *a_o, const v3float_t *a_i) -{ - return M_Memcpy(a_o, a_i, sizeof(v3float_t)); -} - -// -// M_MakeVec3 -// -// Given two points, create a vector between them. -// -v3fixed_t *M_MakeVec3(const v3fixed_t *point1, const v3fixed_t *point2, v3fixed_t *a_o) -{ - a_o->x = point1->x - point2->x; - a_o->y = point1->y - point2->y; - a_o->z = point1->z - point2->z; - return a_o; -} - - -// -// M_MakeVec3f -// -// Given two points, create a vector between them. -// -v3float_t *M_MakeVec3f(const v3float_t *point1, const v3float_t *point2, v3float_t *a_o) -{ - a_o->x = point1->x - point2->x; - a_o->y = point1->y - point2->y; - a_o->z = point1->z - point2->z; - return a_o; -} - -// -// M_TranslateVec3 -// -// Translates the given vector (in the game's coordinate system) to the camera -// space (in right-handed coordinate system) This function is used for slopes. -// -void M_TranslateVec3(v3fixed_t *vec) -{ - fixed_t tx, ty, tz; - - tx = vec->x - viewx; - ty = viewz - vec->y; - tz = vec->z - viewy; - - // Just like wall projection. - vec->x = (tx * viewcos) - (tz * viewsin); - vec->z = (tz * viewcos) + (tx * viewsin); - vec->y = ty; -} - -// -// M_TranslateVec3f -// -// Translates the given vector (in the game's coordinate system) to the camera -// space (in right-handed coordinate system) This function is used for slopes. -// -void M_TranslateVec3f(v3float_t *vec) -{ - float tx, ty, tz; - - tx = vec->x - viewx; // SRB2CBTODO: This may need float viewxyz - ty = viewz - vec->y; - tz = vec->z - viewy; - - // Just like wall projection. - vec->x = (tx * viewcos) - (tz * viewsin); - vec->z = (tz * viewcos) + (tx * viewsin); - vec->y = ty; -} - -#ifdef SESLOPE -// -// M_TranslateVec3d -// -// Translates the given vector (in the game's coordinate system) to the camera -// space (in right-handed coordinate system) This function is used for slopes. -// -void M_TranslateVec3d(v3double_t *vec) -{ - double tx, ty, tz; - - tx = vec->x - viewx; // SRB2CBTODO: This may need float viewxyz - ty = viewz - vec->y; - tz = vec->z - viewy; - - // Just like wall projection. - vec->x = (tx * viewcos) - (tz * viewsin); - vec->z = (tz * viewcos) + (tx * viewsin); - vec->y = ty; -} -#endif - -// -// M_AddVec3 -// -// Adds v2 to v1 stores in dest -// -void M_AddVec3(v3fixed_t *dest, const v3fixed_t *v1, const v3fixed_t *v2) -{ - dest->x = v1->x + v2->x; - dest->y = v1->y + v2->y; - dest->z = v1->z + v2->z; -} - -// -// M_AddVec3f -// -// Adds v2 to v1 stores in dest -// -void M_AddVec3f(v3float_t *dest, const v3float_t *v1, const v3float_t *v2) -{ - dest->x = v1->x + v2->x; - dest->y = v1->y + v2->y; - dest->z = v1->z + v2->z; -} - -// -// M_SubVec3 -// -// Adds v2 to v1 stores in dest -// -void M_SubVec3(v3fixed_t *dest, const v3fixed_t *v1, const v3fixed_t *v2) // SRB2CBTODO: Make a function that allows the destxyz to equal the change of 2 args -{ - dest->x = v1->x - v2->x; - dest->y = v1->y - v2->y; - dest->z = v1->z - v2->z; -} - -// -// M_SubVec3f -// -// Subtracts v2 from v1 stores in dest -// -void M_SubVec3f(v3float_t *dest, const v3float_t *v1, const v3float_t *v2) -{ - dest->x = v1->x - v2->x; - dest->y = v1->y - v2->y; - dest->z = v1->z - v2->z; -} - -// -// M_DotVec3 -// -// Returns the dot product of v1 and v2 -// -fixed_t M_DotVec3(const v3fixed_t *v1, const v3fixed_t *v2) -{ - return FixedMul(v1->x, v2->x) + FixedMul(v1->y, v2->y) + FixedMul(v1->z, v2->z); -} - -// -// M_DotVec3f -// -// Returns the dot product of v1 and v2 -// -float M_DotVec3f(const v3float_t *v1, const v3float_t *v2) -{ - if (!v1 || !v2) - I_Error("M_DotVec3f: No vertexes!"); - return (v1->x * v2->x) + (v1->y * v2->y) + (v1->z * v2->z); -} - -#ifdef SESLOPE -// -// M_DotVec3d -// -// Returns the dot product of v1 and v2 -// -double M_DotVec3d(const v3double_t *v1, const v3double_t *v2) -{ - return (v1->x * v2->x) + (v1->y * v2->y) + (v1->z * v2->z); -} -#endif - -// -// M_CrossProduct3 -// -// Gets the cross product of v1 and v2 and stores in dest -// -void M_CrossProduct3(v3fixed_t *dest, const v3fixed_t *v1, const v3fixed_t *v2) -{ - v3fixed_t tmp; - tmp.x = (v1->y * v2->z) - (v1->z * v2->y); - tmp.y = (v1->z * v2->x) - (v1->x * v2->z); - tmp.z = (v1->x * v2->y) - (v1->y * v2->x); - memcpy(dest, &tmp, sizeof(v3fixed_t)); -} - -// -// M_CrossProduct3f -// -// Gets the cross product of v1 and v2 and stores in dest -// -void M_CrossProduct3f(v3float_t *dest, const v3float_t *v1, const v3float_t *v2) -{ - v3float_t tmp; - tmp.x = (v1->y * v2->z) - (v1->z * v2->y); - tmp.y = (v1->z * v2->x) - (v1->x * v2->z); - tmp.z = (v1->x * v2->y) - (v1->y * v2->x); - memcpy(dest, &tmp, sizeof(v3float_t)); -} - -fixed_t FV_Magnitude(const v3fixed_t *a_normal) -{ - fixed_t xs = FixedMul(a_normal->x,a_normal->x); - fixed_t ys = FixedMul(a_normal->y,a_normal->y); - fixed_t zs = FixedMul(a_normal->z,a_normal->z); - return FixedSqrt(xs+ys+zs); -} - -float FV_Magnitudef(const v3float_t *a_normal) -{ - float xs = (a_normal->x * a_normal->x); - float ys = (a_normal->y * a_normal->y); - float zs = (a_normal->z * a_normal->z); - return (float)sqrt(xs+ys+zs); -} - -// Vector Complex Math -v3fixed_t *FV_Midpoint(const v3fixed_t *a_1, const v3fixed_t *a_2, v3fixed_t *a_o) -{ - a_o->x = FixedDiv(a_2->x - a_1->x, 2*FRACUNIT); - a_o->y = FixedDiv(a_2->y - a_1->y, 2*FRACUNIT); - a_o->z = FixedDiv(a_2->z - a_1->z, 2*FRACUNIT); - a_o->x = a_1->x + a_o->x; - a_o->y = a_1->y + a_o->y; - a_o->z = a_1->z + a_o->z; - return a_o; -} - -fixed_t FV_Distance(const v3fixed_t *p1, const v3fixed_t *p2) -{ - fixed_t xs = FixedMul(p2->x-p1->x,p2->x-p1->x); - fixed_t ys = FixedMul(p2->y-p1->y,p2->y-p1->y); - fixed_t zs = FixedMul(p2->z-p1->z,p2->z-p1->z); - return FixedSqrt(xs+ys+zs); -} - -v3float_t *FV_Midpointf(const v3float_t *a_1, const v3float_t *a_2, v3float_t *a_o) -{ - a_o->x = (a_2->x - a_1->x / 2.0f); - a_o->y = (a_2->y - a_1->y / 2.0f); - a_o->z = (a_2->z - a_1->z / 2.0f); - a_o->x = a_1->x + a_o->x; - a_o->y = a_1->y + a_o->y; - a_o->z = a_1->z + a_o->z; - return a_o; -} - - - -// -// AngleBetweenVectors -// -// This checks to see if a point is inside the ranges of a polygon -// -angle_t FV_AngleBetweenVectors(const v3fixed_t *Vector1, const v3fixed_t *Vector2) -{ - // Remember, above we said that the Dot Product of returns the cosine of the angle - // between 2 vectors? Well, that is assuming they are unit vectors (normalize vectors). - // So, if we don't have a unit vector, then instead of just saying arcCos(DotProduct(A, B)) - // We need to divide the dot product by the magnitude of the 2 vectors multiplied by each other. - // Here is the equation: arc cosine of (V . W / || V || * || W || ) - // the || V || means the magnitude of V. This then cancels out the magnitudes dot product magnitudes. - // But basically, if you have normalize vectors already, you can forget about the magnitude part. - - // Get the dot product of the vectors - fixed_t dotProduct = M_DotVec3(Vector1, Vector2); - - // Get the product of both of the vectors magnitudes - fixed_t vectorsMagnitude = FixedMul(FV_Magnitude(Vector1), FV_Magnitude(Vector2)); - - // Return the arc cosine of the (dotProduct / vectorsMagnitude) which is the angle in RADIANS. - return 0;//ALFALFA FixedAcos(FixedDiv(dotProduct, vectorsMagnitude)); -} - -float FV_AngleBetweenVectorsf(const v3float_t *Vector1, const v3float_t *Vector2) -{ - // Remember, above we said that the Dot Product of returns the cosine of the angle - // between 2 vectors? Well, that is assuming they are unit vectors (normalize vectors). - // So, if we don't have a unit vector, then instead of just saying arcCos(DotProduct(A, B)) - // We need to divide the dot product by the magnitude of the 2 vectors multiplied by each other. - // Here is the equation: arc cosine of (V . W / || V || * || W || ) - // the || V || means the magnitude of V. This then cancels out the magnitudes dot product magnitudes. - // But basically, if you have normalize vectors already, you can forget about the magnitude part. - - // Get the dot product of the vectors - float dotProduct = M_DotVec3f(Vector1, Vector2); - - // Get the product of both of the vectors magnitudes - float vectorsMagnitude = FV_Magnitudef(Vector1)*FV_Magnitudef(Vector2); - - // Return the arc cosine of the (dotProduct / vectorsMagnitude) which is the angle in RADIANS. - return acos(dotProduct/vectorsMagnitude); -} - - - -// Crazy physics code - -float M_VectorYaw(v3float_t v) -{ - return atan2(v.x, v.z); -} -float M_VectorPitch(v3float_t v) -{ - return -atan2(v.y, sqrt(v.x*v.x+v.z*v.z)); -} - -#include "z_zone.h" - -// Returns pitch roll and yaw values, allows objects to align to a slope -angles3d_t *M_VectorAlignTo(float Pitch, float Yaw, float Roll, v3float_t v, byte AngleAxis, float Rate) -{ - CONS_Printf("P %f\n", Pitch); - CONS_Printf("R %f\n", Roll); - CONS_Printf("Y %f\n", Yaw); - if (AngleAxis == 1) - { - float DestYaw = (atan2(v.z,v.x)* 180 / M_PI); - float DestRoll = (atan2(v.y,v.x)* 180 / M_PI); - - Yaw = Yaw+(DestYaw-Yaw)*Rate; - Roll = Roll+(DestRoll-Roll)*Rate; - } - else if (AngleAxis == 2) - { - float DestPitch = (atan2(v.z,v.y)* 180 / M_PI); - float DestRoll = (-atan2(v.x,v.y)* 180 / M_PI); - - Pitch = Pitch+(DestPitch-Pitch)*Rate; - Roll = Roll+(DestRoll-Roll)*Rate; - } - else if (AngleAxis == 3) - { - float DestPitch = (-atan2(v.y,v.z)* 180 / M_PI); - float DestYaw = (-atan2(v.x,v.z)* 180 / M_PI); - - Pitch = Pitch+(DestPitch-Pitch)*Rate; - Yaw = Yaw+(DestYaw-Yaw)*Rate; - } - - angles3d_t *returnangles = Z_Malloc(sizeof(angles3d_t), PU_LEVEL, NULL); - memset(returnangles, 0, sizeof(*returnangles)); - returnangles->yaw = Yaw; - returnangles->pitch = Pitch; - returnangles->roll = Roll; - - return returnangles; - -} - -// -// RotateVector -// -// Rotates a vector around another vector -// -void M_VecRotate(v3fixed_t *rotVec, const v3fixed_t *axisVec, const angle_t angle) -{ - // Rotate the point (x,y,z) around the vector (u,v,w) - fixed_t ux = FixedMul(axisVec->x, rotVec->x); - fixed_t uy = FixedMul(axisVec->x, rotVec->y); - fixed_t uz = FixedMul(axisVec->x, rotVec->z); - fixed_t vx = FixedMul(axisVec->y, rotVec->x); - fixed_t vy = FixedMul(axisVec->y, rotVec->y); - fixed_t vz = FixedMul(axisVec->y, rotVec->z); - fixed_t wx = FixedMul(axisVec->z, rotVec->x); - fixed_t wy = FixedMul(axisVec->z, rotVec->y); - fixed_t wz = FixedMul(axisVec->z, rotVec->z); - fixed_t sa = FINESINE(angle>>ANGLETOFINESHIFT); - fixed_t ca = FINECOSINE(angle>>ANGLETOFINESHIFT); - fixed_t ua = ux+vy+wz; - fixed_t ax = FixedMul(axisVec->x,ua); - fixed_t ay = FixedMul(axisVec->y,ua); - fixed_t az = FixedMul(axisVec->z,ua); - fixed_t xs = FixedMul(axisVec->x,axisVec->x); - fixed_t ys = FixedMul(axisVec->y,axisVec->y); - fixed_t zs = FixedMul(axisVec->z,axisVec->z); - fixed_t bx = FixedMul(rotVec->x,ys+zs); - fixed_t by = FixedMul(rotVec->y,xs+zs); - fixed_t bz = FixedMul(rotVec->z,xs+ys); - fixed_t cx = FixedMul(axisVec->x,vy+wz); - fixed_t cy = FixedMul(axisVec->y,ux+wz); - fixed_t cz = FixedMul(axisVec->z,ux+vy); - fixed_t dx = FixedMul(bx-cx, ca); - fixed_t dy = FixedMul(by-cy, ca); - fixed_t dz = FixedMul(bz-cz, ca); - fixed_t ex = FixedMul(vz-wy, sa); - fixed_t ey = FixedMul(wx-uz, sa); - fixed_t ez = FixedMul(uy-vx, sa); - - rotVec->x = ax+dx+ex; - rotVec->y = ay+dy+ey; - rotVec->z = az+dz+ez; -} - - - - - -#if 0 // Backport -v3fixed_t *FV_SubO(const v3fixed_t *a_i, const v3fixed_t *a_c, v3fixed_t *a_o) -{ - a_o->x = a_i->x - a_c->x; - a_o->y = a_i->y - a_c->y; - a_o->z = a_i->z - a_c->z; - return a_o; -} - -boolean FV_Equal(const v3fixed_t *a_1, const v3fixed_t *a_2) -{ - fixed_t Epsilon = FRACUNIT/FRACUNIT; - - if ((abs(a_2->x - a_1->x) > Epsilon) || - (abs(a_2->y - a_1->y) > Epsilon) || - (abs(a_2->z - a_1->z) > Epsilon)) - { - return true; - } - - return false; -} - -boolean FV_Equalf(const v3float_t *a_1, const v3float_t *a_2) -{ - float Epsilon = 1.0f/1.0f; - - if ((abs(a_2->x - a_1->x) > Epsilon) || - (abs(a_2->y - a_1->y) > Epsilon) || - (abs(a_2->z - a_1->z) > Epsilon)) - { - return true; - } - - return false; -} - -// -// Normal -// -// Calculates the normal of a polygon. -// -void FV_Normal (const v3fixed_t *a_triangle, v3fixed_t *a_normal) -{ - v3fixed_t a_1; - v3fixed_t a_2; - - FV_Point2Vec(&a_triangle[2], &a_triangle[0], &a_1); - FV_Point2Vec(&a_triangle[1], &a_triangle[0], &a_2); - - FV_Cross(&a_1, &a_2, a_normal); - - FV_NormalizeO(a_normal, a_normal); -} - -// -// PlaneDistance -// -// Calculates distance between a plane and the origin. -// -fixed_t FV_PlaneDistance(const v3fixed_t *a_normal, const v3fixed_t *a_point) -{ - return -(FixedMul(a_normal->x, a_point->x) + FixedMul(a_normal->y, a_point->y) + FixedMul(a_normal->z, a_point->z)); -} - -boolean FV_IntersectedPlane(const v3fixed_t *a_triangle, const v3fixed_t *a_line, v3fixed_t *a_normal, fixed_t *originDistance) -{ - fixed_t distance1 = 0, distance2 = 0; - - FV_Normal(a_triangle, a_normal); - - *originDistance = FV_PlaneDistance(a_normal, &a_triangle[0]); - - distance1 = (FixedMul(a_normal->x, a_line[0].x) + FixedMul(a_normal->y, a_line[0].y) - + FixedMul(a_normal->z, a_line[0].z)) + *originDistance; - - distance2 = (FixedMul(a_normal->x, a_line[1].x) + FixedMul(a_normal->y, a_line[1].y) - + FixedMul(a_normal->z, a_line[1].z)) + *originDistance; - - // Positive or zero number means no intersection - if (FixedMul(distance1, distance2) >= 0) - return false; - - return true; -} - -// -// PlaneIntersection -// -// Returns the distance from -// rOrigin to where the ray -// intersects the plane. Assumes -// you already know it intersects -// the plane. -// -fixed_t FV_PlaneIntersection(const v3fixed_t *pOrigin, const v3fixed_t *pNormal, const v3fixed_t *rOrigin, const v3fixed_t *rVector) -{ - fixed_t d = -(FV_Dot(pNormal, pOrigin)); - fixed_t number = FV_Dot(pNormal,rOrigin) + d; - fixed_t denom = FV_Dot(pNormal,rVector); - return -FixedDiv(number, denom); -} - -// -// IntersectRaySphere -// Input : rO - origin of ray in world space -// rV - vector describing direction of ray in world space -// sO - Origin of sphere -// sR - radius of sphere -// Notes : Normalized directional vectors expected -// Return: distance to sphere in world units, -1 if no intersection. -// -fixed_t FV_IntersectRaySphere(const v3fixed_t *rO, const v3fixed_t *rV, const v3fixed_t *sO, fixed_t sR) -{ - v3fixed_t Q; - fixed_t c, v, d; - FV_SubO(sO, rO, &Q); - - c = FV_Magnitude(&Q); - v = FV_Dot(&Q, rV); - d = FixedMul(sR, sR) - (FixedMul(c,c) - FixedMul(v,v)); - - // If there was no intersection, return -1 - if (d < 0*FRACUNIT) - return (-1*FRACUNIT); - - // Return the distance to the [first] intersecting point - return (v - FixedSqrt(d)); -} - -// -// IntersectionPoint -// -// This returns the intersection point of the line that intersects the plane -// -v3fixed_t *FV_IntersectionPoint(const v3fixed_t *vNormal, const v3fixed_t *vLine, fixed_t distance, v3fixed_t *ReturnVec) -{ - v3fixed_t vLineDir; // Variables to hold the point and the line's direction - fixed_t Numerator = 0, Denominator = 0, dist = 0; - - // Here comes the confusing part. We need to find the 3D point that is actually - // on the plane. Here are some steps to do that: - - // 1) First we need to get the vector of our line, Then normalize it so it's a length of 1 - FV_Point2Vec(&vLine[1], &vLine[0], &vLineDir); // Get the Vector of the line - FV_NormalizeO(&vLineDir, &vLineDir); // Normalize the lines vector - - - // 2) Use the plane equation (distance = Ax + By + Cz + D) to find the distance from one of our points to the plane. - // Here I just chose a arbitrary point as the point to find that distance. You notice we negate that - // distance. We negate the distance because we want to eventually go BACKWARDS from our point to the plane. - // By doing this is will basically bring us back to the plane to find our intersection point. - Numerator = - (FixedMul(vNormal->x, vLine[0].x) + // Use the plane equation with the normal and the line - FixedMul(vNormal->y, vLine[0].y) + - FixedMul(vNormal->z, vLine[0].z) + distance); - - // 3) If we take the dot product between our line vector and the normal of the polygon, - // this will give us the cosine of the angle between the 2 (since they are both normalized - length 1). - // We will then divide our Numerator by this value to find the offset towards the plane from our arbitrary point. - Denominator = FV_Dot(vNormal, &vLineDir); // Get the dot product of the line's vector and the normal of the plane - - // Since we are using division, we need to make sure we don't get a divide by zero error - // If we do get a 0, that means that there are INFINITE points because the the line is - // on the plane (the normal is perpendicular to the line - (Normal.Vector = 0)). - // In this case, we should just return any point on the line. - - if( Denominator == 0*FRACUNIT) // Check so we don't divide by zero - { - ReturnVec->x = vLine[0].x; - ReturnVec->y = vLine[0].y; - ReturnVec->z = vLine[0].z; - return ReturnVec; // Return an arbitrary point on the line - } - - // We divide the (distance from the point to the plane) by (the dot product) - // to get the distance (dist) that we need to move from our arbitrary point. We need - // to then times this distance (dist) by our line's vector (direction). When you times - // a scalar (single number) by a vector you move along that vector. That is what we are - // doing. We are moving from our arbitrary point we chose from the line BACK to the plane - // along the lines vector. It seems logical to just get the numerator, which is the distance - // from the point to the line, and then just move back that much along the line's vector. - // Well, the distance from the plane means the SHORTEST distance. What about in the case that - // the line is almost parallel with the polygon, but doesn't actually intersect it until half - // way down the line's length. The distance from the plane is short, but the distance from - // the actual intersection point is pretty long. If we divide the distance by the dot product - // of our line vector and the normal of the plane, we get the correct length. Cool huh? - - dist = FixedDiv(Numerator, Denominator); // Divide to get the multiplying (percentage) factor - - // Now, like we said above, we times the dist by the vector, then add our arbitrary point. - // This essentially moves the point along the vector to a certain distance. This now gives - // us the intersection point. Yay! - - // Return the intersection point - ReturnVec->x = vLine[0].x + FixedMul(vLineDir.x, dist); - ReturnVec->y = vLine[0].y + FixedMul(vLineDir.y, dist); - ReturnVec->z = vLine[0].z + FixedMul(vLineDir.z, dist); - return ReturnVec; -} - -// -// PointOnLineSide -// -// If on the front side of the line, returns 1. -// If on the back side of the line, returns 0. -// 2D only. -// -unsigned int FV_PointOnLineSide(const v3fixed_t *point, const v3fixed_t *line) -{ - fixed_t s1 = FixedMul((point->y - line[0].y),(line[1].x - line[0].x)); - fixed_t s2 = FixedMul((point->x - line[0].x),(line[1].y - line[0].y)); - return s1 - s2 < 0; -} - -// -// PointInsideBox -// -// Given four points of a box, -// determines if the supplied point is -// inside the box or not. -// -boolean FV_PointInsideBox(const v3fixed_t *point, const v3fixed_t *box) -{ - v3fixed_t lastLine[2]; - - FV_Load(&lastLine[0], box[3].x, box[3].y, box[3].z); - FV_Load(&lastLine[1], box[0].x, box[0].y, box[0].z); - - if (FV_PointOnLineSide(point, &box[0]) - || FV_PointOnLineSide(point, &box[1]) - || FV_PointOnLineSide(point, &box[2]) - || FV_PointOnLineSide(point, lastLine)) - return false; - - return true; -} -// -// LoadIdentity -// -// Loads the identity matrix into a matrix -// -void FM_LoadIdentity(fmatrix_t* matrix) -{ -#define M(row,col) matrix->m[col * 4 + row] - memset(matrix, 0x00, sizeof(fmatrix_t)); - - M(0, 0) = FRACUNIT; - M(1, 1) = FRACUNIT; - M(2, 2) = FRACUNIT; - M(3, 3) = FRACUNIT; -#undef M -} - -// -// CreateObjectMatrix -// -// Creates a matrix that can be used for -// adjusting the position of an object -// -void FM_CreateObjectMatrix(fmatrix_t *matrix, fixed_t x, fixed_t y, fixed_t z, fixed_t anglex, fixed_t angley, fixed_t anglez, fixed_t upx, fixed_t upy, fixed_t upz, fixed_t radius) -{ - v3fixed_t upcross; - v3fixed_t upvec; - v3fixed_t basevec; - - FV_Load(&upvec, upx, upy, upz); - FV_Load(&basevec, anglex, angley, anglez); - FV_Cross(&upvec, &basevec, &upcross); - FV_Normalize(&upcross); - - FM_LoadIdentity(matrix); - - matrix->m[0] = upcross.x; - matrix->m[1] = upcross.y; - matrix->m[2] = upcross.z; - matrix->m[3] = 0*FRACUNIT; - - matrix->m[4] = upx; - matrix->m[5] = upy; - matrix->m[6] = upz; - matrix->m[7] = 0; - - matrix->m[8] = anglex; - matrix->m[9] = angley; - matrix->m[10] = anglez; - matrix->m[11] = 0; - - matrix->m[12] = x - FixedMul(upx,radius); - matrix->m[13] = y - FixedMul(upy,radius); - matrix->m[14] = z - FixedMul(upz,radius); - matrix->m[15] = FRACUNIT; -} - -// -// MultMatrixVec -// -// Multiplies a vector by the specified matrix -// -void FM_MultMatrixVec(const fmatrix_t *matrix, const v3fixed_t *vec, v3fixed_t *out) -{ -#define M(row,col) matrix->m[col * 4 + row] - out->x = FixedMul(vec->x,M(0, 0)) - + FixedMul(vec->y,M(0, 1)) - + FixedMul(vec->z,M(0, 2)) - + M(0, 3); - - out->y = FixedMul(vec->x,M(1, 0)) - + FixedMul(vec->y,M(1, 1)) - + FixedMul(vec->z,M(1, 2)) - + M(1, 3); - - out->z = FixedMul(vec->x,M(2, 0)) - + FixedMul(vec->y,M(2, 1)) - + FixedMul(vec->z,M(2, 2)) - + M(2, 3); -#undef M -} - -// -// MultMatrix -// -// Multiples one matrix into another -// -void FM_MultMatrix(fmatrix_t *dest, const fmatrix_t *multme) -{ - fmatrix_t result; - unsigned int i, j; -#define M(row,col) multme->m[col * 4 + row] -#define D(row,col) dest->m[col * 4 + row] -#define R(row,col) result.m[col * 4 + row] - - for (i = 0; i < 4; i++) - { - for (j = 0; j < 4; j++) - R(i, j) = FixedMul(D(i, 0),M(0, j)) + FixedMul(D(i, 1),M(1, j)) + FixedMul(D(i, 2),M(2, j)) + FixedMul(D(i, 3),M(3, j)); - } - - M_Memcpy(dest, &result, sizeof(fmatrix_t)); - -#undef R -#undef D -#undef M -} - -// -// Translate -// -// Translates a matrix -// -void FM_Translate(fmatrix_t *dest, fixed_t x, fixed_t y, fixed_t z) -{ - fmatrix_t trans; -#define M(row,col) trans.m[col * 4 + row] - - memset(&trans, 0x00, sizeof(fmatrix_t)); - - M(0, 0) = M(1, 1) = M(2, 2) = M(3, 3) = FRACUNIT; - M(0, 3) = x; - M(1, 3) = y; - M(2, 3) = z; - - FM_MultMatrix(dest, &trans); -#undef M -} - -// -// Scale -// -// Scales a matrix -// -void FM_Scale(fmatrix_t *dest, fixed_t x, fixed_t y, fixed_t z) -{ - fmatrix_t scale; -#define M(row,col) scale.m[col * 4 + row] - - memset(&scale, 0x00, sizeof(fmatrix_t)); - - M(3, 3) = FRACUNIT; - M(0, 0) = x; - M(1, 1) = y; - M(2, 2) = z; - - FM_MultMatrix(dest, &scale); -#undef M -} - - -v3fixed_t *FV_Cross(const v3fixed_t *a_1, const v3fixed_t *a_2, v3fixed_t *a_o) -{ - a_o->x = FixedMul(a_1->y, a_2->z) - FixedMul(a_1->z, a_2->y); - a_o->y = FixedMul(a_1->z, a_2->x) - FixedMul(a_1->x, a_2->z); - a_o->z = FixedMul(a_1->x, a_2->y) - FixedMul(a_1->y, a_2->x); - return a_o; -} - -// -// ClosestPointOnLine -// -// Finds the point on a line closest -// to the specified point. -// -v3fixed_t *FV_ClosestPointOnLine(const v3fixed_t *Line, const v3fixed_t *p, v3fixed_t *out) -{ - // Determine t (the length of the vector from ëLine[0]í to ëpí) - v3fixed_t c, V; - fixed_t t, d = 0; - FV_SubO(p, &Line[0], &c); - FV_SubO(&Line[1], &Line[0], &V); - FV_NormalizeO(&V, &V); - - d = FV_Distance(&Line[0], &Line[1]); - t = FV_Dot(&V, &c); - - // Check to see if ëtí is beyond the extents of the line segment - if (t < 0) - { - return FV_Copy(out, &Line[0]); - } - if (t > d) - { - return FV_Copy(out, &Line[1]); - } - - // Return the point between ëLine[0]í and ëLine[1]í - FV_Mul(&V, t); - - return FV_AddO(&Line[0], &V, out); -} - -// -// ClosestPointOnTriangle -// -// Given a triangle and a point, -// the closest point on the edge of -// the triangle is returned. -// -void FV_ClosestPointOnTriangle (const v3fixed_t *tri, const v3fixed_t *point, v3fixed_t *result) -{ - unsigned int i; - fixed_t dist, closestdist; - v3fixed_t EdgePoints[3]; - v3fixed_t Line[2]; - - FV_Copy(&Line[0], (v3fixed_t*)&tri[0]); - FV_Copy(&Line[1], (v3fixed_t*)&tri[1]); - FV_ClosestPointOnLine(Line, point, &EdgePoints[0]); - - FV_Copy(&Line[0], (v3fixed_t*)&tri[1]); - FV_Copy(&Line[1], (v3fixed_t*)&tri[2]); - FV_ClosestPointOnLine(Line, point, &EdgePoints[1]); - - FV_Copy(&Line[0], (v3fixed_t*)&tri[2]); - FV_Copy(&Line[1], (v3fixed_t*)&tri[0]); - FV_ClosestPointOnLine(Line, point, &EdgePoints[2]); - - // Find the closest one of the three - FV_Copy(result, &EdgePoints[0]); - closestdist = FV_Distance(point, &EdgePoints[0]); - for (i = 1; i < 3; i++) - { - dist = FV_Distance(point, &EdgePoints[i]); - - if (dist < closestdist) - { - closestdist = dist; - FV_Copy(result, &EdgePoints[i]); - } - } - - // We now have the closest point! Whee! -} - -// -// InsidePolygon -// -// This checks to see if a point is inside the ranges of a polygon -// -boolean FV_InsidePolygon(const fvector_t *vIntersection, const fvector_t *Poly, const int vertexCount) -{ - int i; - UINT64 Angle = 0; // Initialize the angle - fvector_t vA, vB; // Create temp vectors - - // Just because we intersected the plane, doesn't mean we were anywhere near the polygon. - // This functions checks our intersection point to make sure it is inside of the polygon. - // This is another tough function to grasp at first, but let me try and explain. - // It's a brilliant method really, what it does is create triangles within the polygon - // from the intersection point. It then adds up the inner angle of each of those triangles. - // If the angles together add up to 360 degrees (or 2 * PI in radians) then we are inside! - // If the angle is under that value, we must be outside of polygon. To further - // understand why this works, take a pencil and draw a perfect triangle. Draw a dot in - // the middle of the triangle. Now, from that dot, draw a line to each of the vertices. - // Now, we have 3 triangles within that triangle right? Now, we know that if we add up - // all of the angles in a triangle we get 360 right? Well, that is kinda what we are doing, - // but the inverse of that. Say your triangle is an isosceles triangle, so add up the angles - // and you will get 360 degree angles. 90 + 90 + 90 is 360. - - for (i = 0; i < vertexCount; i++) // Go in a circle to each vertex and get the angle between - { - FV_Point2Vec(&Poly[i], vIntersection, &vA); // Subtract the intersection point from the current vertex - // Subtract the point from the next vertex - FV_Point2Vec(&Poly[(i + 1) % vertexCount], vIntersection, &vB); - - Angle += FV_AngleBetweenVectors(&vA, &vB); // Find the angle between the 2 vectors and add them all up as we go along - } - - // Now that we have the total angles added up, we need to check if they add up to 360 degrees. - // Since we are using the dot product, we are working in radians, so we check if the angles - // equals 2*PI. We defined PI in 3DMath.h. You will notice that we use a MATCH_FACTOR - // in conjunction with our desired degree. This is because of the inaccuracy when working - // with floating point numbers. It usually won't always be perfectly 2 * PI, so we need - // to use a little twiddling. I use .9999, but you can change this to fit your own desired accuracy. - - if(Angle >= ANGLE_MAX) // If the angle is greater than 2 PI, (360 degrees) - return 1; // The point is inside of the polygon - - return 0; // If you get here, it obviously wasn't inside the polygon. -} - -// -// IntersectedPolygon -// -// This checks if a line is intersecting a polygon -// -boolean FV_IntersectedPolygon(const fvector_t *vPoly, const fvector_t *vLine, const int vertexCount, fvector_t *collisionPoint) -{ - fvector_t vNormal, vIntersection; - fixed_t originDistance = 0*FRACUNIT; - - - // First we check to see if our line intersected the plane. If this isn't true - // there is no need to go on, so return false immediately. - // We pass in address of vNormal and originDistance so we only calculate it once - - if(!FV_IntersectedPlane(vPoly, vLine, &vNormal, &originDistance)) - return false; - - // Now that we have our normal and distance passed back from IntersectedPlane(), - // we can use it to calculate the intersection point. The intersection point - // is the point that actually is ON the plane. It is between the line. We need - // this point test next, if we are inside the polygon. To get the I-Point, we - // give our function the normal of the plane, the points of the line, and the originDistance. - - FV_IntersectionPoint(&vNormal, vLine, originDistance, &vIntersection); - - // Now that we have the intersection point, we need to test if it's inside the polygon. - // To do this, we pass in : - // (our intersection point, the polygon, and the number of vertices our polygon has) - - if(FV_InsidePolygon(&vIntersection, vPoly, vertexCount)) - { - if (collisionPoint != NULL) // Optional - load the collision point. - { - collisionPoint->x = vIntersection.x; - collisionPoint->y = vIntersection.y; - collisionPoint->z = vIntersection.z; - } - return true; // We collided! - } - - // If we get here, we must have NOT collided - return false; -} - -void FM_Rotate(fmatrix_t *dest, angle_t angle, fixed_t x, fixed_t y, fixed_t z) -{ -#define M(row,col) dest->m[row * 4 + col] - const fixed_t sinA = FINESINE(angle>>ANGLETOFINESHIFT); - const fixed_t cosA = FINECOSINE(angle>>ANGLETOFINESHIFT); - const fixed_t invCosA = FRACUNIT - cosA; - fvector_t nrm = {x, y, z}; - fixed_t xSq, ySq, zSq; - fixed_t sx, sy, sz; - fixed_t sxy, sxz, syz; - - FV_Normalize(&nrm); - - x = nrm.x; - y = nrm.y; - z = nrm.z; - - xSq = FixedMul(x, FixedMul(invCosA,x)); - ySq = FixedMul(y, FixedMul(invCosA,y)); - zSq = FixedMul(z, FixedMul(invCosA,z)); - - sx = FixedMul(sinA, x); - sy = FixedMul(sinA, y); - sz = FixedMul(sinA, z); - - sxy = FixedMul(x, FixedMul(invCosA,y)); - sxz = FixedMul(x, FixedMul(invCosA,z)); - syz = FixedMul(y, FixedMul(invCosA,z)); - - - M(0, 0) = xSq + cosA; - M(1, 0) = sxy - sz; - M(2, 0) = sxz + sy; - M(3, 0) = 0; - - M(0, 1) = sxy + sz; - M(1, 1) = ySq + cosA; - M(2, 1) = syz - sx; - M(3, 1) = 0; - - M(0, 2) = sxz - sy; - M(1, 2) = syz + sx; - M(2, 2) = zSq + cosA; - M(3, 2) = 0; - - M(0, 3) = 0; - M(1, 3) = 0; - M(2, 3) = 0; - M(3, 3) = FRACUNIT; -#undef M -} - -#endif - - - - -float FV_Distancef(const v3float_t *p1, const v3float_t *p2) -{ - float xs = (p2->x-p1->x * p2->x-p1->x); - float ys = (p2->y-p1->y * p2->y-p1->y); - float zs = (p2->z-p1->z * p2->z-p1->z); - return sqrt(xs+ys+zs); -} - -// Also returns the magnitude -fixed_t FV_NormalizeO(const v3fixed_t *a_normal, v3fixed_t *a_o) -{ - fixed_t magnitude = FV_Magnitude(a_normal); - a_o->x = FixedDiv(a_normal->x, magnitude); - a_o->y = FixedDiv(a_normal->y, magnitude); - a_o->z = FixedDiv(a_normal->z, magnitude); - return magnitude; -} - -// Also returns the magnitude -float FV_NormalizeOf(const v3float_t *a_normal, v3float_t *a_o) -{ - float magnitude = FV_Magnitudef(a_normal); - a_o->x = (a_normal->x/magnitude); - a_o->y = (a_normal->y/magnitude); - a_o->z = (a_normal->z/magnitude); - return magnitude; -} - -fixed_t FV_Normalize(v3fixed_t *a_normal) -{ - return FV_NormalizeO(a_normal, a_normal); -} - -fixed_t FV_Normalizef(v3float_t *a_normal) -{ - return FV_NormalizeOf(a_normal, a_normal); -} - -// -// FV_Normalf -// -// Calculates the normal of a polygon. -// -void FV_Normal(const v3fixed_t *a_triangle, v3fixed_t *a_normal) -{ - v3fixed_t a_1; - v3fixed_t a_2; - - M_MakeVec3(&a_triangle[2], &a_triangle[0], &a_1); - M_MakeVec3(&a_triangle[1], &a_triangle[0], &a_2); - - M_CrossProduct3(&a_1, &a_2, a_normal); - - FV_NormalizeO(a_normal, a_normal); -} - -// -// FV_Normalf -// -// Calculates the normal of a polygon. -// -void FV_Normalf(const v3float_t *a_triangle, v3float_t *a_normal) -{ - v3float_t a_1; - v3float_t a_2; - - M_MakeVec3f(&a_triangle[2], &a_triangle[0], &a_1); - M_MakeVec3f(&a_triangle[1], &a_triangle[0], &a_2); - - M_CrossProduct3f(&a_1, &a_2, a_normal); - - FV_NormalizeOf(a_normal, a_normal); -} - - -// EOF -#endif // #ifdef ESLOPE - -#endif diff --git a/src/m_vector.h b/src/m_vector.h deleted file mode 100644 index a2be3a7d..00000000 --- a/src/m_vector.h +++ /dev/null @@ -1,125 +0,0 @@ -// Emacs style mode select -*- C++ -*- -//----------------------------------------------------------------------------- -// -// Copyright(C) 2004 Stephen McGranahan -// -// This program is free software; you can redistribute it and/or modify -// it under the terms of the GNU General Public License as published by -// the Free Software Foundation; either version 2 of the License, or -// (at your option) any later version. -// -// This program is distributed in the hope that it will be useful, -// but WITHOUT ANY WARRANTY; without even the implied warranty of -// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -// GNU General Public License for more details. -// -// You should have received a copy of the GNU General Public License -// along with this program; if not, write to the Free Software -// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA -// -//-------------------------------------------------------------------------- -// -// DESCRIPTION: -// Vectors -// SoM created 05/18/09 -// -//----------------------------------------------------------------------------- - -#ifndef M_VECTOR_H__ -#define M_VECTOR_H__ - -#if 0 //#ifdef ESLOPE - -#include "m_fixed.h" -#include "tables.h" - -#define TWOPI M_PI*2.0 -#define HALFPI M_PI*0.5 -#define QUARTERPI M_PI*0.25 -#define EPSILON 0.000001f -#define OMEGA 10000000.0f - -typedef struct -{ - fixed_t x, y, z; -} v3fixed_t; - -typedef struct -{ - fixed_t x, y; -} v2fixed_t; - -typedef struct -{ - float x, y, z; -} v3float_t; - -typedef struct -{ - float yaw, pitch, roll; -} angles3d_t; - -typedef struct -{ - double x, y, z; -} v3double_t; - -typedef struct -{ - float x, y; -} v2float_t; - - -v3fixed_t *M_MakeVec3(const v3fixed_t *point1, const v3fixed_t *point2, v3fixed_t *a_o); -v3float_t *M_MakeVec3f(const v3float_t *point1, const v3float_t *point2, v3float_t *a_o); -void M_TranslateVec3(v3fixed_t *vec); -void M_TranslateVec3f(v3float_t *vec); -void M_AddVec3(v3fixed_t *dest, const v3fixed_t *v1, const v3fixed_t *v2); -void M_AddVec3f(v3float_t *dest, const v3float_t *v1, const v3float_t *v2); -void M_SubVec3(v3fixed_t *dest, const v3fixed_t *v1, const v3fixed_t *v2); -void M_SubVec3f(v3float_t *dest, const v3float_t *v1, const v3float_t *v2); -fixed_t M_DotVec3(const v3fixed_t *v1, const v3fixed_t *v2); -float M_DotVec3f(const v3float_t *v1, const v3float_t *v2); - -#ifdef SESLOPE -v3double_t *M_MakeVec3d(const v3double_t *point1, const v3double_t *point2, v3double_t *a_o); -double M_DotVec3d(const v3double_t *v1, const v3double_t *v2); -void M_TranslateVec3d(v3double_t *vec); -#endif - -void M_CrossProduct3(v3fixed_t *dest, const v3fixed_t *v1, const v3fixed_t *v2); -void M_CrossProduct3f(v3float_t *dest, const v3float_t *v1, const v3float_t *v2); -fixed_t FV_Magnitude(const v3fixed_t *a_normal); -float FV_Magnitudef(const v3float_t *a_normal); -fixed_t FV_NormalizeO(const v3fixed_t *a_normal, v3fixed_t *a_o); -float FV_NormalizeOf(const v3float_t *a_normal, v3float_t *a_o); -fixed_t FV_Normalize(v3fixed_t *a_normal); -fixed_t FV_Normalizef(v3float_t *a_normal); -void FV_Normal(const v3fixed_t *a_triangle, v3fixed_t *a_normal); -void FV_Normalf(const v3float_t *a_triangle, v3float_t *a_normal); -v3fixed_t *M_LoadVec(v3fixed_t *vec, fixed_t x, fixed_t y, fixed_t z); -v3fixed_t *M_CopyVec(v3fixed_t *a_o, const v3fixed_t *a_i); -v3float_t *M_LoadVecf(v3float_t *vec, float x, float y, float z); -v3float_t *M_CopyVecf(v3float_t *a_o, const v3float_t *a_i); -v3fixed_t *FV_Midpoint(const v3fixed_t *a_1, const v3fixed_t *a_2, v3fixed_t *a_o); -fixed_t FV_Distance(const v3fixed_t *p1, const v3fixed_t *p2); -v3float_t *FV_Midpointf(const v3float_t *a_1, const v3float_t *a_2, v3float_t *a_o); -angle_t FV_AngleBetweenVectors(const v3fixed_t *Vector1, const v3fixed_t *Vector2); -float FV_AngleBetweenVectorsf(const v3float_t *Vector1, const v3float_t *Vector2); -float FV_Distancef(const v3float_t *p1, const v3float_t *p2); - - -// Kalaron: something crazy, vector physics -float M_VectorYaw(v3float_t v); -float M_VectorPitch(v3float_t v); -angles3d_t *M_VectorAlignTo(float Pitch, float Yaw, float Roll, v3float_t v, byte AngleAxis, float Rate); - -void M_VecRotate(v3fixed_t *rotVec, const v3fixed_t *axisVec, const angle_t angle); - - - -#endif - -// EOF -#endif // #ifdef ESLOPE -